
Computational analysis of 4-8 meshes with
application to surface simplification using global

error

Laurent Balmelli a;1 Thomas Liebling b Martin Vetterli c;d

aVisual and Geometric Computing, IBM Research, T.J Watson Center, USA
bEPFL, Mathematics Dept., Ecole Polytechnique Fédérale, Lausanne, Switzerland
cEPFL, Communication Systems Dept., Ecole Polytechnique Fédérale, Lausanne,

Switzerland
dDept. of EECS, UC Berkeley, Berkeley, USA

Abstract

Meshes with subdivision connectivity are popular in applications such as visualization and
finite element analysis. We consider a particular class of such meshes known as 4-8 meshes.
We present computational results when computing approximations of 4-8 meshes using
vertex decimation or vertex insertion. We first use our results to show that algorithms us-
ing local error need �(n logn) operations to fully decompose or refine a 4-8 mesh. Then,
we show that a full decomposition of a 4-8 mesh using global error is obtained with an
�(n logn) decimation algorithm. The solution involves merging domain intersections to
obtain an efficient mechanism to compute global error estimates for the vertices. In com-
parison, a direct algorithm using the same error criterion requires �(n2) operations for
the same task. Our results apply to 4-8 meshes connecting vertex sets or approximating
subdivision surfaces. For example, our algorithm using global error produces progressive
representations of terrain data or subdivision surfaces in R3 having arbitrary topology.

Key words: Subdivision connectivity; 4-8 meshes; Multiresolution hierarchies; Surface
simplification algorithm using global error; Quadtree triangulation

1 Contact email: balmelli@us.ibm.com. This work was completed while L. Balmelli
was with the Laboratory for Audio-Visual Communications, Communication Systems
Dept., Ecole Polytechnique Fédérale, Lausanne, Switzerland.

1 Introduction

1.1 Motivation

This paper presents several computational results when processing a class of
meshes with subdivision connectivity known as 4-8 meshes. Meshes with subdivi-
sion connectivity are regular triangulations constructed using iterated subdivision
rules. We look at algorithms using vertex insertion or vertex decimation approaches
in order to generate progressive representations for these meshes.

Meshes with subdivision connectivity are popular in many applications, such as vi-
sualization [7] and finite element analysis [6], to name a few. Their irregular coun-
terparts have also been extensively studied [11], but regular meshes are preferred
because of their superior performance and flexibility for processing [9], transmis-
sion [12] and compression [10].

For example, 4-8 meshes have been extensively used to visualize terrain data
[2,7,15,17]. In this context, these meshes are also called quadtree triangulations be-
cause quadtrees are often used to store them [14,17,18]. Terrain models are given as
amplitude matrices (i.e. the parametrization is implicit) and 4-8 meshes are used to
connect the vertices (Figures 2a-e). Recently, researchers have also used 4-8 meshes
to compute approximations of subdivision surfaces [19]. Subdivision surfaces are
an increasingly popular representation for piecewise-smooth surfaces. Algorithms
for subdivisions surfaces use recursive subdivision rules to create vertices from a
coarse control mesh. Examples of such rules are provided by Loop [16], Catmull-
Clark [3,5] and Velho [19]. The properties of subdivision surfaces are an important
area of current investigation (e.g. [20]).

In both terrain visualization and subdivision surfaces, researchers often deal with
large datasets. Therefore, simplification algorithms producing adaptive, multireso-
lution representations are an important topic of investigation [7,15,17,2]. Multires-
olution representations of meshes with subdivision connectivity have many advan-
tages over their uniform counterparts: They allow for vertices to be concentrated
in detailed regions, leading to efficient descriptions of shapes. Also, their multiple
levels of resolution provide an efficient means to deal with resources-constrained
rendering, storage or transmission. However, adaptivity comes at a price: These
representations are more complex to process and to store. Also, basic operations
such as vertex queries are more difficult to implement. In the next section, we re-
view previous work on simplification algorithms, in particular for 4-8 meshes.

This paper is organized as follows: We review previous work on simplification al-
gorithms for 4-8 meshes in Section 1.2. Then, we give our contributions in Section
1.3. Section 2 introduces 4-8 meshes and the constraints attached to their process-
ing. In Section 3, we analyze simplification operations. Section 4 explains how to

2

compute merging domain intersections and Section 5 presents an application, i.e.
surface simplification using global error. We conclude this paper in Section 6.

1.2 Previous work on simplification algorithms

Simplification algorithms, leading to multiresolution representations, aim to select
a subset of the original vertices in order to efficiently represent the shape. We con-
sider approaches either based on vertex decimation (e.g. when starting from a dense
mesh) or vertex insertion (e.g. when starting from a coarse mesh). Note that alter-
native approaches exist (e.g. edge split, edge collapse) and are also investigated.
In Section 2.2, we explain that a hierarchy (very similar to the hierarchy in a tree
structure) is imposed over the vertices by the 4-8 connection (Figures 2a-e). Hence,
decimating/inserting an arbitrary vertex often implies jointly decimating/inserting
additional vertices to preserve the hierarchy (think of pruning a tree node and all its
descendants, or inserting a leaf node and all its parents). For any vertex, its set of
descendants is called its merging domain and its set of parents is called its splitting
domain.

Many simplification algorithms for 4-8 meshes based on decimation or insertion
have been given in the context of terrain visualization [7,15,17]. However, these
methods are based on insertion only [15,17] or on restricted cases of decimation
[7] (see below). For subdivision surfaces, most implementations are based on non-
adaptive representations to avoid the added complexity and performance penalty
traditionally associated with adaptive schemes. When simplifying a mesh, an error
criterion is used to select vertices to insert or decimate. For example, an error can
be computed at each vertex according to local variations in curvature over its merg-
ing domain or splitting domain, depending on if the aim is to decimate or insert the
vertex, respectively. Therefore, each simplification step modifies the model’s shape,
and some errors must be recomputed. In previous works, algorithms were given in
order to recompute errors after a vertex insertion [15,17] or restricted decimation
[7]. However, no such algorithm is described in the general case of decimation. 2

Also, all previous algorithms have used local error metrics.

Overall, no general computational analysis of common 4-8 mesh operations (e.g.
decimation, insertion, update of the modified errors) is available to the best of the
authors’ knowledge. A detailed analysis of 4-8 mesh properties is useful in many
aspects: It provides tools to design algorithms and forecast their cost. It also allows
for more elaborated error metrics to be built, improving algorithm performances. As
explained above, simplification algorithms reduce the number of vertices whereas
algorithms for subdivision surfaces generate vertices using subdivision rules. Hence
an analysis of 4-8 mesh properties helps provide a unifying framework for simpli-
fication and subdivision methods.

2 We explain the difference between restricted and general decimation in Section 2.2.

3

z
z

z
1z

2

3
4

R2

Figure 1. Analysis of the properties of 4-8 meshes: The figure depicts a rendered surface
in R

3 and its underlying triangulation is projected in the plane R2 . The amplitudes z of
the surface are depicted only for the corner vertices for the sake of clarity. The properties
analyzed in this paper derive from the vertex hierarchy and the particular connectivity of
4-8 meshes. Hence, an analysis of the mesh as a tiling of R2 is sufficient.

The properties of 4-8 meshes analyzed in this paper derive from the vertex hierar-
chy and the particular connectivity of the vertex set. Hence, an analysis of the mesh
as a tiling of R2 is sufficient. In Section 2.1, we present a construction connect-
ing a matrix of amplitudes z. Figure 1 depicts a rendered surface constructed with
such a matrix and its underlying triangulation is projected in R 2 . The tiling is ob-
tained with the procedure shown in Figures 2a-e. Our results also apply to meshes
approximating subdivision surfaces in R3 (as in [19]), except at extraordinary ver-
tices forming the coarse control mesh. These vertices are similar to the four vertices
used to connect the initial square of two triangles in Figure 2a. Note that in Figure
1, an amplitude zi is attached to these extraordinary vertices. Each face of the con-
trol mesh is then subdivided as shown in Figures 2a-e. Since the control mesh can
be irregular, meshes with arbitrary topology are obtained. In the next section, we
explain our contributions and the organization of this paper.

1.3 Contributions

In this paper, we present computational complexity results for processing 4-8
meshes. We summarize our contributions below and refer to the corresponding sec-
tions.

Computational analysis of mesh operations. We compute the number of opera-
tions required to decimate and insert an arbitrary vertex in the hierarchy and show
that, on average, these operations can be performed in �(logn) time (Section 3.1).
Call ancestors the vertices whose domain connectivity is modified after a decima-
tion or an insertion. We explain how to find these vertices and show that �(logn)

4

exist in each case (Section 3.2).

Merging domain intersections. We explain that an interesting problem is to de-
termine which are the removed vertices in the merging domain of ancestors after
decimating a vertex. This problem requires the computation of merging domain in-
tersections, and its solution is the most important contribution of this paper. The
solution to this problem enables the building of a global error metric for algorithms
using general decimation. We explain how to describe merging domain intersec-
tions (Section 4.1), and we provide a model for the problem (Section 4.2). We
compute its cost in closed form (Section 4.3) and show that, on average, �(log2 n)
operations are sufficient to compute the intersections between the merging domain
of a decimated vertex and the merging domains of all its ancestors (Section 4.4).

Computational lower bounds for algorithms using local error Consider simpli-
fication algorithms based on local error using either general decimation or insertion.
We use our results to prove computational lower bounds for their execution (Sec-
tion 5.1). More precisely, we show that �(n logn) operations are necessary to fully
decompose or refine a surface.

Decimation algorithm using global error. We propose an algorithm to produce
adaptive representations of 4-8 meshes using general decimation and global error
(Section 5.2). Global error metrics yield better approximation quality than heuris-
tics based on local error, but are often computationally expensive. Also, decima-
tion approaches yield better results than their refinement counterparts. In partic-
ular, general decimation is usually needed to obtain optimal solutions [8]. Using
merging domain intersections, we obtain a �(n logn) decimation algorithm that
uses global error (Section 6). In comparison, we show that a direct approach using
the same error criterion requires �(n2) operations. Interestingly, our results show
that the algorithm using global error has the same computational complexity as its
counterpart using local error.

We conclude this paper with a summary of our results in Section 6.

2 Background

2.1 4-8 mesh construction

We present a simple construction of a 4-8 mesh connecting an amplitude matrix
z (e.g. terrain data), i.e. the coordinates x; y are implicit. For the sake of clarity,
we represent our meshes as tilings of the plane R2 . A 4-8 mesh connecting the
dataset is created using the recursive procedure depicted in Figures 2a-e. Initially,
a quadrilateral, or more simply quad, formed with two triangles is connected using

5

the four corner vertices. Then, each triangle’s hypotenuse is bisected to connect a
vertex at the midpoint. We denote each connection step by l and Figures 2b-e depict
steps l = 1; 2; 3; 4, respectively. After l = 2d connection steps, the mesh contains
n = 2 � 4d triangles. The unique vertex inserted at step l = 1 (Figure 2b) is called
the root vertex and is denoted by v0.

(a) (b) l = 1 (c) l = 2 (d) l = 3 (e) l = 4

Figure 2. Connection of a matrix of amplitudes z using the 4-8 scheme: (a) Initially, a square
formed by two triangles is created using the corner vertices. Then, triangle hypotenuses are
bisected to connect a vertex at the midpoint. Each connection step is denoted by l and
(b),(c),(d) and (e) show steps l = 1; 2; 3 and 4, respectively.

The 4-8 scheme takes its name from an instance of regular tilings studied by Laves
in Cristallography [13]. A 4-8 mesh corresponds to a [4 � 82] tiling. The notation
suggests that each triangle has one vertex of valence 4 and two vertices of valence
8. In Figures 2a-e, this is verified at even steps l.

Subdivision surfaces are used to generate 4-8 meshes with arbitrary topology [19].
A coarse control mesh composed of a small set of triangulated quads (as in Figure
2a) fixes the topology and is used as an initial mesh. Then, subdivision rules are
used to create new vertices connected on each quad, as in Figures 2b-e.

2.2 Constraints when simplifying 4-8 meshes

The iterative procedure used to connect the vertices imposes hierarchical con-
straints over the set of vertices. The hierarchical structure is fixed by the connection
step l assigned to the vertices. When computing an adaptive representation of the
mesh (e.g using decimation or refinement), the hierarchy between vertices must be
preserved.

For example, consider the root vertex connected in Figure 2b. A decimation
perserving the hierarchy operates as follows: When this vertex is decimated (e.g.
in the mesh of Figure 2e), the edge orginally split by the vertex (the diagonal in
Figure 2a) must be recovered. Consequently, all the vertices in the mesh are also
decimated. Call v a vertex, thenMv denotes the set of vertices that must be removed
jointly in order to recover the original edge and thus preserve the hierarchy. We call
the set Mv merging domain. A merging domain is attached to each vertex in the
mesh. For the vertices v connected at the step depicted in Figure 2e, Mv = fvg
since it suffices to remove v to recover the corresponding edge in Figure 2d. We

6

refer to such decimation as a restricted case of decimation (as used in [7]). In con-
trast, a general case of decimation refers to the removal of an arbitrary vertex (i.e.
with jMvj > 1).

v1

2

1

1

1

2

22

22

2 2

2

2

2

23

3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

2

2 4

4 3

2

1

5

(a) (b) (c)

Figure 3. Mesh operations: (a) The white vertices represent the set Mv . (b) Support of the
merging domain (set of triangles tiling the domain after Mv is decimated). (c) Insertion
of a vertex v at a location connected at step l = 5. The white vertices form the splitting
domain and the numbers correspond to the connection steps. The underlying grid depicts
the parametrization of a 9� 9 matrix of amplitudes.

We look now at the hierarchical constraints incurred when decimating and inserting
a vertex in more detail. Consider the example in Figure 3a, and assume that v is
connected at step l. Then the vertices in Mv connected at steps l + 1, l + 2 and
l + 3 are labeled with the index 1, 2 and 3, respectively. The set Mv is decimated
as follows: First, v is decimated. Then we remove the four vertices on the edges of
the triangulated quad split by v (vertices with index 1). These vertices are called
descendants of v, and we explain how to find them in Section 3.2. Then for each of
these vertices, we decimate their four descendants (vertices with index 2). Note that
the descendants split the four quads at the next level surrounding each edge of the
previous quad. We repeat the procedure until the descendants connected at the last
step are reached (step l+ 3 in the example). The resulting mesh is shown in Figure
3b. The set of triangles tiling the merging domain in the figure is called support.

We also attach to each vertex v a splitting domain, denoted by Sv. The domain
contains the vertices to insert jointly to v in order to preserve the hierarchy. Figure
3c shows an example of insertion: The vertex v lies at a location connected at step
l = 5. An insertion preserving the hierarchy operates as follows: First, we connect v
to its parents 3 at step l = 4. Then, each of these vertices is connected to its parents
at step l = 3 and so on. We repeat until no more vertices need to be inserted. At
most this bottom-up traversal is stopped at the root vertex. The underlying grid in
the figure represents the parametrization of a 9� 9 matrix of amplitudes.

Preserving the hierarchy has two consequences for simplified meshes: First, it en-
sures that successive decimations/insertions yield a set of embedded meshes. For

3 We explain how to find the parents in Section 3.2.

7

example, consider a coarse mesh obtained after a series of decimations. If the series
of meshes is embedded, it is always possible to reconstruct a mesh from a coarser
version only by splitting a set of triangles. Second, the resulting mesh is conform-
ing [6], i.e. no triangle has a vertex of another triangle in the interior of one of its
edges. In other words, the mesh is a triangulation. This condition must be fulfilled
in order to render the surface without cracks, i.e. to avoid shape discontinuities.

3 Analysis of simplification operations

3.1 Decimation and insertion of a vertex

We first evaluate the cost of decimating a vertex. To do so, we compute the num-
ber of triangles connected with at least one vertex in Mv. This number is linearly
proportional to the number of vertices in Mv . We address two cases: (1) before the
decimation of Mv (e.g. Figure 3a), and (2) after the decimation of all vertices in
Mv. In the first case, The number of triangles is denoted by jMvj4. In the second
case, the empty set Mv is denoted by �Mv and the number of triangles is denoted
by j �Mvj4. Note that j �Mvj4 counts the number of triangles tiling the support of the
domain (e.g. Figure 3b).

Both jMvj4 and j �Mvj4 are functions of the size of the mesh n and the connection
step l of the vertex. Then, Proposition 1 gives the sizes jMvj4(l; n) and j �Mvj4(l; n),
i.e. as functions of n and l. These functions return the sizes of a “fully expanded”
merging domain, i.e the mesh boundaries are ignored. Hence the largest overesti-
mate is obtained for the root vertex, e.g. jMvj4(1; n) > n. The sizes are correct for
vertices close to the center of the mesh and having a sufficiently large l. The proof
is given in Appendix A.

Proposition 1 (Size of the merging domain)
Consider a uniform 4-8 mesh containing n = 2 � 4d triangles with d > 0. The
number of triangles jMvj4(l; n) for a vertex v connected at step 1 � l � 2d is
given by

jMvj4(l; n) =

8>>>>><
>>>>>:

(2 log4 n� l)21�ln; l > 2d� 4;

128 � c2 + 4(c2 � (24� 12 � c�11 + 4
3
c�21)

+8
3
c�12 c21 � 16 � c1); l � 2d� 4;

(1)

where c1(l; n) = 2blog4 n�
l+4
2
c and c2(l; n) = 2�ln

16
. The number of triangles

8

j �Mvj4(l; n) is given by

j �Mvj4(l; n) =

8>>>>><
>>>>>:

21�ln� 2; l > 2d� 4;

32(2�(l+4)n � c�11 + 3
2
� c1)

�16(log4 n� l
2
)� 18; l � 2d� 4;

(2)

with c1(l; n) = 2blog4 n�
l+4
2
c.

For n arbitrary, the maximum of (1) and (2) is obtained for l = 1. We use this
value to obtain their asymptotical behavior with respect to n: For (1) we have that
c1(1; n) 2 �(

p
n) and c2(1; n) 2 �(n), hence

jMvj4(1; n) 2 �(n); (3)

whereas for (2), replacing 1=8
q
n=2 � c1(1; n) � 1=4

q
n=2 yields

(4 + 3
p
2)
p
n� 16 log4 n� 26 � j �Mvj4(1; n) � (2

7

2 + 6
p
2)
p
n� 16 log4 n� 26;

j �Mvj4(1; n) 2 �(
p
n):

(4)

Since the size of Mv depends on the connection step of v, we compute the average
size, denoted by E(�), over all vertices. The functions jMvj4(l; n) and j �Mvj4(l; n)
decrease exponentially when the connection step increases. More precisely, each
time l is incremented, the size of Mv is roughly divided by 4. Hence 4 ,

E[jMvj4(n)] 2 �(logn); (5)

and
E[j �Mvj4(n)] 2 �(c): (6)

We compute now the cost for inserting a vertex. To do so, we calculate the number
of triangles jSvj4 connected with at least one vertex in Sv. Finding Sv only requires
a bottom-up traversal of the mesh structure (exactly how this traveral is performed
will be explained in the next section). Moreover, each vertex splits two triangles in
the mesh (Figure 3c). Therefore, for the vertices connected at the last step l = 2d,
we have

jSvj4 2 �(logn): (7)

The function jSvj4 increases linearly with the connection step, and jSvj4 is mini-
mum for the root vertex. Therefore, averaging jSvj4 over all vertices yields again

E[jSvj4] 2 �(logn); (8)

4 For technical details see [1].

9

3.2 Sets of ancestor vertices

Consider a decimation algorithm: We denote by AMv
the set of vertices whose

merging domain connectivity is modified after decimating a vertex Mv. Note that
in simplification algorithms, where an error is computed at each vertex, the set AMv

contains the vertices whose error is modified after decimating Mv. Similarly, con-
sider an insertion algorithm: We denote by ASv the set of vertices whose splitting
domain connectivity is modified after inserting a vertex v, i.e. inserting Sv. Both
vertices in AMv

and ASv are called ancestors. The set AMv
refers to vertices not yet

decimated, whereas ASv refers to vertices not yet inserted.

va v a

(a) (b)

Figure 4. Visual representation of the ancestors of Mv: (a) Mv � Ma. (b) Overlap be-
tween Mv and Ma. The dark region depicts the domains’ overlap, and the thick line is the
intersection boundary.

We explain first how to find the ancestor sets AMv : We are looking for vertices a
such that Mv � Ma (Figure 4a), and for vertices a whose domain Ma partially
overlaps Mv (Figure 4b). In the latter figures, we depict the merging domains using
their support. The decimation of Mv has removed vertices in the merging domain
of both types of vertices a as defined above.

An important property of 4-8 meshes is obtained by construction: When the mesh is
subdivided, the merging domain of a vertex v is embedded in at most two merging
domains of vertices (call the vertices a1 and a2) connected at the previous step.
These vertices are the parents of v. Each vertex has two parents at the previous step,
except for the border vertices, which have only one parent. Figures 5a-d depict four
connection steps. The root vertex (Figure 5a) has no parents by definition. For steps
l > 1 (Figures 5b-d), an arrow links each vertex to its parents (at the previous step
l). Symmetrically reversing the arrows would link a vertex to its descendants. To
find a chain of ancestors, denoted by Av, for any vertex v, the arrows linking v to
its parents are recursively followed until the root vertex is reached. This results in
a bottom-up traversal of the mesh. For example, in Figure 6a we depict the chain
of ancestors Av = faig, i = 1 : 10 of vertex v. In the example, a10 is the root
vertex v0. The ancestor with the smallest connection step is always the root vertex

10

v0. Hence for any vertex v

8ai 2 Av;Mv �Mai �Mv0 (9)

Moreover, 8i; ai =2 Mv . Note that the set Sv (e.g. Figure 3c) is found using the
ancestor chain of v. However, the set Sv is composed of vertices not yet inserted,
hence recursions (e.g. as shown in Figure 6a) are stopped when a vertex already in
the mesh is met.

(a) (b) (c) (d)

Figure 5. Finding the parent vertices: In each figure, the parents are represented in white
and an arrow points from each vertex to its parents. (a) The root vertex has no parents by
definition. Parents of the vertices inserted at steps (b) l = 1, (c) l = 2 and (d) l = 3.

a7
a1

2a
a3a4

a9

v

a
10

a
8

6a

a5

(a) (b)

Figure 6. Ancestor vertices: (a) The chain of ancestors ai built from v by recursively finding
its parents towards the root vertex. Note that a10 = v0. (b) The white vertices in Mv are the
only ones with one parent not in Mv .

Following the above discussion, the ancestors a of Mv such that Ma �Mv are sim-
ply found by building a chain of ancestor starting at v. How can we find ancestors
when Mv and Ma partially overlap? These ancestors are found by building ancestor
chains from a selected set of vertices in Mv. Again, denote by a1; a2 the parents of
a vertex (found by following the arrows in Figures 5a-d). For some vertices in Mv,
a1; a2 2Mv. Therefore, these vertices must be avoided. Only a small set of vertices
in Mv have one parent which does not belong to Mv. These vertices are depicted in
white in Figure 6b. There is exactly one such vertex per triangle tiling the support
of the merging domain. Therefore, with (6) we know that, on average, we have a
constant number of such vertices. Then, the ancestors a are found by building an
ancestor chain from these particular vertices, starting at the parent not belonging to
Mv.

11

A bottom-up traversal of the mesh to find ancestors requires �(logn) steps. Hence,
with (6) we have, on average, that

jAMv
j 2 �(c) ��(logn) 2 �(logn): (10)

We explain now how to find ASv : A property of the vertices in Mv is

8w 2 Mv; v 2 Aw; (11)

i.e. all the vertices w 2 Mv have v as an ancestor. For ASv we are looking for
the vertices a whose splitting domain connectivity has changed after inserting v,
i.e. at least one vertex was inserted in Sa. More precisely, the vertices such that
9w 2 Sv; w 2 Sa. Therefore, we have to find a subset of vertices wi in Av (the
ancestor chain built from v) with the smallest connection step, such that no pairs
wi; wi+1 verifies Mwi

� Mwi+1
. Otherwise, the set fwig is redundant. Call these

vertices minl(Av), then following (11), we have

ASv =
[

w2minl(Av)

Mw: (12)

Using (5), we can conclude that, on average,

jASv j 2 �(logn): (13)

4 Merging domain intersections

In the following section, we propose a method for finding merging domain in-
tersections. Recall that two types of ancestors exist for Mv: the vertices a such
that Mv � Ma and the vertices a whose domain Ma partially overlaps Mv. When
Mv � Ma, then Mv \Ma = Mv . Therefore, we are interested in finding the in-
tersection in the second case. We proceed in two steps: First, we compute the size
of an intersection. The metric used to compute the size is defined in the next sub-
section. Second, we provide an algorithm that can be used to find Mv \Ma for all
ancestors a whose domain partially overlaps Mv .

4.1 How to describe an intersection

We describe the intersection between two merging domains as the union of a set
of (smaller) merging domains. Using merging domains as building blocks provides
a compact, efficient description for intersections. Finding the vertices in Mv only
requires searching around v using a single pattern, whereas finding Mv \ Ma is
difficult due to the multiplicity of cases: Just consider all the possible locations for

12

neighboring ancestors a. Hence, Figure 4b is just a particular example of arrange-
ment for Mv \Ma. Following (10), in total we have �(logn) such arrangements.

Consider the following example: In Figure 7b, the intersection Mv \ Ma is the
single domain Mw. In general, more than one domain is needed to represent the
intersection. Consider then Mv \Ma in Figure 7c: In this case, the intersection is

Mw1
[Mw2

[Mw3
; (14)

which makes sense, since the vertices contained in the intersection belong to the
domains Mwi

; i = 1; 2; 3.

We would like to represent the intersection as an exclusive set of vertices, i.e. as in
(14). Consider Mv \Ma in Figure 7d: The domain Mw3

overlaps with the domains
Mw2

and Mw4
. We write the intersection as

5[
i=1

Mwi
=

5M
i=1

Mwi
nD; (15)

where the operator
L

“gathers” the vertices in the sets Mwi
, and D denotes the set

of vertices to remove in order to obtain an exclusive set – in this case, the vertices
in Mw3

\ Mw2
and Mw3

\ Mw4
. To minimize the number of terms in the union

(15), the domains Mwi
should be as large a possible (e.g. as depicted in Figure 7d).

Finally, the set D in (15) is also expressed as a union of smaller domains. Therefore,
computing this term again involves removing redundant vertices. This suggests that
finding an intersection often requires recursively adding (�) and subtracting (n)
domains (inclusion-exclusion principle).

We address the problem as follows: We identify a worst case, i.e. the pair of neigh-
bor vertices v and a with the largest intersection. Then, we propose a model to
compute the size of the intersection (Section 4.2 and 4.3). The size is given in terms
of domains to add or subtract, e.g. as in (15), in order to obtain an exclusive set of
vertices. Finally, we provide an algorithm for computing all possible intersections
of a merging domain Mv with its neighbors a in AMv (Section 4.4).

4.2 Modeling the intersection between a pair of merging domains

Consider two vertices v and a arranged as in Figure 7a. The intersection size is
maximum between domains of central vertices in two horizontal (or vertical) adja-
cent quads (Figure 7a). Figures 7b to 7d depict the union between two domains 5

attached to vertices connected respectively at step 2d � 1, 2d � 3 and 2d � 5 for
a mesh of size n = 2 � 4d (recall that the subdivision steps l range between 1 and

5 In the figures, we choose to depict Ma as triangulated to explicitly show the density of
triangles needed for the intersection.

13

2d). These vertices are located at the center of a quad. The intersection between the
domains is shaded. We denote by I2d�1, I2d�3 and I2d�5 these unions, hence

I2d�1 = (Mv �Ma) nMw1
;with v and a as in Figure 7b,

I2d�3 = (Mv �Ma) n (�3
i=1Mwi

);with v and a as in Figure 7c.
(16)

Assume that C(�) is an operator measuring the cost to find I2d�j , j � 1, as defined
in the previous section. Then, we have that C(I2d�1) = 2 and C(I2d�3) = 4. To
verify this, simply count the number of times an operator � or n is used in the
above equations.

w1

w1 w2 w3

w4 w5w3w2w1

v

a

v

a

v

a

(a) (b) (c) (d)

Figure 7. The intersection between merging domains in vertical position: (a) The inter-
section is maximum for direct vertical (as depicted) and horizontal neighbors. The shaded
parts in (b) I2d�1, (c) I2d�3 and (d) I2d�5 depict the intersections between the domains Mv

and Ma.

Finding I2d�5 requires a little more work. Call basic domains the domains forming
an intersection in I2d�j . For example, I2d�1, I2d�3 and I2d�5 have one, three and
five basic domains, respectively. Then, Figure 8a depicts the intersection in I2d�5
and a decomposition into a set of basic domains Mwi

, i = 1 : 5 is shown in Figure
8b. Unlike I2d�1 and I2d�3, some of the basic domains intersect and the left part in
Figure 8b shows that Mw2

\Mw3
is an instance of I2d�1. Symmetrically, the same

observation can be made for Mw3
\ Mw4

. Therefore, to find I2d�5, we must first
deal with the embedded I2d�1’s. Hence, I2d�5 can be written as

I2d�5 = (Mv �Ma)n| {z }
2

(�5
i=1Mwi| {z }

4

n
leftz }| {
I2d�1 n

rightz }| {
I2d�1| {z }

2(C(I2d�1)+1)

); (17)

where “left” and “right” above the equation stand for the left and right I2d�1’s in
Figure 8b. The costs of the individual part of (17) are given below the equation.
How is computed the cost C(I2d�5) in this case? First, we account for the cost of
each I2d�1 and the cost to substract them from �5

i=1Mwi
. Then, we add the cost for

adding the five basic domains forming the intersection and the cost for substracting

14

them to Mv �Ma. We called this latter part of the cost basic cost because it does
not account for embedded intersections. Hence, the total cost to compute (17) is

C(I2d�5) = 6|{z}
basic cost

+2 � (C(I2d�1) + 1) = 6 + 2 � (2 + 1) = 12: (18)

2d-1I

Mw2

Mw3

2d-1I

Mw4

Mw5Mw1

Mw3
Mw2
3

Mw3
Mw2
3

(a) (b)

Figure 8. Decomposition of the intersection in I2d�5: (a) The intersection in I2d�5. (b) De-
composition of the intersection into a set of basic domains Mwi

, i = 1 : 5. The embedded
intersection Mv2\Mv3 is split further. This intersection is an instance of I2d�1 (Figure 7b).

More generally, finding I2d�j’s with j � 5 always involves dealing with smaller
embedded I2d�j’s. The tree in Figure 9 efficiently models the problem: Each level,
as well as each node, represents an instance of I2d�j . For example, I2d�5 is repre-
sented by the first level in the tree. The two nodes at this level depict the symmetri-
cal embedding of I2d�1’s as represented in Figure 8b. Hence, the tree is recursive:
Consider for example I2d�9, which contains two instances of I2d�5. Then, each
instance embedds I2d�1’s and is represented by the first level of the tree.

I2d-1

I2d-3 I2d-3

I2d-5 I2d-5

I2d-1

I2d-1 I2d-3I2d-3

I2d-7 I2d-5 I2d-3 I2d-1I2d-3I2d-1 I2d-5 I2d-7

I2d-1

I2d-1

I2d-5

I2d-7

I2d-9

I2d-11

I2d-1

Problems

Figure 9. Embedding of intersection problems using a recursive tree: Each level of the tree,
as well as each node, represents an instance of embedded intersection in I2d�j , j � 5.

Only I2d�1 and I2d�3 do not contain embedded intersections to resolve. We can
obtain a nonrecursive formulation of the tree as follows: First, we replace each node
representing an instance of I2d�j; j � 5, by the level representing its embedded
instances I2d�1 and I2d�3. We call T1;3 the resulting tree. The right half of T1;3 after
substitution is shown in Figure 10a. The left half is a vertically mirrored version.

15

I2d-5

I2d-7

I2d-9

I2d-11

I2d-1

I2d-3 I2d-1

I2d-1 I2d-1 I2d-3 I2d-1

I2d-3I2d-1 I2d-1I2d-3 I2d-1 I2d-1 I2d-3 I2d-1

I2d-9

I2d-11

I2d-13

I2d-15

I2d-5

I2d-7 I2d-5

I2d-5 I2d-5 I2d-7 I2d-5

I2d-7I2d-5 I2d-5I2d-5 I2d-5 I2d-7 I2d-7 I2d-5

(a) T1;3 (b) T5;7

Figure 10. Trees for the nonrecursive model: (a) The tree T1;3 in the figure is obtained by
replacing the embedded I2d�i’s, i � 5 in Figure 9 by their associated levels. (b) The tree
T5;7 in the figure models the occurrences of embedded I2d�5 and I2d�7 in I2d�i’s, i � 9.

Then, we need a new tree T5;7 to represent pairs of instances I2d�5 and I2d�7, em-
bedded in I2d�j; j � 9 (Figure 10b). Also, we need a tree T9;11 to account for pairs
I2d�9 and I2d�11 in I2d�j; j � 13, etc... More generally, we need a set of trees
T2d�j;2d�j�2 to represent instances of pairs I2d�j and I2d�j�2, with j � 2d� j + 2.
Therefore the recursive tree model in Figure 9 is replaced by a set of trees.

We give now an example: How can we find C(I2d�9) with our nonrecursive set
of trees? Computing C(I2d�9) involves two trees: First, we account for the set of
embedded instances I2d�1 and I2d�3 in T1;3 (third level in the tree of Figure 10a).
Then, we account for the embedded instances of I2d�5 in T5;7 (first level in the
tree of Figure 10b). Finally, the basic domains forming the intersection in I2d�9 are
taken into account.

4.3 Computational cost

The advantage of the nonrecursive formulation is that the appearance pattern of any
pair I2d�j , I2d�j�2 is represented by a single generic tree T2d�j;2d�j�2. It suffices
then to study this tree in order to evaluate the asymptotical cost for finding I2d�j .

Let us denote by � and 	 the number of pairs of problems I2d�j and I2d�j�2,
respectively. The repetition pattern is given by the following recurrence equations

�(k) = �(k � 1) + 2	(k � 1);

	(k) = �(k � 1);

k � 0;�(0) = 1;	(0) = 0:

(19)

The case k = 0 corresponds to the first level in the tree, where we have a single
pair of subproblems I2d�j (Figures 10a-b), therefore �(0) = 1 and 	(0) = 0. The

16

system (19) has the solution

�(k) =
1

3
(�1)k + 2

3
2k;

	(k) = �1

3
(�1)k + 1

3
2k;

(20)

where k � 0.

We compute the cost C(I2d�j) as follows: First, we rename each cost C(I2d�j) by
C(Ii), where i = bj=2c. This allows for computing the costs as a single-parameter
function and simplifies our computation. Then, we weight the number of pairs
�(k),	(k) of problems I2d�j and I2d�j�2 with their basic costs, since the non-
recursive model lets us use a summation across a set of trees in order to account for
embedded intersections. In general, the basic cost for I2d�j is j+1, or equivalently
2i + 2 in our single-parameter cost function. The first problem involving two trees
is C(I2d�7), i.e. C(I3). Therefore the cost for i > 2 is

C(Ii) = 2i+ 2 + 2
pX

j=1

(4j � 1)�(i� 2j) + 2
qX

j=1

(4j + 1)	(i� 2j); (21)

where p = i�1�b i�1
2
c and q = b i�1

2
c. To obtain the asymptotic behavior, we sum

the equation, leading to

C(Ii) =2i +
90

27
2i + 1� 2i

4p+1
[
64

9
(p+ 1) +

16

27
]� 2i

4q+1
[
32

9
(q + 1) +

56

27
]+

4

3
(�1)i[(p + 1)2 + 1� (q + 1)2 � 3

2
(p+ 1) +

q + 1

2
]:

(22)

A quick analysis is performed by observing the magnitude of each term:

i; p; q 2 �(logn), 2i 2 �(n), 4�p, 4�q 2 �(1
n
). (23)

Therefore,
C(Ii) 2 �(n); (24)

since 2i is the dominant term in (22). As for (1) or (2), the cost C(Ii) decreases
exponentially when i increases. Hence averaging (24) over all vertices yields

E[C(Ii)] 2 �(logn): (25)

4.4 Algorithm computing all intersections

We give now an inclusion-exclusion algorithm to compute in the sets D in (15)
between Mv and all the ancestors in AMv .

17

Algorithm 1. Compute all intersections between Mv and Ma, with a 2 AMv

(1) for all vertices w connected at step 2d : : : l

(a) for all a 2 Aw

(i) Ma Ma n w
(ii) if a =2Mv then Da Da � w

(b) end

(2) end

To illustrate the algorithm with a simple example, we compute the term D in (15).
Recall the decomposition in Figure 8b. Then, D = (Mw2

\Mw3
)�(Mw3

\Mw4
). We

restrict our example to computing the first term of D. The intersection Mw2
\Mw3

is shown in Figure 7b, hence in our example Mw2
\Mw3

= Ma [Mv . Assume that
a and v are connected at step l. Then, w in Figure 7b is connected at level l + 1
and Aw = fa; v; : : :g, where the dots suggest additionnal vertices. The algorithm
iteratively decimates vertices starting at the ones with the largest connection step
(l + 1 in our example). Each vertex is removed from all the merging domains of
its ancestors. Assume that D gathers the removed vertices forming Mw2

\ Mw3
,

then the algorithm proceeds as follows: First, 8a 2 Aw, decimate w from Ma, i.e.
Ma nfwg. The same is done for all other vertices connected at step l+1 in Ma and
Mv (see the dots in D below). Then after the first step, we have

D = fw; : : :g, Ma = fag, Mv = fvg. (26)

At the second step, the vertices connected at step l are considered. Hence, the ver-
tices a and v are decimated and D = fw; a; v; : : :g. The set D contains only one w
and an exclusive set is obtained.

Algorithm 1 computes all intersections between Mv and Ma, with v connected at
step l and a 2 AMv . As suggested before, our algorithm finds the intersection
by decimating Mv , although this is not mandatory to implement the algorithm. At
each ancestor a 2 AMv , a set Da gathers the vertices in the intersection between
Mv and Ma. Note that the decimation must be performed step-wise and starts at
vertices with the largest step l. Since Mv contains �(logn) vertices on average
and �(logn) operations are required to find the ancestor chain Av, the cost of the
algorithm is �(log2 n).

We summerize our results in the following proposition:

Proposition 2
The vertices in the intersections of a merging domain Mv with the domains of its
ancestors AMv can be found in �(log2 n) operations.

18

5 Application

This section is organized as follows: First, we briefly evaluate the computational
costs of insertion and decimation algorithms using local error with the results ob-
tained in Section 3. Then, we introduce our decimation algorithm using global error.

5.1 Cost of algorithms using local error

Consider an algorithm using general decimation whose input is a dense 4-8 mesh
of vertices in R3 . A progressive representation is computed using iterated decima-
tion. An error in l2 norm is computed for each vertex v as the sum of the squared
differences between the vertices in Mv and their projection in the domain’s support
averaged by jMvj4. Then, at each step we need �(logn) operations (5) to decimate
the vertices, and �(logn) operations (10) to find the ancestors. For each ancestor,
�(logn) vertex errors (5) have to be locally recomputed, hence the cost for updat-
ing all errors is �(log2 n). On average, the algorithm requires n=�(logn) steps to
fully decompose the mesh; therefore, the minimal cost is �(n logn).

Now consider an algorithm using insertion. The input mesh has minimal resolution
(e.g. Figure 2a) and is iteratively refined using vertex insertion. Then, at each step
we need �(logn) operations (7) to insert the vertices, and �(logn) operations (13)
to find the ancestors. Again, for each ancestor, �(logn) vertex errors (7) have to be
locally recomputed, hence the cost for updating all errors is �(log2 n). On average,
the algorithm requires n=�(logn) steps on to fully refine the mesh, therefore the
minimal cost is again �(n logn). We conclude with the following Proposition:

Proposition 3
On average, an algorithm based on local error (evaluated over the vertex domains)
and using general decimation or insertion requires �(n logn) operations to fully
decompose or refine a 4-8 mesh with n triangles.

5.2 Algorithm based on general decimation and global error

This section introduces a decimation algorithm based on global error and shows
that it computationally outperforms a direct approach using the same error criterion.
Our algorithm is inspired from an algorithm used to compute adaptive quantizers
for compression presented by Chou et al.[4]. Note that in the context of adaptive
quantizers, less constraints are incurred since no notion of “conforming” solutions
is defined. We apply our algorithm to meshes built on matrices of amplitude z,
e.g. terrain data. We use mesh functionals u : Mv ! R to compute properties
for v over its domain Mv. We use two mesh functionals R and D: R is called

19

the rate and counts the number of triangles, whereas D measures the distance in
l2 norm between the original surface and an approximation. Note that R(Mv) can
be computed in closed form using (1) and (2) if overestimates are allowed for the
vertices at the mesh boundaries. Hence, for each v we compute the vector value
u(Mv) = (R(Mv); D(Mv)).

Call M0 the input mesh and M a simplified version, then the problem to solve is

D(R) = min
jM j�jM0j

fD(M)jR(M) � rg; (27)

where r denotes a constraint in rate. A progressive representation for M is found
by solving the problem for all values 2 � r � n. We further define the
variation of a functional as �u(Mv) = u(Mv) � u(�Mv). Hence, �u(Mv) =
(�R(Mv);�D(Mv)). The variation �u(Mv) is the change in rate and distor-
tion when Mv is decimated. Therefore, a vector �u(Mv) corresponds to a sim-
plified mesh in the space of values spanned by R and D (this plane is usually
called rate-distortion plane in the compression literature [8]). The ratio �(v) =
��D(Mv)=�R(Mv) is the trade-off between rate and distortion when Mv is dec-
imated and represents a slope in the rate-distortion plane.

The algorithm proceeds as follows: Initially, the variations �u(Mv) for each ver-
tex are computed. Recall that Mv0 contains all the vertices in the mesh. Therefore,
R(Mv0) and D(Mv0) measure the rate and the distortion of the entire mesh, re-
spectively. At each iteration the vertex v with minimal �(v) is chosen. Then Mv is
decimated, and the ancestor errors are updated, as described below.

We use Algorithm 1 to decimate Mv and update the functional variations. For each
ancestor a, the variation of vector-functional values are replaced by

�u(Ma)��u(Mw); w 2Mv (28)

where w 2 Mv . The variations �u(Ma) updated with �u(Mw) are found by con-
structing an ancestor chain Aw. Hence (28) replaces step (i) in Algorithm 1 and and
step (ii) is no longer necessary. After the initialization step, the variations �u(Mv)
are global, since no vertex is yet decimated. The following example illustrates how
this property is maintained after the update: Assume that all vertices in Mv are
decimated except v. Therefore, following (11) the updated variation at v and v0 are

�u(Mv)�Pw2Mv;w 6=v�u(Mw) , �u(Mv0)�
P

w2Mv;w 6=v�u(Mw). (29)

Assume that v is now decimated, then using (28), the variation at v0 is now

�u(Mv0)��u(Mv); (30)

which shows that the global error is used.

20

Algorithm 2. Surface simplification
initialization:

for all v
compute �D(Mv), �R(Mv) and �(v) = ��D(Mv)

�R(Mv)
.

iteration:
i = 1 (counter for the approximations.)
while R(Mv0) > 2

search the optimal vertex v? = arg min
v2M

�(v).

Mi �Mi�1 nMv? .
update �D(Ma) and �R(Ma), 8a 2 AMv?

.
end

end

5.3 Complexity

Algorithm 2 is used to compute a full decomposition of the mesh. The output is a
progressive representation of the input dataset (e.g. terrain). An example of approx-
imation is shown in Figure 11.

The cost of the algorithm is computed as follows: Initially, the values �u(Mv) and
�(v) are stored for each vertex. Additionally, we use a value �min at each vertex to
store the minimal slope amongs all its descendants. Following (5) and considering
that the number of vertices in the mesh is proportional to n, this initialization has
cost �(n logn). At each iteration, the optimal vertex v? (having minimal slope
�(v?)) is found in �(logn) operations using the values �min. The cost to decimate
Mv and update the variations for the vertices in AMv is �(log2 n). The values �(v)
and �min are also recomputed and the algorithm is iterated. On average, n=�(logn)
steps are necessary to decompose the mesh. Hence, the cost to compute the full
decomposition is �(n logn).

Following (11), a direct algorithm needs to recompute the global error over each
ancestors’ domain. A lower bound for this update is obtained as follows: We have
roughly �(4l+1) vertices at step l and l 2 �(logn) ancestors exists. Call a any such
ancestor, then jMaj4(i; n) � n=4i�1, 1 � i � l. Therefore, a lower bound for the
complexity is

log4 nX
i=0

4i
iX

j=0

n

4j
=

16

9
n2 � 1

3
n log4 n�

7

9
n 2 �(n2): (31)

Note the above approximation accounts only for the ancestors a such as Mv �Ma.
Accounting for the update of the ancestors whose domain partially overlaps does
not change the order of magnitude. However, this evaluation is complex due to the
�(logn) cases of overlap one has to deal with (Section 4.1). We conclude with the
following proposition:

21

Proposition 4
On average, an algorithm based on global error and using general decimation re-
quires �(n logn) operations to fully decompose a 4-8 mesh with n triangles when
merging domain intersections are used to update the vertex errors.

(a) (b)

(c) (d)

Figure 11. Example of terrain decompostion: Series of models at decreasing rate using
approximatively (a) 6400, (b) 1600, (c) 800 and (d) 400 triangles.

6 Conclusion

We presented several results in computational complexity for simplification algo-
rithms processing 4-8 meshes. We have shown that �(logn) operations are nec-
essary to decimate or insert a vertex in the mesh while preserving the hierarchy
over the vertex set. These operations yield a conforming mesh, hence the repre-
sented surface can be rendered without shape discontinuity. We have shown how to
efficiently update the vertex errors when decimating or inserting vertices. More pre-
cisely, the latter operations change the errors at �(logn) vertices, and on average,
�(log2 n) operations are needed to update them. Since n=�(logn) steps are neces-
sary to decompose or refine a mesh of n triangles, the total cost of the algorithm is
�(n logn).

22

We addressed the problem of finding merging domain intersections and provided
a model for obtaining a closed form for the computational cost of this operation.
More precisely, we have shown that �(logn) operations are required to compute
an intersection and that all intersections between the merging domain of a vertex
and the domain of its ancestors can be found in �(log2 n) operations. We used
these results to provide an algorithm using general decimation and global error to
decompose a mesh in �(n logn). We explained that a direct algorithm using the
same error criterion would need �(n2) operations to perform the decomposition.

A Proof of Proposition 1

We compute the number of triangles jMvj4 and j �Mvj4 as follows: We construct
a dual representation of the support using a tree structure. Hence, each triangle
corresponds to a node and the tree expands towards the boundaries of the support
(Figure A.1a).

1

2

3

4

R

j

(a) (b) (c)

Figure A.1. Computing jMvj4 and j �Mv j4: (a) A dual representation of the support is con-
structed using a tree structure. (b) Tree structure expanding towards the boundaries. The
node labeled “R” corresponds to the node in part (a). (c) The top part depicts a support and
the bottom part is its triangulated counterpart. The dual tree is weighted using the number
of triangles embedded in the triangles corresponding to the nodes.

Using the dual representation for the support, j �Mvj4 is found by summing the tree
nodes; jMvj4 is a weighted version of the sum. At the center of the support, the
tree is balanced, i.e. each node has two children. However, the tree becomes unbal-
anced towards the boundaries. Figure A.1b depicts the tree at the bottom part of the
support (note that the same tree expands towards the other cardinal directions). The
label “R” in Figure A.1a and A.1b points out the sibling nodes. The shaded region
in Figure A.1b shows the unbalanced part of the tree.

We count the tree nodes as follows: We compute two sums, one for the balanced
part and one for the unbalanced part. Assume that i counts the tree levels and denote

23

by j �Mvj4b
(i) the number of triangles in the balanced part, then

j �Mvj4b
(i) =

iX
k=1

2k = 2i+1 � 2: i � 4: (A.1)

Assume now that j counts the unbalanced levels (vertical axis in Figure A.1b), i.e.
j = i � 4. Then for the unbalanced part, we use the following observation: For j
odd 2j nodes have two children and 2j+1� 2 nodes have one child. Moreover for j
even, 2j+1 nodes have two children and 2j+1 � 2 nodes have one child. Then, the
sum of nodes for the unbalanced part is again split into two sums: one over odd
j and one over even j. For any j, we have j � bj=2c odd indices and bj=2c even
indices. We denote by j �Mvj4u

(j) the the number of nodes in the unbalanced part,
then for j � 1

j �Mvj4u
(j) = 4(

j�bj=2cX
k=1

(2k+2 � 2) +
bj=2cX
k=1

(2k+2 + 2k+1 � 2));

= 32(2j�b
j
2
c + 3 � 2b j2 c�1)� 8j � 80:

(A.2)

Hence, for i > 4

j �Mvj4(i) = j �Mvj4b
(4) + j �Mvj4u

(i� 4);

= 32(2i�b
i�4
2
c�4 + 3 � 2b i�42 c�1)� 8i� 18:

(A.3)

We now compute jMvj4 using a weighted version of the sums (A.1) and (A.2).
Each tree node is weighted using the number of triangles embedded in the triangle
represented by the node. This number is a function of the total number of tree
levels i and the level k of the tree node. More precisely, the weight is given by
wk = 2i�k+1. Hence, the weighted sum of (A.1) yields

jMvj4b
(i) =

iX
k=1

2i�k+12k =
iX

k=1

2i+1 = i � 2i+1: i � 4: (A.4)

Since we used two sums for the unbalanced part, we use w0
k = 2j�2k+1 for the sum

over even j’s and w1
k = 2j�2k+2 for the sum over odd j’s. Hence,

jMvj4u
(j) = 4(

j�bj=2cX
k=1

(2k+2 � 2)2j�2k+2 +
bj=2cX
k=1

(2k+2 + 2k+1 � 2)2j�2k+1);

= 24 � 2j + 8

3
22b

j
2
c�j � 16 � 2b j2 c � 12 � 2j�b j2 c + 4

3
2j�2b

j
2
c:

(A.5)

24

Hence, for i > 4

jMvj4(i) =jMvj4b
(4) + jMvj4u

(i� 4);

=128 � c2 + 4(c2 � (24� 12 � c�11 +
4

3
c�21)

+
8

3
c�12 c21 � 16 � c1);

(A.6)

where c1 = 2b
i�4
2
c and c2 = 2i�4. To conclude, we need to express (A.3) and (A.6)

in terms of the total number of triangles n and the connection step l. The parameter
i is linked to n and l as 2i = n � 2l, or equivalently n = 4(i+l)=2. For example,
a triplet i; n; l is found as follows: In a uniform mesh of n = 8 triangles, i = 2
tree levels are needed to compute jMvj4(l = 1; n = 8) or j �Mvj4(l = 1; n = 8).
Hence, we replace i = 2 � log4 n� l in (A.1), (A.3), (A.4) and (A.6), Therefore, for
jMvj4(i) we have

jMvj4(l; n) =

8>>>>><
>>>>>:

(2 log4 n� l)21�ln; l > 2d� 4;

128 � c2 + 4(c2 � (24� 12 � c�11 + 4
3
c�21)

+8
3
c�12 c21 � 16 � c1); l � 2d� 4;

(A.7)

with c1(l; n) = 2blog4 n�
l+4
2
c, c2(l; n) = 2�ln

16
, 1 � l � 2d and n = 2 � 4d.

whereas for j �Mvj4(i), we have

j �Mvj4(l; n) =

8>>>>><
>>>>>:

21�ln� 2; l > 2 log4
n
2
� 4;

32(2�(l+4)n � c�11 + 3
2
� c1)

�16(log4 n� l
2
)� 18; l � 2 log4

n
2
� 4:

(A.8)

and c1(l; n) = 2blog4 n�
l+4
2
c, 1 � l � 2d and n = 2 � 4d. 2

References

[1] L. Balmelli. Rate-distortion optimal mesh simplification for communications.
Ph.D dissertation no 2260, Ecole Polytechnique Federale de Lausanne (EPFL),
Switzerland., 2000.

[2] L. Balmelli, S. Ayer, and M. Vetterli. Efficient algorithms for embedded rendering of
terrain models. Proceedings of IEEE Int. Conf. Image Processing (ICIP), 2:914–918,
October 1998.

[3] E. Catmull. A subdivision algorithm for computer display of curved surfaces. Ph.D
dissertation, Report UTEC-CSs-74-133, Computer Science Department, University of
Utah, December 1974.

25

[4] P. Chou, T. Lookabaugh, and R. Gray. Optimal pruning with application to tree-
structured source coding and modeling. IEEE Transactions on Information Theory,
35(2):299–315, March 1989.

[5] J.H. Clark. A fast algorithm for rendering parametric surfaces. Proceedings of
SIGGRAPH, pages 289–99, 1979.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry, algorithms and applications. Springer-Verlag, 2000.

[7] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and
M. B. Mineev-Weinstein. Roaming terrain: Real-time optimally adapting meshes.
Proceedings of IEEE Visualization, 1997.

[8] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

[9] I. Guskov, W. Swelden, and P. Schröder. Multiresolution signal processing for meshes.
Proceedings of SIGGRAPH, pages 325–334, 1999.

[10] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression.
proceedings of SIGGRAPH, pages 271–278, 2000.

[11] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on unstructured
triangle meshes. Computational Geometry, 14(1-3):5–24, 1999.

[12] U. Labsik, L. Kobbelt, R. Schneider, and H.-P. Seidel. Progressive transmission of
subdivision surfaces. Computational Geometry, 15(1-3):25–39, 2000.

[13] F. Laves. Die Bau-zusammenhänge innerhalb der Kristallstrukturen. Zeitschrift f̈ur
Kristallographie, 73:202–265, 1930.

[14] L.Balmelli, J.Kovačević, and M. Vetterli. Quadtree for embedded surface
visualization: Constraints and efficient data structures. Proceedings of IEEE Int. Conf.
Image Processing (ICIP), 2:487–491, October 1999.

[15] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner. Real-
time continuous level of detail rendering of height fields. Proceedings of SIGGRAPH,
pages 109–118, 1996.

[16] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, University
of Utah, Department of Mathematics, 1987.

[17] R. Pajarola. Large scale terrain visualization using the restricted quadtree
triangulation. Proceedings of IEEE Visualization, pages 299–305, 1998.

[18] H. Samet. Application of Spatial Data Structures: Computer Graphics, Image
Processing and GIS. Addison-Wesley Publishing Company, 1990.

[19] L. Velho and D. Zorin. 4-8 subdivision. Computer-Aided Geometric Design, Special
Issue on Subdivision Techniques., 2001.

[20] D. Zorin. A method for analysis of C1-continuity of subdivision surfaces. SIAM
Journal of Numerical Analysis, 37(4):1677–1708, 2000.

26

