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Abstract

A convex polyhedron P is equiprojective if, for some
k, the orthogonal projection (or “shadow”) of P in
every direction, except those directions parallel to
faces of P , is a k-gon. We address an open ques-
tion posed by Shepherd [11], and reported in [5], by
characterizing equiprojective polyhedra, and giving
an O(n log n) time recognition algorithm.

1 Introduction

A convex polyhedron P is k-equiprojective if
its shadow is a k-gon in every direction, ex-
cept directions parallel to faces of P . A
cube is 6-equiprojective, a triangular prism is 5-
equiprojective, and a tetrahedron is not equipro-
jective. See Figure 1.

In 1968 Shepherd [11] defined equiprojective poly-
hedra, gave the examples above, and asked how
to construct all equiprojective polyhedra. Croft,
Falconer, and Guy include this problem in their
book [5].

We note that the cube and triangular prism can
be generalized: for any p ≥ 3, a prism based on a
regular p-gon is (p + 2)-equiprojective. An example
of equiprojective polyhedron that is not a prism is
given in Figure 2.

In this paper we give a characterization of
equiprojective polyhedra, and show that this char-
acterization provides an O(n log n) time algorithm
to test if a polyhedron of size n is equiprojective.

Our characterization can be used to show that
all generalized zonohedra are equiprojective, and
we identify other interesting subclasses as well. See
Section 2. The whole class seems surprisingly rich,
and we do not give a method for generating it.

The flavour of our characterization is as follows.
Any edge, e, of the shadow of P corresponds to some
edge of P . As the projection direction changes, e
may leave the shadow boundary. This only happens
when a face f containing e in P becomes parallel to
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the direction. In order to preserve the size of the
shadow, some other edge e′ must join the shadow
boundary. In order for these events to occur simul-
taneously, e′ must be an edge of f , or of a face
parallel to f . This gives some intuition that the
condition for equiprojectivity involves a pairing-up
of parallel edge-face pairs of P . For a more precise
statement of our characterization, see Section 2.

Background

One way to test if a polyhedron is equiprojective
would be to check all the combinatorially different
projections, and for each one count the number of
edges of the shadow. Plantinga and Dyer [10] show
that the number of combinatorially different ortho-
graphic projections of an n vertex convex polyhe-
dron is O(n2). (In their terminology, this is the
size of the viewpoint space partition.) This method
of testing for equiprojectivity is thus polynomial
time, though inefficient. It might be improved if
we could quickly find the projections (not parallel
to faces) with the minimum and maximum num-
ber of edges. We know of no such algorithmic re-
sults, though there are bounds known on the asymp-
totic size of the 2-dimensional projection of a d-
dimensional polytope [1].

When the size of the shadow is measured in terms
of area rather than number of vertices, there are al-
gorithmic results on the problem of maximizing or
minimizing the size of the shadow. For projections
to one dimension, this is the problem of finding the
diameter and the width of a convex polyhedron. In
the case of higher-dimensional polyhedra we mea-
sure the volume of the projection. See [3] for a
mathematical treatment; [9] for an algorithm for the
case of 3-dimensional polytopes; and [2] for an NP-
completeness proof for higher-dimensional versions
of the problem.

Projections of objects consisting only of edges,
not planar faces, have also been explored. For ex-
ample, there are methods for finding projections of
knots and embedded graphs that avoid unnecessary
incidences. See [13] for a survey.
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Figure 1: (a) A cube is 6-equiprojective, (b) a triangular prism is 5-equiprojective, (c) a tetrahedron is not equipro-
jective, and (d) a zonohedron, which we discuss in Section 2, is always equiprojective.

2 Which polyhedra are equiprojective?

We begin with the precise statement of our charac-
terization, and then explore some classes of equipro-
jective polyhedra.

For edge e in face f , we call (e, f) an edge-face
duple. Two edge-face duples (e, f) and (e′, f ′) are
parallel if e is parallel to e′ and f is parallel to,
or equal to f ′. Observe that in a convex polygon,
an edge can have at most one parallel edge; and in
a convex polyhedron, a face can have at most one
parallel face. Thus an edge-face duple has at most
three parallel duples.

Define the direction of duple (e, f) to be a unit
vector in the direction of edge e as encountered in
a clockwise traversal of the outside of face f . Edge-
face duples (e, f) and (e′, f ′) compensate each other
if they are parallel and their directions are opposite
(i.e. one is the negation of the other). In particu-
lar, this means that either f = f ′ and e and e′ are
parallel (in which case they must be on “opposite
sides” of f), or f and f ′ are distinct parallel faces,
and e and e′ are parallel edges lying on the “same
side” of f and f ′. See Figure 2. An edge-face duple
has at most two compensating duples.

Theorem 2.1 Polyhedron P is equiprojective iff its
set of edge-face duples can be partitioned into com-
pensating pairs.

This theorem is proved in Section 3.
One of the simplest subclasses of equiprojective

polyhedra are the polyhedra where every face con-
sists of parallel pairs of edges. In this case an edge-
face duple is compensated by the parallel edge in
the same face. Polyhedra of this form are called
generalized zonohedra [12] . See Figure 1(d). (The
term “zonohedron”, though originally defined as
above by the Russian crystallographer Fedorov, was
evolved by Coxeter [4] to mean the more special case
where the faces are equilateral; see [12] for the his-
tory). For more information on zonohedra, see the
web pages [6, 7, 8].

Zonohedra have the property that every face has
a parallel face with corresponding edges parallel.

f1

e3

e2

e1

e4 f2

Figure 2: Examples of some compensating edge-face
duples: (e1, f1) is compensated by (e2, f1) and by
(e4, f2) but not by (e3, f2). This is also an equipro-
jective polyhedron which is not face-compensating:
the bottom face f2 includes two edges (the short
ones) that compensate each other, but the remain-
ing edges are compensated by corresponding paral-
lel edges in the top face f1.

Thus each edge-face duple could alternatively be
compensated by the corresponding edge in the par-
allel face.

More generally we obtain the class of “face-
compensating polyhedra”, where any face not com-
posed of parallel pairs of edges has a parallel face
with corresponding edges parallel. The prisms
based on odd regular polygons are in this class, but
are not zonohedra.

Finally, there are equiprojective polyhedra that
are not face-compensating, for example the one
shown in Figure 2.

3 Proof of characterization

Let P be a [convex] polyhedron. Given a direc-
tion d, we can distinguish faces of P parallel to d,
faces visible from d, and faces invisible from d. If
there are no faces parallel to d, then the edges of
the shadow of P projected in direction d are in one-
to-one correspondence with the edges of P common
to a visible and an invisible face of P . For direction
d, let Sd be the set of edges of P that form edges of
the shadow. As d changes continuously, Sd changes
only when faces become parallel to d, on their way
between visibility and invisibility or vice versa.
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Figure 3: (a) Illustration of ε, and Ud(f) and Ld(f) for a face f ; (b) Sd+ε(f) = Ud(f); (c) Sd−ε(f) = Ld(f).

Note that if two faces of P are parallel to each
other then they both become parallel to d at the
same time. Our starting point is the claim that
apart from such parallel faces, we can concentrate
on the case where d crosses the plane of at most one
face at a time.

Lemma 3.1 We can change d continuously from
any initial direction ds to any other direction dt,
so that for any direction d along the way, the set of
faces parallel to d is empty, or consists of one face—
and its parallel counterpart if there is one. Further-
more, we can ensure that d crosses the plane of each
face orthogonally in a small enough neighbourhood.

Proof. See full version. �

Thus to show that a polyhedron is equiprojec-
tive, it suffices to consider the changes in Sd as d
orthogonally crosses the plane of one face f—and
its parallel counterpart f ′ if it exits—causing f to
become visible or invisible. Let Sd(f) be the edges
of f that form edges of the shadow of P in direction
d. We will use the notation Sd(f, f ′) to mean Sd(f)
together with Sd(f ′) if f ′ exists—i.e. the edges of f
and f ′ that are edges of the shadow.

Take a direction d in the plane of face f , but not
in the plane of any other face (except f ′ if it exists)
and let ε be a small vector normal to the plane of f ,
and consider the directions d+ε and d−ε. These two
directions make f invisible and visible, respectively,
and affect no other faces except f ′ if it exists. We
want to show that Sd+ε(f, f ′) and Sd−ε(f, f ′) have
the same cardinality.

Given a direction d in the plane of face f , let
Ld(f) be the lower chain of f with respect to di-
rection d and let Ud(f) be the upper chain. See
Figure 3(a). This distinction between upper and
lower has to do with visibility in the plane of face
f—in particular, Ud(f) consists of the edges of f
visible from direction d.

Lemma 3.2 Let d and ε be as above. Then
Sd+ε(f) = Ud(f) and Sd−ε(f) = Ld(f).

Proof. See Figure 3(b, c). �

Corollary 3.1 If f has a parallel face f ′ then
Sd+ε(f ′) = Ld(f ′) and Sd−ε(f ′) = Ud(f ′).

The above results give us the machinery we need
to prove the sufficiency of our condition for equipro-
jectivity.

Proof of Theorem 2.1

Sketch only; see full version for detail.
(⇐=) For a polyhedron P , if edge-face duples are
partitioned into compensating pairs, we can prove
that for a direction d in the plane of a single face f
[and its parallel counterpart f ′, if it exists]:

|Ud(f)| + |Ld(f ′)| = |Ld(f)| + |Ud(f ′)|.

Lemma 3.2 and Corollary 3.1 imply that Sd main-
tains its cardinality as d orthogonally crosses the
plane of one face f [and f ′]. Then by Lemma 3.1 P
is equiprojective.
(=⇒) For a polyhedron P , if edge-face duples can’t
be partitioned into compensating pairs, we find two
projections of P of different sizes.

Consider the graph of compensating edge-face
duples, which has a vertex for each edge-face du-
ple, and an edge when two duples compensate each
other. The parallel family of (e, f) may consist of:
(1) one node; (2) two isolated nodes; (3) two nodes
joined by an edge; (4) three nodes joined in a path;
(5) four nodes joined in a cycle. See Figure 4.

In cases (3) and (5) the parallel family of (e, f)
partitions into compensating pairs. In cases (1),
(2), and (4) there is no partition into compensating
pairs, and we must show that P is not equiprojec-
tive. We show it by finding a direction d in the plane
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Figure 4: Graph of compensating edge-face duples within one parallel family. Faces f and f ′ are parallel. Edges
drawn in bold are parallel.

of f [and its parallel counterpart f ′, if it exists] but
not in the plane of any other face so that:

|Ud(f)| + |Ld(f ′)| �= |Ld(f)| + |Ud(f ′)|.
Then from Lemma 3.2 and Corollary 3.1 directions
d + ε and d − ε yield two projections of different
sizes, where ε is a vector perpendicular to f and is
small enough to avoid the plane of any other face.
�

4 Algorithm

Our characterization provides an O(n log n) time al-
gorithm to test if a polyhedron is equiprojective.
There are O(n) edge-face duples, which we sort by
direction and face normal, thereby partitioning the
set of edge-face duples into parallel families. Since
each family has at most 4 members, it is then a
trivial matter to see if it can be partitioned into
compensating pairs. See Figure 4.

5 Conclusion

We leave open the question of an algorithm to gen-
erate all equiprojective polyhedra, or even to gen-
erate just the face-compensating ones. Note that
there are algorithms to generate zonohedra [7]. Our
most interesting example, the non-face compensat-
ing polyhedron in Figure 2, is formed by adjoining
two prisms. Can all equiprojective polyhedra be
constructed in some way from zonohedra and other
face-compensating polyhedra?

We also leave open the question of a linear time
algorithm to test equiprojectivity.
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