
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

An Algorithm for the MaxMin Area Triangulation of a Convex Polygon

J. Mark Keil, Tzvetalin S. Vassilev
Department of Computer Science

University of Saskatchewan, 57 Campus Drive,
Saskatoon, Saskatchewan, S7N 5A9

e-mail: keil@cs.usask.ca, tsv552@mail.usask.ca

Abstract

Given a convex polygon in the plane, we are interested
in triangulations of its interior, i.e. maximal sets of non-
intersecting diagonals that subdivide the interior of the
polygon into triangles. The MaxMin area triangula-
tion is the triangulation of the polygon that maximizes
the area of the smallest area triangle in the triangula-
tion. There exists a dynamic programming algorithm
that computes the optimal triangulation with respect
to a number of optimality criteria in Θ(n3) time and
Θ(n2) space, [4]. We present an algorithm that con-
structs the MaxMin area triangulation of a convex poly-
gon in O(n2 log n log log n) time and O(n2) space. The
algorithm is based on the dynamic programming ap-
proach and uses a number of problem-specific geometric
properties that are established within the paper.

1 Introduction

Triangulations of point sets in the plane have been stud-
ied as one of the important structures in computational
geometry. There are optimality criteria based on edge
length, angles, areas and other elements of the individ-
ual triangles in a triangulation, for an overview see [1].
Usually, in connection with these criteria, we consider
MinMax and MaxMin problems. The first quantifier de-
fines an optimization that is done over all possible tri-
angulations of the given point set and the second quan-
tifier specifies the optimization that is done within the
respective elements (edges, angles, triangles) of a partic-
ular triangulation. For example, MinMax angle stands
for the triangulation that minimizes the maximum an-
gle in a triangulation over all possible triangulations of
the given point set.

If the point set is a convex polygon, there is a dynamic
programming algorithm by Klincsek, described in [4],
that finds the optimal triangulation with respect to a
large number of criteria. The algorithm runs in Θ(n3)
time and requires Θ(n2) space. Many of the optimal
triangulations, though, admit better problem-specific
algorithms. The Greedy and the Delaunay triangula-
tions are computable in linear time and space for con-
vex polygons. Some other optimal triangulations can be

computed within time and space bounds that are bet-
ter than those of the general algorithm, for example by
edge insertion [2].

We study the problems of optimizing the area of
the triangles in the triangulation, and particularly the
MaxMin area triangulation of a convex polygon. In
the following section we outline the approach used to
compute the optimal triangulation solving the so-called
threshold problem. We discuss the relationship between
the optimization and the threshold problems. In sec-
tion 3 we provide the geometric background for the algo-
rithm, properties and the structure of the triangulation.
In section 4 we present the main result of the paper the
algorithm for computing the MaxMin area triangulation
of a convex polygon, and prove the O(n2 log n log log n)
time and O(n2) space bounds. Section 5 concludes the
paper with discussion on the extensions of this algorith-
mic approach to other optimal triangulations, directions
for future work and open problems.

2 Optimization and threshold problems

We can consider two types of problems with respect to
optimal triangulations.

Definition 1. (Optimization problem): Given a
planar set of points S, and an optimality criterion rep-
resented by the quality measure µ, the optimization
problem is:
“Find the triangulation(s) T of S that optimize(s) the
value of µ over all possible triangulations of S.”

Definition 2. (Threshold problems): Given a pla-
nar set of points S, an optimality criterion represented
by the quality measure µ, and a threshold τ , the thresh-
old problems are:
“Is there a triangulation T of S such that µ(T) ≥ τ (or
µ(T) ≤ τ) ?” (Yes/No problem)
“Find a triangulation T of S such that µ(T) ≥ τ .”
(Construction problem).

1

15th Canadian Conference on Computational Geometry, 2003

3 Geometric properties of the MaxMin area trian-
gulation

The following is a well-known result from elementary
geometry [3].

Property 1. Given a triangle �DEF in the plane and
a triangle �PQR inscribed in it so that P ∈ EF , Q ∈
FD, R ∈ DE if we consider the area of the triangles,
denoted by A, then:
A�PQR ≥ min(A�DQR, A�ERP , A�FPQ)

In other words, if we inscribe a triangle inside another
triangle, the inscribed triangle is not the smallest in
terms of area. Using this property we will establish
an interesting fact about the “worst” triangle in the
MaxMin area triangulation of a convex polygon.

Lemma 1. Given a convex polygon P in the plane and a
triangulation T of P , the triangle in T that has smallest
area, has at least one edge on the boundary of P .

Proof. (Sketch) We consider the worst (smallest area)
triangle in T , assume that no two vertices of it are ad-
jacent in P . Then we consider the three bordering tri-
angles of the worst triangle in T . We use Property 1 to
derive a contradiction by enlarging the three bordering
triangles so that they form a triangle in which the worst
triangle is inscribed.

Let us denote the vertices of the polygon P by
v1, v2, . . . , vn. Further, we shall assume, for the rest
of this paper that vi+kn = vi, that is the vertices of the
polygon are enumerated modulo n and that the order
of the vertices from v1 to vn is their clockwise order.

Here we recall another classical result about convex
polygons.

Property 2. (Distance unimodality [5]): The dis-
tance between the line through an edge of a convex poly-
gon and the vertices of the polygon in clockwise (or
counterclockwise) order along its boundary is unimodal.

The above property implies that the area of the tri-
angles with a given base edge in a convex polygon is
also unimodal. Another way of looking at this property
(the unimodality of area) is by defining the threshold
lines. For each value τ of the threshold there is a line
parallel to the edge and such that the points on that
line form triangles with area equal to τ . We will con-
centrate only on the threshold line that lies on the same
side of the edge as the polygon itself. Then, another
way of describing the unimodality with relation to the
threshold lines is to say that if the function is unimodal,
then its threshold curve cuts out of the polygon a con-
tiguous piece (or does not intersect the polygon at all).
If the function is not unimodal, the pieces that lie inside
or outside the threshold curve may alternate more than
once as we go along the boundary of the polygon in a
chosen direction.

u

Vi

Vj

Vk

Figure 1: Retriangulation in a 2-zone polygon.

Definition 3. Given convex polygon P , for an edge
vivj we will denote by Top(vivj) the vertex of P that
is farthest from the line through the edge vivj along the
boundary of P . If there are two such vertices, we use the
leftmost one (preceding the other in the clockwise order
from vi to vj) as Top(vivj).

The value of the function Top for all the diagonals in
P can be computed in O(n2) time by rotating calipers.
This approach is due to Toussaint in [6].

Definition 4. (Zonality): Given a convex polygon P
in the plane and a clockwise ordering of its vertices, con-
sider the subpolygon Pij, containing vertices vi through
vj: Pij is a k-zone subpolygon, k ∈ {0, 1, 2, 3, 4} if and
only if k =

�
2(∠vi+1vivj+∠vj−1vjvi)

π

�
.

Definition 5. (Complementary subpolygons): We
call the subpolygons Pij and Pji complementary. The
union of Pij and Pji is P .

Definition 6. (Zonality function): Let z(Pij) be a
function defined over the subpolygons of the convex poly-
gon P in the plane and having its values in the set
{0, 1, 2, 3, 4}, such that: z(Pii) = 0, Z(Pij) = α iff Pij

is α-zone subpolygon.

Property 3. z(Pij) + z(Pji) ≤ 5.

Property 4. Let vi, vj and vk be three vertices of P
in the same clockwise order. Then z(Pij) + z(Pjk) +
z(Pki) ≤ 6.

Proof. (Sketch) The proofs of Properties 3 and 4 involve
case analysis and use of basic geometric facts such as
sum of the angles of a polygon, sum of two angles at
the intersection of two lines, etc.

We now study area triangulations in 2-zone subpoly-
gons.

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Lemma 2. (2-zone polygons): Let Pij be a 2-zone
polygon. Let µ represent the minimum area of a triangle
in a triangulation. Given a threshold τ , if there exists
a triangulation T of Pij such that µ(T) ≥ τ , then there
exists a triangulation T ′ of Pij such that µ(T ′) ≥ τ ,
and the triangulation T ′ contains one of the triangles
�vivi+1vj or �vivj−1vj.

Proof. The triangulation T contains a triangle �vivkvj

for some i + 1 ≤ k ≤ j − 1, as shown in Figure 1. If
k = i+1 or k = j−1 we are done. Otherwise, the vertex
vk will be either between Top(vivj) and vj or between
vi and Top(vivj). Assume that vk is between Top(vivj)
and vj . We can show that for the vertices of the chain
between Top(vivj) and vj , the farthest vertex of Pij is
vi.

Now, we will construct T ′ from T by connecting all
vertices vk+1 . . . vj−1 to vi. The part of T inside the
subpolygon Pik remains unchanged in T ′.

Note that the proof of Lemma 2 automatically implies
that the same is true for all 1-zone subpolygons.

Lemma 3. In every triangulation T of a convex polygon
P , there exists a triangle �vivjvk, such that z(Pij) ≤ 2,
z(Pjk) ≤ 2, z(Pki) ≤ 2.

Proof. (Sketch) We start at an ear triangle and traverse
the triangulation until we hit an edge that divides the
polygon into a 2- and 3-zone subpolygons. We then
continue into the 3-zone subpolygon.

Definition 7. Let Pji be a subpolygon of P such that
z(Pji) ≤ 2. We will denote by MaxCW (vi) the last
(in clockwise order from vi) vertex of P such that
z(Pi,MaxCW (vi)) ≤ 2. In other words, in the se-
ries of the subpolygons Pi,i+1, Pi,i+2, . . . , Pi,MaxCW (vi)

all the subpolygons have zonality of 2 or less and
z(Pi,MaxCW (vi)+1) ≥ 3. Analogously, we will define
MaxCCW (vi) to be the last vertex in counterclockwise
order from vi, such that z(PMaxCCW (vi),i) ≤ 2.

Property 5. MaxCW (vi) = Top(vivi+1) or
Top(vivi+1) + 1 and MaxCCW (vi) = Top(vi−1vi).

Proof. Obvious, given the definitions of Top, MaxCW
and MaxCCW .

Lemma 4. (Intervals of admissibility): Let Pji be
a subpolygon of P such that z(Pji) ≤ 2. Consider the
interval of the vertices of P between MaxCCW (vj) and
Top(vMaxCCW (vj)vj). Given a quality measure µ repre-
senting area and a threshold τ , if there exist two vertices
k1 and k2 in the interval such that there exist triangu-
lations T1 of Pk1j and T2 of Pk2j, respectively such that
µ(T1) ≥ τ and µ(T2) ≥ τ , then for each vertex k in the
interval between k1 and k2 there exists a triangulation
T of Pkj such that µ(T) ≥ τ .

Proof. The idea is similar to that of Lemma 2.
We will show how to obtain T from T1 and T2.
Please, refer to Figure 2. The subpolygon between
MaxCCW (vj) and vj is 2-zone by definition. This
means that for all the vertices between MaxCCW (vj)
and Top(vMaxCCW (vj)vj), the vertex vj is the farthest
vertex. Then, we can obtain T by adding to T2 a fan
from vj to the vertices in the chain between k and k2.
Because of the existence of T1, we know that all these
edges (in the chain between k and k2) can be connected
in a way that the threshold condition is satisfied, in T
we connect them (possibly) farther, but not closer to
the vertex that they were connected in T1.

Thus, we have a solid basis for checking all possible
triangles satisfying the premises of Lemma 3.

4 The algorithm

Algorithm 1 (MaxMin Area Triangulation):
Input: Convex polygon P represented by the list of its
n vertices in sorted clockwise order.
Output: A triangulation T of P such that the mini-
mum area triangle in T has the maximum possible area
over all triangulations of P .

(1) Compute areas of all the triangles that have a
boundary edge of P as its edge.

(2) Store the values in an array Triangles[]. Sort
Triangles[] in ascending order.

(3) Compute for each of the O(n2) edges and diag-
onals of P , the most distant vertex of P and
the zonality of the subpolygon(s) induced by this
edge/diagonal, store the results in the arrays Top[]
and Z[]. Compute the arrays MaxCW [] and
MaxCCW [] from Top[].

(4) Find the largest value of τ in Triangles[] such that
∃T : µ(T) ≥ τ by binary search in Triangles[].

(5) Construct the triangulation T corresponding to the
optimal τ found in step (4).

Function M(τ) returns true if there is a triangulation
T of P such that µ(T) ≥ τ and false otherwise.

M(τ) uses an O(n2) array Table[]. In the entry
Table[i, j] we store the index k of the vertex vk that is
connected to the edge vivj in a triangulation (if such tri-
angulation exists) of 2-zone Pij that satisfies the thresh-
old, or zero otherwise. The algorithm will set to zero
all entries in Table[] that correspond to subproblems
of zonality three or higher. The information in Table[]
is duplicated in two arrays of priority queues R and C.
The array R encodes the rows of Table[] and the array
C encodes the columns of Table[]. For example R[i]
represents the i-th row of Table[]. All nonzero entries
in the i-th row of Table[] are elements of the priority

3

15th Canadian Conference on Computational Geometry, 2003

Figure 2: Lemma 4, intervals and retriangulation.

queue R[i], the zero entries are not represented. To be
more clear, in R[i] we insert all indices j that correspond
to an element Table[i, j] > 0. Similarly, in the priority
queue C[j] we insert all indices i that correspond to an
element Table[i, j] > 0. Again, the zero entries in the
j-th column of Table[] are not represented in C[j].

(a) Initialize Table[] with zeros and R and C with
empty queues.

(b) For every possible pair (i, j), if z(Pij) ≤ 2, check
whether an admissible triangulation exists and if so
– update Table[i, j], R[i] and C[j] accordingly. Use
the method of Lemma 2.

(c) Check for each entry in the Table[], whether both
Table[i, j] and Table[j, i] are non-zero, if so – return
true.

(d) Check for every non-zero entry Table[j, i], whether
there exists k ∈ (i, j) such that Table[i, k] and
Table[k, j] are non-zero and A�vivkvj

≥ τ , if so –
return true. Lemma 3 allows us to search only for
a k that yields 2-zone subproblems and Lemma 4
allows us to do this efficiently.

(e) Return false.

Algorithm and data structures explanation

Each individual entry in the arrays R and C is a van
Emde-Boas priority queue. These priority queues are
central part of the efficiency of the algorithm. Van
Emde-Boas priority queues [8, 7] are data structures
that operate over a universe of keys (usually integers) of
size N in a way that the operations insertion, deletion,
membership testing, finding predecessor and successor
are performed in O(log log N) time. The size of the pri-
ority queue is O(N). In our algorithm the universe of
keys is the set of indices of the vertices of the polygon P ,
i.e. [1 . . . n]. Thus, the size of each individual priority

queue is O(n) and the overall size of the arrays R and
C is O(n2).

The algorithm performs several preprocessing tasks.
First in (1) it computes the areas of all triangles that
could eventually be the worst. This takes O(n2) time
since there are O(n2) such. Then, in (2), the array
Triangles[] is sorted, which takes O(n2 log n) time. In
(3), we compute the value of Top[] for each of O(n2)
edges. This can be done in O(n2) time. The idea again
is to use the rotating calipers [6]. But here, instead of
considering edges on the boundary of P one after an-
other and move the calipers accordingly, we consider
the fan of edges that are incident to one particular ver-
tex and move the calipers to compute the Top[] of
the edges in this fan. This is done in O(n) time since
the calipers do not make more than one full rotation
around the boundary of P , and we compute Top[] for
the O(n) edges in the fan in this pass. We have n ver-
tices, hence n such passes and the task is completed in
O(n2) time. The binary search in step (4) will take time
of O(log n)×time(M(τ)). Finally, the triangulation can
be recovered in step (5) from the data in Table[] in lin-
ear time, O(n), because it has linear complexity and
each time we look up in Table[] we add at least one
(and at most two) new edge to the triangulation.

Now, we have to analyze the timing of the computa-
tion of the function M(τ). Initializations of Table[] and
the arrays R and C in (a) is done in O(n2) time. Af-
ter that, in (b), we have two nested loops that compute
the values of Table[] for all subproblems of zonality
two or less. There are O(n2) iterations through this
program segment. In every iteration we perform a con-
stant number of checks and logical operations and at
most two insertions in the priority queues, if the sub-
problem has an admissible triangulation. Therefore, the
total time for the execution of the two nested loops is
O(n2 log log n). If the subproblem is a triangle, we only
need to check whether the area of this triangle is larger
than the threshold value τ . If so, we reflect this in the
queues R and C and in the Table[]. If the subproblem
is larger in size than a triangle but has zonality of two
or less, Lemma 2 imples that we only need to check the
two triangles that are immediately adjacent to the base
edge, if any of them is larger in area than the threshold
value τ and the rest of the subpolygon has admissible
triangulation, we have to record the admissible trian-
gulation of the subproblem in the queues R and C and
in the Table[]. When the algorithm has gone through
all subproblems and has identified all subproblems that
have admissible triangulations, we have to obtain the
answer for the polygon as a whole. This is done in (c)
and (d). In (c) we have two nested loops, both of n
iterations, giving us O(n2) overall iterations. In each
iteration we check one of the induced subproblems. If
both the subproblem and its complementary subprob-

4

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

lem have been found to have admissible triangulation
we can return true and thus exit the computation of
the function M(τ). So, the time for (c) is O(n2). In
(d) we have to look for the possibility of the current
edge, vivj , being a base of a triangle with the property
of Lemma 3. To check this, we use the results and pro-
cedure of Lemma 4. Namely, if such a triangle exists,
with the given edge as a base, we only have to check
certain intervals. We know, by Lemma 4, that admis-
sible subproblems that start from vi and end between
Top(vivMaxCW (vi)) and MaxCW (vi), if any, form an
interval. Thus, we can look in the priority queue R[i]
for these subproblems. This is done by insertion of
the two ends of the interval - Top(vivMaxCW (vi)) and
MaxCW (vi) in R[i] and then querying R[i] about their
respective successor and predecessor. If those exist, we
denote them by k1 and k2 and use them to find an ad-
missible subproblem that starts between k1 and k2 and
ends at vj . Again this is done efficiently by inserting
k1 and k2 in the priority queue C[j]. We also insert
Top(vivj) there, and then query the queue C[j] about
the successor or/and predecessor of Top(vivj) in the in-
terval [k1, k2]. If either of these vertices is found to
give admissible triangulation, we have to record it in
the queues R and C and in the Table[] and return true
for M(τ). If we cannot find such a vertex, we have to
symmetrically try to find a vertex in the admissible in-
terval [k3, k4] of subproblems ending at vj , such that
the triangulation of P is admissible. If such a vertex
exists we return true for M(τ). Otherwise, we exit the
iteration. If none of the iterations has resulted in the
return of true for M(τ), we have to conclude that a tri-
angulation of P given this threshold is impossible, and
return false for M(τ). As we have mentioned, there
are O(n2) overall iterations. Within each iteration we
only have a constant number of constant time opera-
tions or van Emde-Boas priority queue operations that
are performed in O(log log n) time. Thus, the total time
complexity of the fragment in (d) and therefore of the
computation of M(τ) is O(n2 log log n). The space that
data structures, local to M(τ) use is O(n2) and they
are reusable, i.e. each call to M(τ) uses the same mem-
ory space. Thus the space complexity of the local data
structures is the same as the space used of the global
data structures, namely O(n2).

From the analysis in this section we can conclude the
following:

Theorem 1. Algorithm 1 computes the MaxMin Area
triangulation of a convex polygon P with n vertices in
O(n2 log log n) time and O(n2) space.

5 Conclusions

The future research that stems from the work on this
problem has two main directions. First, there are some

other optimal triangulations that might be attacked us-
ing the apparatus outlined here in the case of a convex
polygon, MinMax Area, MaxMin Inradius and MaxMin
Inradius/Circumradius. Second, the question arises
about the computability of MaxMin Area triangulation
in case of a simple but not convex polygon, and in the
case when the point set is in general position. Both the
question about the existence of a subcubic time algo-
rithm for convex polygon and the question about the
existence of a polynomial time algorithm for general set
of points with respect to the three other quality mea-
sures mentioned above remain open.

The authors of the paper improved the claimed
running time from O(n2 log n log log n) to O(n2 log n)
within the same space bound of O(n2) between the first
submission of the paper and the submission of its final
version.

References

[1] T. J. Baker and P. P. Pebay. Comparison of tri-
angle quality measures. In Proceedings of the 10th
International Meshing Roundtable, pages 327–340.
Sandia National Laboratories, October 2001.

[2] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell,
and T. S. Tan. Edge insertion for optimal trian-
gulations. Discrete and Computational Geometry,
10:47–65, 1993.

[3] O. Bottema, R. Ž. Djordjevič, R. R. Janič, D. S.
Mitrinovič, and P. M. Vasič. Geometric Inequali-
ties. Wolters-Noordhoff Publishing, Groningen, The
Netherlands, 1969.

[4] G. T. Klincsek. Minimal triangulations of polygonal
domains. Anals of Discrete Mathematics, 9:121–123,
1980.

[5] G. Toussaint. Complexity, convexity and unimodal-
ity. Technical Report SOCS 81.22, McGill Univer-
sity, Montreal, July 1981.

[6] G. Toussaint. Solving geometric problems with the
rotating calipers. In Proceedings of IEEE MELE-
CON’83, pages A10.02/1–4, Athens, Greece, May
1983.

[7] P. van Emde-Boas. Preserving order in a forest in
less than logarithmic time and linear space. Infor-
mation Processing Letters, 6(3):80–82, June 1977.

[8] P. van Emde-Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1977.

5

