
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

On Shortest Paths in Line Arrangements

T. Kavitha∗ Kasturi Varadarajan†

Abstract

In this paper, we show that the shortest path between
two points in a grid-like arrangement of two pencils of
lines has a particularly simple structure, as was previ-
ously conjectured. This gives a linear-time algorithm
for computing shortest paths in such arrangements.

1 Introduction

In this paper, we look at the problem of finding shortest
paths in arrangements of lines. Suppose one has an
arrangement of lines and wants to compute a shortest
path between two given vertices of the arrangement,
where the path is restricted to points on the lines. This
can be viewed as a city tour problem, where the lines in
the arrangement are viewed as roads in the city and we
want to find a shortest path between two points in the
city, where any path can travel only on the roads.

The problem can be solved by associating a weighted
graph to the input set of lines - add a node to the graph
corresponding to each vertex of the arrangement, add
an arc to the graph corresponding to each edge of the ar-
rangement with the weight of the arc being the length of
the corresponding edge. In the worst case, there might
be Θ(n2) arcs in the graph where n is the number of
lines in the arrangement. Klein et al. in [6] have shown
how to compute shortest paths in a planar graph in lin-
ear time; hence a shortest path in arrangements can be
found in O(n2) time. This is the best known time bound
for this problem.

1.1 Previous Results

Eppstein and Hart looked at a special class of arrange-
ments which consisted only of vertical and horizontal
segments [2] and showed that one can compute a short-
est path in O(n1.5) time and O(n1.5) space. M. van
Kreveld then improved this to O(n log n). Eppstein and
Hart in [3] looked at classes of arrangement where there
are only k different slopes among the input lines, and
they give an O(n+k2) algorithm to compute a shortest
path in such arrangements.

Bose et al. [1] gave the first approximation algorithm
for this problem. They gave a 2-approximation algo-
rithm that runs in O(n log n) time. Hart in [5] gave

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany;
kavitha@mpi-sb.mpg.de

†University of Iowa, Iowa, USA; kvaradar@cs.uiowa.edu

an algorithm that finds a 1 + ε approximation of the
shortest path in time O(n log n + min(n, 1

ε2) 1
ε log 1

ε).

1.2 New Results

Let L be a set of lines (which we call a pencil) that
pass through point p and K be a pencil of lines through
another point q �= p. Each line in L ∪ K is distinct
from the line �pq that passes through p and q. Any
pair of lines l ∈ L and k ∈ K intersect. Moreover,
all such intersection points lie on the same side of �pq.
Let Hpq be the closed half-space defined by �pq that
contains all such intersection points in its interior. For
any l ∈ L (resp. k ∈ K), let α(l) (resp. α(k)) denote
the angle between the ray l ∩ Hpq (resp. k ∩ Hpq) and
the segment pq (resp. qp). Suppose L = {l1, . . . , ln} is
ordered such that α(li) < α(li+1) and K = {k1, . . . , km}
is ordered such α(ki) < α(ki+1). Let s, r, u, and t
denote the points l1 ∩ k1, ln ∩ k1, l1 ∩ km, and ln ∩
km respectively (Figure 1). We consider the problem
of finding the shortest s to t path in the arrangement
formed by the lines K ∪ L. This special case, which is
mentioned as an open problem in [4], has been around
for a while and has not been resolved to the best of our
knowledge. We prove the following result.

Theorem 1.1 The shortest path from s to t in the ar-
rangement of K ∪ L, as in Figure 1, is either the path
s-r-t or the path s-u-t. A shortest s-t path never uses any
edge of the arrangement that lies on one of the “mid-
dle” lines l2, . . . , ln−1, k2, . . . , km−1. This gives us an
O(n + m) algorithm for computing the shortest s-t path
in these classes of arrangements.

General Arrangements: The above theorem has
some consequences for the computation of the shortest
path between vertices s and t of an arrangement of an
arbitrary set L of n lines. Let us call a line � ∈ L a
cross line if � does not pass through s or t but intersects
the segment st; otherwise we call � an exterior line. Let
P be the cell in the arrangement of the exterior lines
that contains st. (We are assuming the non-trivial case
where no line in L contains both s and t.) If we have
three cross lines l1, l2 and l3 such that the intersection
points l1 ∩ l2, l2 ∩ l3, and l1 ∩ l3 are all contained in
P, we can throw away one of the three lines without
affecting the length of the shortest path. This obser-
vation follows by applying Theorem 1.1 but not via a

1

15th Canadian Conference on Computational Geometry, 2003

t

r

u

s

x
y

k
q

p

1

2

3

4

l l l l l1 2 3 4 5

k

k

k

Figure 1: The shortest s-t path is always
one of s-u-t or s-r-t.

short argument, so we omit the argument here. By re-
peated application of this observation, we can compute
in O(n log n) time a subset L′ ⊆ L such that the short-
est path in the arrangement of L′ has the same length
as the original shortest path and the cross lines in L′

can be partitioned into two sets such that no two lines
from the same set intersect within P. Note that these
simplifications complement the ones in [3]. While they
yield improved algorithms in very special cases, it is not
clear how they help in the general case.

2 Proof of Theorem 1.1

Let l′ and l′′ be two lines from the pencil L through p
and let k′ and k′′ be two lines from the pencil K through
q, such that α(l′) < α(l′′) and α(k′) < α(k′′). Let s′, t′,
r′, and u′, denote the points l′ ∩ k′, l′′ ∩ k′′, l′′ ∩ k′, and
l′ ∩ k′′, respectively. For any point x on the segment
u′t′, let l(x) denote the line through p and x, and y
denote the intersection point of k′ and l(x) (Figure 2).
We would like to find the shortest path from s′ to t′

using only the lines l′, l′′, k′, k′′ and l(x). We have the
following lemma.

Lemma 2.1 The shortest s’-t’ path in the arrangement
defined by l′, l′′, k′, k′′ and l(x) does not use the edge
yx on line l(x). The shortest s’-t’ path is one of s’-u’-t’
or s’-r’-t’.

Proof: We first prove the above lemma in those
arrangements where the length of the path s′-u′-t′ =
length of the path s′-r′-t′. Let us call this the special
case. Then we show that the special case implies the
general case. The point s′ splits the line k′ into two rays;
let ρ′ denote the ray that does not conain q. Let kx be
the point on ρ′ such that |xkx| + |kxs′| = |s′u′| + |u′x|.
(It is easily checked that there is exactly one point on

q

p

x

xn

t'

yx

l(x)

k

l'

k'

k''

s'
r'

u'

l''

Figure 2: The line l(x) is any arbitrary
line in the open cone defined by the lines
l1 and l2.

ρ′ with this property.) Define nx to be the point of in-
tersection of l′ with the line passing through x and kx

(Figure 2).
Claim: The point kx lies on the open segment s′y, or
equivalently, the point nx lies on the open segment s′p.

The proof of this crucial claim is somewhat technical
and is given in the Appendix. Let us now see how the
special case follows from the claim.

The paths P1 = s′-u′-t′ and P2 = s′-r′-t′ (Figure 2)
have equal length. Suppose P3 = s′-y-x-t′ has length
shorter than or equal to P1 or P2. We know from the
Claim that kx lies on the open segment s′y. Since P1 and
P3 share the segment xt′, we have |s′y|+ |yx| ≤ |s′u′|+
|u′x|. We have by defintion that |xkx|+ |kxs′| = |s′u′|+
|u′x′|. From these two relations, we get |s′kx|+ |xkx| ≥
|s′y| + |yx| = |s′kx| + |kxy| + |yx|, which violates the
triangle inequality |xkx| < |kxy| + |yx|. This completes
the proof of the special case.

We will now prove that the special case implies
Lemma 2.1. For any point x on the segment u′t′, let
g(x) denote the length of the path s′-y(x)-x-t′, where
y(x) is the intersection point of l(x) and k′. Since the
length of the path is the sum of three continuous func-
tions, g(x) is continuous. The special case implies that
if g(a) = g(b) for any two distinct points a and b on the
segment u′t′, then g(x) > g(a) for any x on the open
segment ab. (We apply the special case with the lines
l(a) and l(b) in place of l′ and l′′.)

Suppose Lemma 2.1 is violated, that is, there exists
a point w in the open segment u′t′ such that g(w) ≤
min{g(u′), g(t′)}. Let c be the point u′ if g(w) < g(u′),
else let c be any point on the open segment u′w. From
the special case, it follows that g(c) > g(w). Similarly,
we pick a point d on segment wt′ distinct from w such
that g(d) > g(w). Let δ be any number from the open
interval (g(w),min{g(c), g(d)}). Since g is continuous,
there is a point a on segment cw and a point b on seg-
ment wd such that g(a) = δ and g(b) = δ. Since w is

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

on segment ab but g(w) < δ, this contradicts the impli-
cation of the special case. �

It is now easy to see that Theorem 1.1 follows from
Lemma 2.1. Suppose the shortest s-t path (call it
SP (s, t)) travels along line k1, then bends into li for
some 2 ≤ i < n and then bends into kj for some j > 1.
This contradicts Lemma 2.1 applied to the lines l1, li+1,
k1, kj , and li. Similarly, if SP (s, t) first travelled down
on l1 and then turned using one of the ki’s for 2 ≤ i < m,
we have a violation of Lemma 2.1. So SP (s, t) does not
turn at any point other than u or r, proving Theorem
1.1.

References

[1] P. Bose, W. Evans, D. Kirkpatrick, M. McAllister,
and J. Snoeyink. Aprroximating shortest paths in
arrangements of lines. In Proc. 8th Canad. Conf.
Computational Geometry, pages 143–148, 1996.

[2] D. Eppstein and D. Hart. An efficient algorithm for
shortest paths in vertical and horizontal segments.
In Proc. 5th Worksh. Algorithms and Data Struc-
tures, pages 234–247, 1997.

[3] D. Eppstein and D. Hart. Shortest paths in an ar-
rangement with k-orientations. In Proc. 10th ACM-
SIAM Symp. on Discrete algorithms, pages 310–316,
1999.

[4] Jeff Erickson. Shortest paths in line ar-
rangements (entry in open algorithmic prob-
lems). http://compgeom.cs.uiuc.edu/ jeffe/open/
algo.html#shortpath.

[5] David Hart. Approximating the shortest path in line
arrangements. In Proc. 14th Canad. Conf. Compu-
tational Geometry, 2002.

[6] P.N. Klein, S. Rao, M.H. Rauch, and S. Subrama-
nian. Faster shortest-path algorithms for planar
graphs. In Proc. 26th ACM Symp. Theory of Com-
puting, pages 27–37, 1994.

3 Appendix

Here we prove the claim embedded within Lemma 2.1.
Consider Figure 2. By performing if necessary a transla-
tion, rotation, reflection, and a scaling operation (of the
form x → αx for some α > 0) we may assume that the
point q is the origin, that the lines k′ and k′′ have the
equations y = m1x, and y = m2x respectively, where
m1 > m2, and that the line l′ has the equation x = 1.
It is easy to check that the claim holds in the original
setting if and only if it holds in the modified one. Now
the coordinates of s′ are (1,m1), u′ are (1,m2), x are
(c,m2c), kx are (t,m1t), where c ≥ 1 is any arbitrary

value and t ≥ 1 is a function of c. Hence, the point
nx is also a function of c, say f(c) i.e., the coordinates
of nx are (1, f(c)). We claim that f is a monotonically
increasing function of c, i.e. df

dc > 0.
We have defined kx such that
|xkx| + |kxs′| = |s′u′| + |u′x|. This means that
(m1 − m2) + (c − 1)

�
1 + m2

2 = (t − 1)
�

1 + m2
1 +�

(t − c)2 + (m1t − m2c)2
This yields

t =
ac + b

pc + q
(1)

where

a = 2[
�

1 + m2
1

�
1 + m2

2 + (m1 − m2)
�

1 + m2
2

−(1 + m2
2)]

b = [(m1 − m2) +
�

1 + m2
1 −
�

1 + m2
2]

2

p = 2[
�

1 + m2
1

�
1 + m2

2 − (1 + m1m2)]

q = 2[(1 + m1)2 + (m1 − m2)
�

1 + m2
1

−
�

1 + m2
1

�
1 + m2

2]

Note that when c = 1, t = 1. Thus a+ b = p+ q. The
equation of the line through x and kx is

y − m2c =
(m1t − m2c)(x − c)

t − c

We need the height (y-coordinate) of nx, which is
obtained by substituting the value x = 1 in the above
to get

y = f(c) = m2c +
(m1t − m2c)(1 − c)

t − c
.

Using (1), we get

t − c =
(ac + b) − c(pc + q)

pc + q

and the numerator of the right hand side of this equality
can be simplified as −pc2 + (a − q)c + b = −pc2 + (p −
b)c + b = (b + pc)(1 − c).

Substituting the above in the equation for f(c) and
using (1), we get

f(c) =
c(m2b − m2q + m1a) + bm1

pc + b

Differentiating the above function, we get the numer-
ator of df

dc as
(m2b−m2q +m1a)(pc+ b)−p(c(m2b−m2q +m1a)+

bm1) = pc(m2b−m2q + m1a) + b(m2b−m2q + m1a)−
pc(m2b−m2q+m1a)−pbm1 = b(m2b−m2q+m1a−m1p)

Since a + b = p + q, b(m2b − m2q + m1a − m1p) =
b(−m2(a − p) + m1(a − p)).

We therefore have

3

15th Canadian Conference on Computational Geometry, 2003

df

dc
=

b(m1 − m2)(a − p)
(pc + b)2

Since b = [(m1 − m2) +
�

1 + m2
1 −
�

1 + m2
2]

2, and

(a − p) = (m1 − m2)(
�

1 + m2
2 − m2), df

dc > 0. Hence f
is an increasing function of c.

The point x has coordinates (c,m2c) and say the coor-
dinates of t′ are (d,m2d), where c < d. The coordinates
of nx are (1, f(c)) and p are (1, f(d)) (since p is the
same as nt′). Since f is an increasing function, we have
f(c) < f(d), which implies that the point nx lies on the
open segment s′p. �

4

