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Abstract

Morphing algorithms aim to construct visually pleasing
interpolations (morphs) between 2D or 3D shapes. One
of the desirable properties of a morph is avoiding self-
intersections of the deforming shape. We investigate
topological invariants (based on winding number) of
planar morphs between compatible triangulations that
do allow global self-intersections but avoid local ones.
Equivalently, such morphs do not make any of the tri-
angles degenerate. We discuss a variant of the as rigid
as possible morphing algorithm based on these invari-
ants that allows to handle cases when a large amount of
twist is required to transform the source triangulation
into the target triangulation.

1 Background

Morphing is a well-established problem a number of re-
searchers have been working on for many years. We
limit ourselves to discussion of the results that apply
to the same setting as assumed in this paper, namely
morphing between compatible planar triangulations.

Different variants of a method of deforming planar tri-
angulations while avoiding self-intersections is discussed
in papers [2, 3, 4, 6]. Its theoretical foundation is the
theory of discrete Laplace operator, which, in partic-
ular, states that if the boundary of a planar mesh is a
convex polygon and every vertex of a mesh is a weighted
average of the neighboring vertices with positive weights
then the triangulation is intersection free. Essentially,
those methods represent the locations of the vertices of
the triangulations in an implicit manner as collections
of weights and construct the morph by deforming the
set of weights for the source triangulation to the set of
weights for the target triangulation.

Although avoiding self-intersections is certainly im-
portant, preservation of the shape is at least equally
important in practice. In contrast to [2, 3, 4, 6], the as-
rigid-as-possible shape interpolation of [1] is centered
around the idea of preserving the shape. It allows to
construct very well looking morphs (in particular, pre-
serve the lengths and overall shape of the parts of the
shapes that need to be deformed). However, it does
not guarantee that the morph does not contain self-
intersections.

2 Overview of the main results

In what follows, we will consider triangulations in the
plane that do not allow local self-intersections. For-
mally, we shall think of the source and target trian-
gulations as geometric realizations of a connected and
oriented 2D manifold (with boundary) abstract simpli-
cial complex. Such a geometric realization is required
to preserve the orientation, i.e. map each oriented tri-
angle into a triangle in the plane oriented in a counter-
clockwise manner. Compatible triangulations are real-
izations of the same abstract simplicial complex.

Let us note that, apart from planar triangulations
with no self-intersections or non-manifold vertices our
definition encapsulates the two triangulations shown on
the right of Figure 1. Also, notice that all triangulations
shown in the Figure are compatible. It is not hard to see
that there exists a morph between the first two which
does not make any triangle in the intermediate trian-
gulations degenerate (such a morph will be called non-
degenerating). However, it is impossible to morph the
third one to any of the other two. A simple argument
can be based on the concept of kink-free deformations of
polygonal loops [5]. In the smooth case [7], deformations
of smooth and regular loops preserve the winding num-
ber of the tangent vector. For kink-free deformations
of polygonal loops (i.e. deformations that are not al-
lowed to make any three consecutive vertices collinear),
a similar statement is true. Lack of continuity of the
tangent vector is circumvented by linearly interpolating
between the tangent vectors of the consecutive line seg-
ments of the polygonal loop and treating the the loop
obtained by joining all of these linear paths as the loop
of tangent vectors. The triangulations shown in Figure
1 are circular triangle strips. By joining the midpoints
of edges shared by each pair of consecutive triangles one
obtains three paths shown in Figure 1. It is not hard
to see that the winding number of the tangent vector to
the two paths on the left is different from the winding
number for the third path. Hence there is no kink-free
deformation of the first or second path to the third.
Therefore, there can’t be a non-degenerating morph of
the triangulation on the right of Figure 1 to any of the
other two. If it existed, by joining the midpoints of the
intervals between each pair of consecutive triangles in
the intermediate stages of the morph we would obtain
a forbidden kink-free deformation.
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Figure 1: Three triangulations and their associated paths.

As-rigid-as-possible shape interpolation method [1]
takes as input two compatible triangulations realizing
an abstract simplicial complex C and proceeds in two
steps. First, for every triangle T in C, it selects a defor-
mation of the ‘shape’ of the triangle corresponding to
T in the source to that of the corresponding triangle in
the target. This deformation is described by a path in
the space of all orientation-preserving automorphisms
of the plane (which we denote by GL+

2 (IR)), starting
at the identity and ending at the transformation MT ,
which takes the vectors running along the edges of the
triangle corresponding to T in the source into the vec-
tors running along the corresponding edges the target.
Clearly, there are infinitely many loops (even their ho-
motopy classes) of this kind. The paper [1] includes
experimental evidence showing that paths constructed
in the following way produce naturally looking defor-
mations. Decompose MT into a product of a rotation
matrix, Rα(T ) (where α(T ) is the rotation angle) and
a positive definite symmetric matrix ST . Then, define
the path σT : [0, 1] → GL+

2 (IR) by

σT (t) = Rtα(T ) ◦ ((1 − t)I + tST ). (1)

The triangulation interpolating between the source (t =
0) and the target (t = 1) corresponding to parameter
t ∈ [0, 1] is computed by minimizing (in the least squares
sense) the difference between the entries of the matri-
ces of σT (t) and the matrix of the transformation that
takes vectors running along edges of the triangle corre-
sponding to T in the source to vectors running along
corresponding edges in the unknown interpolating tri-
angulation. Since all entries of the matrix of the latter
transformation can be expressed as linear combinations
of the unknowns (coordinates of vertices of the interpo-
lating triangulation), this boils down to solving a sparse
global quadratic optimization problem. The reader is
referred to [1] for details.

The angle α(T ) can be selected in infinitely many
ways, the admissible choices differing by a multiple of
2π from each other. Careful choice of α(T ) allows to
control the amount of spin applied by the path σT to
the triangle T , or, more precisely, the homotopy class of
this path. Note that GL+

2 (IR) is homotopy equivalent
to the circle. Homotopy classes of loops in that space

can be distinguished as follows. For loops Σ : [0,M ] →
GL+(IR2) and σ : [0,M ] → IR2 \ {0}, Σ(t)(σ(t)) is a
loop in IR2 \ {0}. Its winding number depends only
on the homotopy types of the loops Σ and σ. By the
winding number of Σ we mean the winding number of
the loop Σ(t)(σ(t)) for a null-homotopic loop σ. One can
prove that, for an arbitrary loop σ : [0,M ] → IR2 \ {0},
w(Σ(t)(σ(t))) = w(Σ(t)) + w(σ(t)), where by w(.) we
denote the winding number of a loop either in IR \ {0}
or GL+

2 (IR). Two loops in GL+
2 (IR) can be proved to

be homotopic if and only if they have the same winding
numbers.

Intuitively, it is clear that adjacent triangles should
spin in a similar manner so that their deformation paths
can be gracefully compromised when global optimiza-
tion step is performed. This suggests selecting rotation
angles in such a way that they differ by less than π
for any pair of adjacent triangles (we shall call such an
assignment of rotation angles coherent), leading to the
following greedy recursive algorithm.

Algorithm 1 For an arbitrarily selected triangle T0,
select any admissible rotation angle α(T0). Any time
a triangle T has a rotation angle assigned, assign rota-
tion angles in the interval (α(T ) − π, α(T ) + π) to its
adjacent triangles (which have not got a rotation angle
yet), until all triangles are exhausted.

Note that we use an open interval (α(T )−π, α(T )+π)
in the algorithm because admissible rotations of adja-
cent triangles T and T ′ cannot differ by π. This is be-
cause the vector �v running along the edge separating
the two triangles in the source triangulation is mapped
to the vector �v′ along the edge separating the corre-
sponding triangles in the target triangulation by both
MT and MT ′ . The difference of the rotation angles α(T )
and α(T ′) (modulo 2π) has to be equal to the angle be-
tween ST (�v) and ST ′(�v), which is strictly less than π
because the matrices of ST and ST ′ are symmetric and
positive definite.

The success of Algorithm 1 (i.e. whether the assign-
ment of angles it produces is coherent or not) depends
on global properties of the source and target triangu-
lations. It is not going to work if the source and the
target triangulations are the triangulations on the left
and right of Figure 1. Assume it starts at some trian-
gle of the mesh on the left and assigns rotation angles
to triangles in the counterclockwise order. Just before
terminating, it is going to assign a rotation angle to the
clockwise neighbor of the initial triangle. The rotation
angles assigned to the two triangles will be off by more
than π. This is because the algorithm gradually accu-
mulates the spin that has to be applied to triangles in
the source to deform them to the corresponding trian-
gles of the target.

The algorithm does succeed when a non-degenerating
morph between the source and the target exists. We
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Figure 2: Morphs obtained with coherent rotation angles
(some of the snapshots of the spiral have been truncated).

Figure 3: Intermediate stages of the morphs between the
same source and target meshes as in Figure 2, but without
coherent angle selection.

claim that this case is most important for applications.
When finding a non-degenerating morph is not possible,
then one should rather look for a different compatible
triangulations of the source and target before construct-
ing a high quality morph.

Figure 2 show examples of morphs obtained using as-
rigid-as-possible morphing with coherent rotation an-
gles. Figure 3 shows some of the intermediate stages
of the morphs with the same source and target where
all rotation angles have been selected from the interval
(−π, π] (leading to degeneracies in the morph). Note
that in all our examples, the differences between rota-
tion angles for some triangles exceed 2π. Choosing rota-
tion angles from a different interval of length 2π would
not allow to avoid degeneracies.

3 Formal definitions and proofs
In this section we prove that Algorithm 1 produces co-
herent rotation angles if a non-degenerating morph be-
tween the source and target triangulations exists.

3.1 Invariants of non-degenerating morphs and
winding number equivalent triangulations

Let C be a connected 2D manifold (with boundary) ori-
ented abstract simplicial complex. Consider a loop L
in the dual graph of C that does not backtrack (i.e. no
two consecutive edges on L are equal). Recall that the
vertices of the dual graph correspond to the triangles of

C and edges join adjacent triangles. With any such loop
L we associate a planar loop, depending on a geometric
realization F of C, obtained by joining the midpoints
of edges shared by consecutive pairs of triangles on L.
Examples of such planar loops are shown in Figure 1.
By the winding number along L we mean the winding
number of the tangent vector of that planar loop (in-
terpolated to form a continuous curve as described in
the previous section). The argument based on kink-free
deformations we have used in Section 2 can be used to
argue that the following statement holds.

Lemma 1 The winding number along any loop in the
dual graph is preserved by a non-degenerating morph.

In particular, the winding number along any loop L
in the dual graph must be the same for any two com-
patible triangulations that are possible to morph in a
non-degenerating fashion. In what follows, the loop ob-
tained by interpolating the consecutive tangent vectors
will play an important role. We denote it by τF,L, where
F denotes a geometric realization of the complex C. The
following definition specifies the class of source and tar-
get triangulations which are not precluded from being
morphable in a non-degenerate manner by Lemma 1.

Definition 1 Two geometric realizations F and G of C

are winding number equivalent if and only if the winding
numbers of the loops τF,L and τG,L are the same for any
loop L in the dual graph of C that does not backtrack.

Let F and G be geometric realizations of the same
complex C. For any loop L in the dual graph of C

we will associate a loop ΣF→G,L in GL+
2 (IR) defined

as follows. For each triangle T on L, consider the lin-
ear isomorphism MT defined as in Section 2, i.e. such
that MT (

−−−−−−→
F (a)F (b)) =

−−−−−−→
G(a)G(b) and MT (

−−−−−−→
F (a)F (c)) =−−−−−−→

G(a)G(c). The loop ΣF→G,L is obtained by join-
ing the isomorphisms MT for T along L with linear
paths: if the consecutive triangles on the loop L are
T0, T1, . . . , Tn = T0 then ΣF→G,L : [0, n] → GL+

2 (IR) is
defined by ΣF→G,L(t) = (k + 1− t)MTk

+ (t− k)MTk+1

for t ∈ [k, k + 1], k = 0, 1, 2, . . . , n − 1. All transforma-
tions on the loop ΣF→G,L can be argued to belong to
GL+

2 (IR) using the following proposition.

Proposition 1 For any two adjacent triangles T and
T ′ in C all convex combinations of MT and MT ′ are
isomorphisms.

Proof. Let p and q be the two vertices shared by T
and T ′ and r and s - the remaining vertices of T and
T ′ (respectively). Let P = F (p), Q = F (q), R = F (r),
S = F (s), P ′ = G(p), Q′ = G(q), R′ = G(r), S′ = G(s).
Notice that both MT and MT ′ map the vector

−−→
PQ into

the same nonzero vector,
−−−→
P ′Q′. Therefore, so does any

their convex combination. Moreover, they both map
an arbitrarily chosen nonzero vector �w perpendicular to
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−−→
PQ to a vector pointing to the same side of the line
through the origin parallel to

−−−→
P ′Q′ (since they preserve

orientation). Therefore, convex combinations of MT

and MT ′ cannot map �w to a vector parallel to
−−−→
P ′Q′

and therefore they are isomorphisms. ��
We finish this section with the following result.

Proposition 2 If F and G are winding number equiv-
alent then the loop ΣF→G,L is contractible in GL+

2 (IR)
for any loop L in the dual graph of C.
Proof. Let T0, T1, . . . , Tn = T0 be the consecutive
triangles on L. Let Pi and P ′

i be the midpoints of
the interval joining the points corresponding to ver-
tices shared by the triangles Ti and Ti+1 in the source
and target triangulations for i = 0, 1, . . . , n − 1. De-
fine loops �v, �v′ : [0, n] → IR2 \ {0} (which, in fact,
are the loops τF,L and τG,L defined in Section 3.1) by:
�v(t) = (k + 1 − t)

−−−−−→
Pk−1Pk + (t − k)

−−−−−→
PkPk+1 and �v′(t) =

(k + 1− t)
−−−−−→
P ′

k−1P
′
k + (t− k)

−−−−−→
P ′

kP ′
k+1 for t ∈ [k, k + 1], k =

0, 1, . . . , n − 1 (where P−1 = Pn−1 and P ′
−1 = P ′

n−1).
The loop θ(t) = ΣF→G,L(t)(�v(t)) is homotopic to �v′.
This is because, by an elementary calculation, for t ∈
[k, k + 1] with k ∈ {0, 1, . . . , n − 1}, θ(t) is a convex
combination of vectors MTk

(
−−−−−→
PkPk+1), MTk+1(

−−−−−→
Pk−1Pk),

MTk
(
−−−−−→
Pk−1Pk) and MTk+1(

−−−−−→
PkPk+1). All of those vec-

tors belong to the same open half-plane bounded by
the line passing through the origin and parallel to the
edge corresponding to that shared by Tk and Tk+1 in
G. Since �v′ is a convex combination of vectors

−−−−−→
P ′

kP ′
k+1

and
−−−−−→
P ′

k−1P
′
k which both belong to the same half-plane,

∠(θ(t), �v′(t)) < π, and therefore the loops θ and �v′ are
indeed homotopic in IR2 \ {0}.

Since the winding numbers of the loops �v and �v′
are the same, this means that the winding number of
ΣF→G,L is zero and therefore it is contractible. ��
3.2 Algorithm 1 for winding number equivalent tri-

angulations
In this section, we shall prove the following theorem.
Theorem 1 If the source and target triangulations are
winding number equivalent then Algorithm 1 produces a
coherent assignment of rotation angles.

In what follows, by � we shall denote the operation
of concatenating paths. For two paths σ and τ in a
topological space X such that the starting point of τ
coincides with the endpoint of σ, σ � τ is the path that
first follows the path σ and then follows τ . For two
paths η and θ that have the same starting points and
the same endpoints we shall write η ≡ θ if they are
homotopic with the starting points and endpoints fixed.

We start with a proof of the following proposition.
Proposition 3 Let T and T ′ be two adjacent triangles
in C and L(T, T ′) be the linear path joining MT and
MT ′ . Let σT be defined as in Equation (1). Then

σT � L(T, T ′) ≡ σT ′ (2)
if and only if the rotation angles α(T ) and α(T ′) are
chosen in such a way that |α(T ) − α(T ′)| < π.
Proof. We concentrate on the ‘if’ part. The ‘only if’
part holds since validity of Equation (2) depends only
on the difference of the two rotation angles.

Let p and q be the vertices of the edge shared by
T and T ′, P and Q their corresponding vertices in the
source triangulation and P ′ and Q′ - their corresponding
vertices in the target triangulation.

We are going to evaluate the paths on both sides
of Equation 2 on the vector

−−→
PQ, proving that this

leads to homotopic paths in IR2 \ {0}. Notice that
∠(ST (

−−→
PQ),

−−−→
P ′Q′) = α(T ), ∠(ST ′(

−−→
PQ),

−−−→
P ′Q′) = α(T ′)

(modulo 2π; both here and below, the angles are
signed, i.e. they denote the angle needed to ro-
tate the first vector into one pointing in the direc-
tion of the second vector) and, since MT (

−−→
PQ) =

MT ′(
−−→
PQ) =

−−−→
P ′Q′, L(T, T ′)(t)(

−−→
PQ) =

−−−→
P ′Q′.

Since ST and ST ′ are symmetric positive definite,
∠(

−−→
PQ,ST (

−−→
PQ)) < π/2, and ∠(

−−→
PQ,ST ′(

−−→
PQ)) < π/2.

Because α(T ) and α(T ′) differ by less than π, α(T ) +
∠(

−−→
PQ,ST (

−−→
PQ)) = α(T ′)+∠(

−−→
PQ,ST ′(

−−→
PQ)). Thus both

paths spin the vector
−−→
PQ by the same amount. Hence

they are homotopy equivalent. ��
Proof of Theorem 1. Recall that Algorithm 1 first
assigns a rotation angle to a triangle T0 and then re-
cursively to neighbors of triangles which have an angle
assigned. This means that there are paths τ and τ ′ in
the dual graph joining T0 with T and T ′ (respectively)
along which the angles are assigned (meaning that the
angles for any two consecutive triangles on any of the
two paths differ by less than π). By first following the
path σ backward and then the path σ′ we obtain a path
τ̄ in the dual graph starting at T and ending at T ′.
Build a path τ̄∗ in GL+

2 (IR) by joining transformations
MT on the path τ̄ with linear paths. By Proposition
2, τ̄∗ is homotopic to the linear path L(T, T ′). A sim-
ple inductive proof based on Proposition 3 shows that
σT � τ̄∗ ≡ σT ′ , where the rotation angles for σT and
σT ′ are produced by the Algorithm. We conclude that
σT �L(T, T ′) ≡ σT ′ . Using Proposition 3 again, we have
|α(T ) − α(T ′)| < π. ��
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