VORONOI DIAGRAMS IN PROJECTIVE GEOMETRY
AND SWEEP CIRCLE ALGORITHMS FOR CONSTRUCTING
CIRCLE-BASED VORONOI DIAGRAMS
- extended abstract -

Axel PAVILLET?!

The sweep circle algorithm is based on the concept of wavefront developed by Dehne and Klein
[Dehne, 1997]. In this case, because the sweep line is a site of the same nature as the sites being
considered, we get an economy of scale for the objects to be treated. It uses the definition of a
Voronoi diagram in projective geometry to simplify the treatment of the non-connected wavefront
and vertex events.

The paper gives an application of this kind of algorithm to the computation of a subtractively
weighted Voronoi diagram. However the properties of the sweep circle algorithm in projective
geometry can be used to construct other circle-based Voronoi diagrams and another application of
these conceptsis being developed for the construction of aVVoronoi diagram of circlesin Euclidean
geometry.

All sites are considered in general position.

1 The subtractively weighted VVoronoi diagram.
This Voronoi diagram, where a weighted point site is represented by a disk, was studied in great
detail by Sharir [Sharir 1985]. Two facts have to be underlined here.

Thefirst oneisthat when adisk is contained in some other disk the latter site dominates the former
and the former site has no VVoronoi region of its own. Therefore if we do a shrinking circle sweep
starting with a circle of infinite radius, there will be a natural masking of all the sites inside the
sweeping circle, which will discover the sites as the radius decreases. M oreover since this sweeping
circleisasite by itself, if we want to construct an n-sites VVoronoi diagram, we will in fact have, at
any time during the algorithm, an (n+1)-sites Voronoi diagram, which will be fully constructed in the
wholeplane. Finally, if thelocation of the sweep centre iswell chosen (inside one and only one site) the
sweep circle and the wavefront will disappear altogether at the end of the sweep because the site
which contains the centre of the sweep will dominate the sweep circle when its radius is small
enough.

The second one is that a subtractively weighted Voronoi diagram can be non-connected. Therefore
the wavefront, which is also part of atemporary subtractively weighted V oronoi diagram, may also
be non-connected at times. In order to have an optimal algorithm, it is necessary to manage wisely
the wavefront when a non-connected edge is created or merged with another one.
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2. Shrinking circle sweep.

This agorithm is a generalization of the Fortune ,«f’"ﬁ
algorithm [Fortune 1987]; the quick description

which follows givesonly the main differenceswith it

(the figures speak for themselves). Thejustifications

are given in the following paragraph on a projective
interpretation of a \VVoronoi diagram.

Thecentre being chosen asindicated, the sweep starts
with a circle dominating all others. The first type of
event is of course the discovery of a gite, the
difference with aline sweep occurring if the Voronoi
diagrams and, therefore, the wavefront is non-
connected (Fig. 1- a).

Fig. 1-a
The second type of event is merging together two ’
wavefronts. It happens when the sweep circle is
tangent to the common tangent of two sites (Fig. 1-
b). Finally the third type of event is a vertex event,
the greatest empty circle being inside three sites
(Fig. 1- ¢) or outside al of them since its centre,
equidistant fromal of them, isat aweighted-distance
from each which hasobviously the samesign. At this
moment of the sweep six bisectors (all hyperbolas)
are concurrent: three are part of the temporary
Voronoi diagram, three belongsto the final diagram.

3. Voronoi diagramsin projective geometry.
The definition of a VVoronoi diagram in projective
geometry may not seem useful at first sight because
thereisno distanceinvolved. However it can bedone -
easily and makes it possible to solve efficiently the
problem of theinfinite elementsof thediagrams. The
generdization of the properties of the Voronoi
diagram is based on the fact that the points belonging
to edges or vertices of Voronoi diagrams are centres
of empty circles tangent to two or three sites.

Inthe projective planethe sitesarecircles. A point is
on an edge of aVoronoi diagram if it isthe centre of
a circle tangent to two sites and not containing any
other point from other sites. The centre of acircleis Fig. 1-c
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defined as the envelope of the normal to the
circle, and a circle is defined as a second-
‘.. order algebraic curve going through the
cyclic points of the plane. This
means that there are four types of
circle: thenormal one, the point (two
isotropic lines), any line and the line
at infinity of the planeand thedouble
line at infinity (the equation
Z%=0). Thecentreof acircleisthe
pole of thelineat infinity inthefirst
two cases, the harmonic conjugate
of the intersection of the two lines
relative to the cyclic points in the
second case and all the points of the
line at infinity in the last one. This
explains the unusual definition of the
centre given above.

"6 o

Fig. 2 The definition of apoint inside aconicistheusual onein

projective geometry (by checking the order of the intersection points with the conic by two
lines passing through the point to be tested). Since any projective transformation will conserve the
harmonic ratio, an empty circle in Euclidean geometry will conserve this property in the projective
plane. Theinterior of the degenerate circle formed by one straight line and the line at infinity of the
plane hasno meaning, but an empty half-plane has, andif the straight line createsan empty half-plane
containing the centre of such acircle (which ison the line at infinity) it determines an empty circle
andif it isthe greatest empty circle, the centreistherefore considered asaVoronoi vertex at infinity.

With these definitions one can embed a Voronoi
diagram of circles from a Euclidean plane to a

Hon
projective one (Fig. 2) as long as a special site, a .
degeheratecwcleforrned byt.hedoub'lellneat infinity - /0\5{ /{
Ch, isaddedtothesites. Thisnew siteallowsforan A\ ™~ R .
. ;{rsl H oo
easy projective interpretation of the whole diagram. e 8,

The element at finite distance are unchanged (sites

C,C andC”, greatestempty circleV ¢ -, vertex V,

edges Heo, He o, Heer) but one sees immediately

It.hat any pa1r4t of t.he Convefx invel opethat is aStra.“ g:‘lt Fig.3-a The figures show a non-connected wavefront
ine (e.g. 4B) is part of the greatest empty circle and avertex event at infinity. The binary tree is not

tangent to the two usual sites and the site C,,. The balanced to enable the reader to follow closely the
figures



Fig 3-b Fig. 3-c

vertices at infinity Vg , Vg, R Vg,, are the points in the direction perpendicular to the common
tangents; they arealso the pointsat infinity of the hyperbolic edge of the V oronoi diagrams separating
the two usual sites. The edges at infinity Hecp,, Hercn » He o Separate the usual site and the

special site C,, which therefore does not modify the VVoronoi diagram at finite distance.

The main purpose of this embedding is to facilitate the treatment of the event of the second type
when two non-connected wavefronts are merged or of thefirst typewhen the discovery of asiteleads
to a non-connected wavefront.

TheV oronoi diagram whichisnot necessarily connected in the Euclidean planeis connected through
the edges at infinity in the projective plane because of the addition of the special site. The events of
the second type are nothing else but a“vertex at infinity event”, and therefore, with theintroduction
of projective geometry, itisnot aspecial case anymore. The binary tree used to follow the wavefront
and the priority list to manage the events become totally similar to what is done for the Fortune
agorithm (Fig. 3-a,b,c). With the exception of the treatment of the false alarms (see below) the
overall structure of both algorithms is identical. The complexity of the algorithm is therefore
optimal.

4, False alarms - sterile events.

The computation of vertex events in polar coordinates is done using Casey’s condition (a
generalization of Ptolemy’s theorem [Coolidge, 1917]). This theorem gives the condition for four
circles to be tangent to afifth. The equation is a condition on common tangential segment (#..,)

betweentwo circles C, C’ (Fig. 4). Itisinteresting to use because, when one gets three neighbouring
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sites C, C’, C’and the mobile sweep site T", there s no need to know anything about the fifth one
(whichisthegreatest empty circle) inorder to computethe position of the corresponding vertex event.
Casey’ s condition is expressed by:

=0

t

I‘c'tc’c” + tI‘C" cc’’ + trc”'t

cc’

On the negative side, this equation of the

fourth order in the radius of the sweeping tw T 8
circle gives more sol utions than necessary - _— C
(geometrically there are eight at the most, / iz T

which are given by the roots of the - \_/4 _
equation and the choice of +). -' F

t, \J £/ "

. . ‘8% ) S £
Since the number of these false darmsis | B ’
bounded, no attempt is made to eliminate |
these solutions. Therefore this does not |
increase the complexity of the algorithm, | #
only the multiplicative coefficient. The 4
agorithm eliminates the false alarms by g~ // ty .

considering the length of the edge of the

front wave which has to disappear at the

vertex event before dealing with it. If the Fig. 4 I' isthe sweep circle, the three sitesare C, C’ and C” and
length is nil, then the edge will disappear Vcc o isthe greatest empty circle

and the vertex event is processed, if not

the event is discarded before any other processing. Thisiseasily checked by considering the fact that
the coordinates of the cusps of the front wave are in fact parametric representations of the edges of
the diagram: the event is an actual vertex event if and only if the numeric values of both parametric
eguations, given the radius of the sweep circle at that time of the sweep, is the same. When this
happens, the two cusps are merged in a single vertex; if not, the event is sterile, which means that
even if it were processed, it would not yield any new information.

This choice being made for the parasite solutions of Casey’ s condition, all false-alarmswhich do not
eliminate themselves before reaching the top of the event queue, are processed the same way: in any
case the number of events which can be in the event queue at any time depends linearly upon the
number of edges of the front wave; so leaving them in the queue will not change the complexity of
the algorithm.

The gain israther again in simplicity, because the elimination of false aarms given by this method
would betime-consuming. Thisisthe main differencewith theway the Fortune' salgorithmiscarried
out by Guibas and Stolfi [Guibas, 1988] which take care of eliminating upfront all false-alarms
through a*“ death pointer”.



5. Elimination of dominated sites.

The elimination of a site dominated by
another one does not offer any difficulty.
When anew site is discovered atest is done
on the localization of its centre. If the centre
is outside the wavefront, the site is
eliminated. The circle C;, centre C, is

included in the circle C,, centre C,, if and

only if, p, being theradius of the sweep circle
I') satisfies the inequality:
OC,-CC, > p-r,(Fg.5).

Fig. 5

6. No-vertex Voronoi diagrams.

Theusual Fortune’ sline sweep algorithm can beeasily interpreted inthe projectiveplane: itisacircle
sweep, with acircle of the third type (aline and the line at infinity) whose centreis not within asite
but onit. A difficulty arises from the facts that the variable site and the specia site have acommon
part (Z= 0) and that the sweep circle does not disappear at the end of the sweep: the vertices at
infinity, which are on the circle from the start to the end, cannot be discovered. This explains why
the parabolic front does not disappear either at the end of the sweep and that a additional, though
simple, post-processing agorithm is needed for these vertices.

In the case of subtractively weighted V oronoi diagrams, it has been shown by Sharir [Sharir, 1985]
that it is possible to have a complete diagram with no vertices (Fig.6 - ellipses excluded)). Fortune's
algorithmisnot very interesting here becauseit is executed for no other purpose than to show that the
Voronoi diagram to be constructed has no

vertices. The construction of the diagram has

to bedone at the end of the algorithm. As seen

above this no-vertex diagram is a diagram

with vertex at infinity only. With the sweep

circle algorithm in projective geometry these

vertices are treated during the sweep as usual :

(as events of the second type); therefore there @ .

isno need for additional work at the end of the 9

algorithm. The natural masking used for the

sweep by the shrinking circle makes any

additional work at the end of the sweep

unnecessary.

Fig. 6



7. Conclusions.

The use of projective geometry unifies the treatment and simplifies the exceptional case where a
vertex isat infinity. It gives of course the convex envelope of the circles at the sametime. One can
notice that sweep circle algorithms are more often considered useful to processthe V oronoi diagram
locally [Dehne, 1988], [Adam, 1997] however with thispoint of view it ispossibleto handleall sites.
The algorithm can be used to deal only with points, but then it has aready been done [Adam, 1997],
[Adam, 1998]. The same concept is used to develop an optimal agorithm to construct Voronoi
diagramsfor circlesin euclidean geometry, be they no-vertex diagrams (Fig. 6) or with acomplexity

that can reach O(n?).
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