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VORONOÏ DIAGRAMS IN PROJECTIVE GEOMETRY
AND SWEEP CIRCLE ALGORITHMS FOR CONSTRUCTING

CIRCLE-BASED VORONOÏ DIAGRAMS
- extended abstract -

Axel PAVILLET1

The sweep circle algorithm is based on the concept of wavefront developed by Dehne and Klein
[Dehne, 1997]. In this case, because the sweep line is a site of the same nature as the sites being
considered, we get an economy of scale for the objects to be treated. It uses the definition of a
Voronoï diagram in projective geometry to simplify the treatment of the non-connected wavefront
and vertex events.

The paper gives an application of this kind of algorithm to the computation of a subtractively
weighted Voronoï diagram. However the properties of the sweep circle algorithm in projective
geometry can be used to construct other circle-based Voronoï diagrams and another application of
these concepts is being developed for the construction of a Voronoï diagram of circles in Euclidean
geometry. 

All sites are considered in general position.

1. The subtractively weighted Voronoï diagram.
This Voronoï diagram, where a weighted point site is represented by a disk, was studied in great
detail by Sharir [Sharir 1985]. Two facts have to be underlined here. 

The first one is that when a disk is contained in some other disk the latter site dominates the former
and the former site has no Voronoï region of its own. Therefore if we do a shrinking circle sweep
starting with a circle of infinite radius, there will be a natural masking of all the sites inside the
sweeping circle, which will discover the sites as the radius decreases. Moreover since this sweeping
circle is a site by itself, if we want to construct an n-sites Voronoï diagram, we will in fact have, at
any time during the algorithm, an (n+1)-sites Voronoï diagram, which will be fully constructed in the
whole plane. Finally, if the location of the sweep centre is well chosen (inside one and only one site) the
sweep circle and the wavefront will disappear altogether at the end of the sweep because the site
which contains the centre of the sweep will dominate the sweep circle when its radius is small
enough. 

The second one is that a subtractively weighted Voronoï diagram can be non-connected. Therefore
the wavefront, which is also part of a temporary subtractively weighted Voronoï diagram, may also
be non-connected at times. In order to have an optimal algorithm, it is necessary to manage wisely
the wavefront when a non-connected edge is created or merged with another one.
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Fig. 1-c
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2. Shrinking circle sweep.
This algorithm is a generalization of the Fortune
algorithm [Fortune 1987]; the quick description
which follows gives only the main differences with it
(the figures speak for themselves). The justifications
are given in the following paragraph on a projective
interpretation of a Voronoï diagram.

The centre being chosen as indicated, the sweep starts
with a circle dominating all others. The first type of
event is of course the discovery of a site, the
difference with a line sweep occurring if the Voronoï
diagrams and, therefore, the wavefront is non-
connected (Fig. 1- a). 

The second type of event is merging together two
wavefronts. It happens when the sweep circle is
tangent to the common tangent of two sites (Fig. 1-
b). Finally the third type of event is a vertex event,
the greatest empty circle being inside three sites
(Fig. 1- c) or outside all of them since its centre,
equidistant from all of them, is at a weighted-distance
from each which has obviously the same sign. At this
moment of the sweep six bisectors (all hyperbolas)
are concurrent: three are part of the temporary
Voronoï diagram, three belongs to the final diagram.

3. Voronoï diagrams in projective geometry.
The definition of a Voronoï diagram in projective
geometry may not seem useful at first sight because
there is no distance involved. However it can be done
easily and makes it possible to solve efficiently the
problem of the infinite elements of the diagrams. The
generalization of the properties of the Voronoï
diagram is based on the fact that the points belonging
to edges or vertices of Voronoï diagrams are centres
of empty circles tangent to two or three sites.

In the projective plane the sites are circles. A point is
on an edge of a Voronoï diagram if it is the centre of
a circle tangent to two sites and not containing any
other point from other sites. The centre of a circle is
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Fig. 2

Fig.3-a The figures show a non-connected wavefront
and a vertex event at infinity. The binary tree is not
balanced to enable the reader to follow closely the
figures

defined as the envelope of the normal to the
circle, and a circle is defined as a second-

order algebraic curve going through the
cyclic points of the plane. This
means that there are four types of
circle: the normal one, the point (two

isotropic lines), any line and the line
at infinity of the plane and the double
line at infinity (the equation

). The centre of a circle is the
pole of the line at infinity in the first
two cases, the harmonic conjugate

of the intersection of the two lines
relative to the cyclic points in the
second case and all the points of the

line at infinity in the last one. This
explains the unusual definition of the

centre given above.

The definition of a point inside a conic is the usual one in
projective geometry (by checking the order of the intersection points with the conic by two

lines passing through the point to be tested). Since any projective transformation will conserve the
harmonic ratio, an empty circle in Euclidean geometry will conserve this property in the projective
plane. The interior of the degenerate circle formed by one straight line and the line at infinity of the
plane has no meaning, but an empty half-plane has, and if the straight line creates an empty half-plane
containing the centre of such a circle (which is on the line at infinity) it determines an empty circle
and if it is the greatest empty circle, the centre is therefore considered as a Voronoï vertex at infinity.

With these definitions one can embed a Voronoï
diagram of circles from a Euclidean plane to a
projective one (Fig. 2) as long as a special site, a
degenerate circle formed by the double line at infinity

CChh, is added to the sites. This new site allows for an

easy projective interpretation of the whole diagram.
The element at finite distance are unchanged (sites
CC, CC’ and CC”, greatest empty circle VVCCCC’CC”, vertex ,

edges HHCCCC’, HHCC’CC”, HHCCCC”) but one sees immediately
that any part of the convex envelope that is a straight
line (e.g. ) is part of the greatest empty circle

tangent to the two usual sites and the site CChh. The
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Fig 3-b Fig. 3-c

vertices at infinity  are the points in the direction perpendicular to the common

tangents; they are also the points at infinity of the hyperbolic edge of the Voronoï diagrams separating

the two usual sites.  The edges at infinity HHCCCChh,  HHCC”CChh , HHCC”CChh separate the usual site and the

special site  CChh which therefore does not modify the Voronoï diagram at finite distance. 

The main purpose of this embedding is to facilitate the treatment of the event of the second type
when two non-connected wavefronts are merged or of the first type when the discovery of a site leads
to a non-connected wavefront. 

The Voronoï diagram which is not necessarily connected in the Euclidean plane is connected through
the edges at infinity in the projective plane because of the addition of the special site. The events of
the second type are nothing else but a “vertex at infinity event”, and therefore, with the introduction
of projective geometry, it is not a special case anymore. The binary tree used to follow the wavefront
and the priority list to manage the events become totally similar to what is done for the Fortune
algorithm (Fig. 3-a,b,c). With the exception of the treatment of the false alarms (see below) the
overall structure of  both algorithms is identical. The complexity of the algorithm is therefore
optimal.

4. False alarms - sterile events.
The computation of vertex events in polar coordinates is done using Casey’s condition (a
generalization of Ptolemy’s theorem [Coolidge, 1917]). This theorem gives the condition for four
circles to be tangent to a fifth. The equation is a condition on common tangential segment ( )

between two circles (Fig. 4). It is interesting to use because, when one gets three neighbouring
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Fig. 4  is the sweep circle, the three sites are CC, CC’ and CC” and

VVCCCC’CC” is the greatest empty circle

sites and the mobile sweep site , there is no need to know anything about the fifth one
(which is the greatest empty circle) in order to compute the position of the corresponding vertex event.
Casey’s condition is expressed by:

  

On the negative side, this equation of the
fourth order in the radius of the sweeping
circle gives more solutions than necessary
(geometrically there are eight at the most,
which are given by the roots of the
equation and the choice of ). 

Since the number of these false alarms is
bounded, no attempt is made to eliminate
these solutions. Therefore this does not
increase the complexity of the algorithm,
only the multiplicative coefficient. The
algorithm eliminates the false alarms by
considering the length of the edge of the
front wave which has to disappear at the
vertex event before dealing with it. If the
length is nil, then the edge will disappear
and the vertex event is processed, if not
the event is discarded before any other processing. This is easily checked by considering the fact that
the coordinates of the cusps of the front wave are in fact parametric representations of the edges of
the diagram: the event is an actual vertex event if and only if the numeric values of both parametric
equations, given the radius of the sweep circle at that time of the sweep, is the same. When this
happens, the two cusps are merged in a single vertex; if not, the event is sterile, which means that
even if it were processed, it would not yield any new information.

This choice being made for the parasite solutions of Casey’s condition, all false-alarms which do not
eliminate themselves before reaching the top of the event queue, are processed the same way: in any
case the number of events which can be in the event queue at any time depends linearly upon the
number of edges of the front wave; so leaving them in the queue will not change the complexity of
the algorithm.

The gain is rather a gain in simplicity, because the elimination of false alarms given by this method
would be time-consuming. This is the  main difference with the way the Fortune’s algorithm is carried
out by Guibas and Stolfi [Guibas, 1988] which take care of eliminating upfront all false-alarms
through a “death pointer”.
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Fig. 5

Fig. 6

5. Elimination of dominated sites.
The elimination of a site dominated by
another one does not offer any difficulty.
When a new site is discovered a test is done
on the localization of its centre. If the centre
is outside the wavefront, the site is
eliminated. The circle CCj, centre , is

included in the circle  CCi, centre , if and

only if, , being the radius of the sweep circle
,  s a t i s f i e s  t h e  i n e q u a l i t y :

 (Fig. 5).

6. No-vertex Voronoï diagrams.
The usual Fortune’s line sweep algorithm can be easily interpreted in the projective plane: it is a circle
sweep, with a circle of the third type (a line and the line at infinity) whose centre is not within a site
but on it. A difficulty arises from the facts that the variable site and the special site have a common
part ( ) and that the sweep circle does not disappear at the end of the sweep:  the vertices at
infinity, which are on the circle from the start to the end, cannot be discovered.  This explains why
the parabolic front does not disappear either at the end of the sweep and that a additional, though
simple, post-processing algorithm is needed for these vertices. 

In the case of subtractively weighted Voronoï diagrams, it has been shown by Sharir [Sharir, 1985]
that it is possible to have a complete diagram with no vertices (Fig.6 - ellipses excluded)). Fortune’s
algorithm is not very interesting here because it is executed for no other purpose than to show that the
Voronoï diagram to be constructed has no
vertices. The  construction of the diagram has
to be done at the end of the algorithm. As seen
above this no-vertex diagram is a diagram
with vertex at infinity only. With the sweep
circle algorithm in projective geometry these
vertices are treated during the sweep as usual
(as events of the second type); therefore there
is no need for additional work at the end of the
algorithm. The natural masking used for the
sweep by the shrinking circle makes any
additional work at the end of the sweep
unnecessary.
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7. Conclusions.
The use of projective geometry unifies the treatment and simplifies the exceptional case where a
vertex is at infinity. It gives of course the convex envelope of the circles at the same time.  One can
notice that sweep circle algorithms are more often considered useful to process the Voronoï diagram
locally [Dehne, 1988], [Adam, 1997] however with this point of view it is possible to handle all sites.
The algorithm can be used to deal only with points, but then it has already been done [Adam, 1997],
[Adam, 1998]. The same concept is used to develop an optimal algorithm to construct Voronoï
diagrams for circles in euclidean geometry, be they no-vertex diagrams (Fig. 6) or with a complexity
that can reach .
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