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Abstract

We consider the problem of finding the shortest curve
in the plane that has unit width. This problem was
first posed as the “river shore” puzzle by Ogilvy (1972)
and is related to the area of on-line searching. Adhikari
and Pitman (1989) proved that the optimal solution has
length 2.2782 . . . We present a simpler proof, which
exploits the fact that the width of a polygon does not
decrease under a certain convexification operation.

1 Introduction

The competitive analysis of robot navigation techniques
requires various search primitives that can be readily
used in the solution of more complex problems. For
example, two-ray searching and its m-ray generaliza-
tion [5] form the base of various search algorithms (e.g.,
[3, 4]). While studying various three-dimensional search
problems (work in progress), the need for one such prim-
itive arose in the form of the question of what was the
shape and length of the shortest curve of width one.

Definition 1 Let Γ be a path. A supporting line of
Γ is a line L that intersects Γ in at least one point and
such that Γ is entirely contained in one of the two closed
halfplanes defined by L.

Definition 2 The width of a curve is defined as the
minimum distance between any two distinct parallel
lines supporting the curve.

Interestingly, it turns out that the question of what
is the shortest curve of width one has been asked before
in the setting of recreational mathematics [6].

The River Shore Problem: Starting at an un-
known point inside a river of width one, what
is the shortest path that is guaranteed to reach
one of the two shores of the river?

It is not hard to see that this is equivalent to find-
ing the shortest curve in R

2 that has width one. This
question was reported as an open problem by Ogilvy [6].

For the closed curve case, the circle of diameter one
has width one and has perimeter π, which is optimal.
Surprisingly, there are infinitely many closed curves (so-
called curves of constant width) with the property that
the width of the minimum enclosing strip along any di-
rection is one, and all of these curves have the same
perimeter π (this is known as Barbier’s theorem). How-
ever, for open curves, shorter solutions are possible. For
example, a V-shape formed by the vertices of an equi-
lateral triangle already gives length 4/

√
3 = 2.3094 . . .

In this paper, we obtain a curve of width one and
length 2.2782 . . ., which is optimal.1 This curve was
actually first discovered by Adhikari and Pitman [1] in
1989, although we were unaware of their result when the
initial draft of this paper was written. We give a dif-
ferent proof of optimality, though, that is simpler and
requires less steps and less cases than Adhikari and Pit-
man’s. Our proof exploits an interesting lemma, stating
that a certain convexification procedure used in compu-
tational geometry (e.g., by Aloupis et al. in last year’s
CCCG [2]) can only increase the width of a given poly-
gon or polygonal chain.

2 Upper Bound

We begin by constructing a specific curve of width one
and length 2.2782 . . . First, we restrict ourselves to so-
lutions with a generalized V-shape. For convenience, we
invert the shape (as in Figure 1) and call it a “yurt”2:

Definition 3 A yurt is a curve that starts at the ori-
gin s and ends at a point t on the x-axis, such that

1. the apex (highest point) v is on or above the line
y = 1,

2. the portion of the curve from v to t encloses the
circular arc of radius one centered at s and, sym-
metrically,

3. the portion of the curve from s to v encloses the
circular arc of radius one centered at t.

1The curve presented here is introduced visually in the 2003
SoCG video session.

2Yurt: A tent used by nomadic peoples of central Asia.

1



15th Canadian Conference on Computational Geometry, 2003

v

ts

Fig. 1: A yurt

v

s t

Fig. 2: The circular arcs

v

ts

Fig. 3: The upper convex hull

Lemma 1 Every yurt curve has width at least one.

Proof. The width of the curve is at least the width of
the convex hull H of s, t, v and the two circular arcs.
(See Figures 2 and 3.) Any pair of lines supporting H
must go through at least one of s, t and v. Because v
is on the line y = 1 and H contains the circular arcs of
radius one, the supporting line on the other side must
be at a distance of one or greater. �

The shortest yurt curve is the upper convex hull of
s, t, v and the two circular arcs, with v as low as possible
(i.e., on the y = 1 line). We now determine the best
choice of x-coordinates. Let t = (u, 0). We observe that
in the optimal solution, the point v is located halfway
between s and t, i.e., v = (u/2, 1). This can be seen by
a reflection technique commonly used in shortest path
computations. We reflect the portion of the curve from
v to t using the line y = 1 as a mirror (see Figure 4) and
obtain a path from s to the reflected point t′ = (u, 2)
avoiding two circles. The shortest path is through the
common tangent of these circles, which intersects y = 1
at v = (u/2, 1).

It follows then that the only free parameter is the
value u, which uniquely determines the position of b
and v and hence the shape of the entire curve. The
length of the curve in terms of u is

u + 2
�

u2 − 1 − 2 arccos(1/u) + 2 arccos
�
4u/(4 + u2)

�
.

We determine the best value for u using calculus and
find that the minimum length is 2.2782 . . . for u =
2
√

z = 1.0434 . . ., where z = 0.2722 . . . is a root of the
cubic 3z3 + 9z2 + z − 1. See Figure 5. This yields the
shortest yurt curve.

3 Lower Bound

Our preceding derivation of the shortest yurt curve is
similar to Adhikari and Pitman’s [1]. To prove optimal-
ity, it remains to show that a shortest curve of width one
indeed belongs to the yurt family; here, our proof de-
parts from Adhikari and Pitman’s and is much shorter.

We establish a series of simple lemmas that progres-
sively restrict the types of shapes that the shortest curve
of width one can take.

One property about the optimal curve is that it must
be the shortest path through the vertices of its con-
vex hull, and consequently is composed of one or more
chains of the boundary of the convex hull joined by non-
crossing diagonals. We derive a stronger property: an
optimal curve in fact involves just one convex chain.
This property seems less obvious (for example, see Ad-
hikari and Pitman’s proof [1]). Nonetheless, with the
right approach, we show how this property can be
proved elegantly. The idea is inspired by a convexifi-
cation strategy studied by Aloupis et al. [2].

Lemma 2 (Convexification lemma) Given a (pos-
sibly self-intersecting) polygon P with edges oriented in
clockwise order, let P ′ be the polygon formed by arrang-
ing the edges of P via translations so that the directions
of the edges form a monotonic sequence (as a result, P ′

is a convex polygon). Then the width of P ′ is at least
the width of P .

Proof. Let V be the set of all vectors describing the
(oriented) edges translated to the origin. Take an ar-
bitrary direction described by a unit normal vector �d.
The distance between supporting lines along this direc-
tion is the absolute value of the sum

�
�vi∈S

�d · �vi over
some subset S ⊆ V . Clearly, this quantity is upper-
bounded by

�

�vi∈V : �d·�vi>0

�d · �vi = −
�

�vi∈V : �d·�vi<0

�d · �vi.

This upper bound is attained when the polygon in ques-
tion is P ′, due to the convexity of P ′. �

Lemma 3 There is a shortest curve of width one which
is completely contained in the boundary of its convex
hull.

Proof. Let Γ be a shortest curve of width one with
endpoints s and t. To ease the argument, imagine that Γ
is polygonal (this assumption can be removed by taking
a limit). Let P = Γ∪{st}. Form P ′ as above. Consider
the new curve Γ′ = P ′ −{st}. The length of Γ′ is equal
to the length of Γ, but the width of Γ′ is at least the
width of Γ by the convexification lemma. �
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Fig. 4: Mirrored curve
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Fig. 5: The optimal yurt
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Fig. 6: Vertical supporting line

Having proved the main property, we can easily derive
the subsequent lemmas.

Lemma 4 Some shortest curve of width one has start-
ing and ending point s and t on the x-axis, is supported
by the x-axis, and is supported by vertical lines at s and
t.

Proof. The previous lemma implies that st forms a
supporting line. By rotation, we may assume that s
and t lie on the x-axis. If the vertical line at s is not
a supporting line, let w be the first point from s along
the curve that defines a vertical supporting line. By re-
moving the portion of the curve from s to w and adding
a vertical line segment from the x-axis to w, we get a
curve of width at least one and of shorter length (see
Figure 6). Thus, there must be a vertical supporting
line at s, and similarly at t. �

Lemma 5 Some shortest curve of width one is a yurt
curve.

Proof. For the curve from the previous lemma, because
the x-axis is a supporting line, the apex v must lie on or
above the line y = 1. By translation, we can make s the
origin. Because the curve is contained in the first quad-
rant, the portion from v to t must enclose the circular
arc centered at s and of radius one. Similarly, the por-
tion from s to v must enclose the circular arc centered
at t and of radius one. �

Putting everything together, we obtain the main the-
orem.

Theorem 1 There is a curve of width one and length
2.2782 . . . Furthermore, there is no shorter curve of
width one.
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