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Abstract

We present e�cient algorithms for two problems of fa-

cility location. In both problems we want to optimize

the location of two facilities with respect to n given

sites. The �rst problem, the continuous version, has

no restrictions for facility locations but in the second

one, the discrete version, facilities are chosen from a

speci�ed set of possible locations. We consider the rec-

tilinear metric L1 and arbitrary dimension d and de-

termine the locations that minimize, over all sites, the

maximum distance to the closest facility. The algo-

rithms for the continuous and discrete versions take

O(n) and O(n logd�2 n log logn+ n logn) running time

respectively.

1 Introduction

We address the well studied 2-center problem [2, 4, 16,

14, 21, 20, 25] in facility location [7, 24]. We are given

a set of n points representing customers and it is de-

sired to locate 2 facilities in the plane to minimize the

largest distance from a customer to its nearest facility.

The minimum distance is called the 2-radius and we

denote it by ��. For a long time the best algorithms

for 2-center problem in the Euclidean plane had time

bounds of the formO(n2 logc n) [1, 6, 15, 18]. In a recent

breakthrough, Sharir [25] greatly improved time bound

to O(n log9 n). The algorithm of Sharir uses parametric

searching. Eppstein found simpler algorithm with ran-

domized expected

O(n log2 n) time. Several papers consider the 2-center

problem under rectilinear L1; L1 metrics. Drezner [5]

found an algorithm for the rectilinear 2-center prob-

lem in the plane with linear running time. Ko and

Ching [20] gave a linear-time algorithms for a weighted

version of the rectilinear 2-center problem in higher

(and �xed) dimensions.

In the discrete version of the 2-center problem the

possible locations of facilities are restricted to a set of

points.

Discrete 2-center problem. Given a set S of n

points that represent sites to be served and a set F

of m points that represent potential sites of facilities.

Locate 2 facilities such that maximum distance from

a customer point to the closest facility is minimal. In

other words the problem is to cover customer points by

the union of two squares (cubes in higher dimensions) of

minimum size, where the square centers are constrained

to F .

The discrete 2-center problem in the Euclidean plane

appears to be more di�cult than the standard 2-center

problem. Agarwal et al. [2] presents O(n4=3 log5 n) al-

gorithm for the case S = F . Very recently [17, 3] the

discrete 2-center problem had been studied under rec-

tilinear metric. Katz et al. [17] gave O(n log2 n) algo-

rithm for the case S = F . Bespamyatnikh and Segal [3]

improved the running time to O((n + m) log(n + m))

using an O(n+m) decision algorithm.

In this paper we focus on the 2-center problems, both

continuous and discrete, in higher dimensions under the

rectilinear metric L1. We give a simple linear-time al-

gorithm for the rectilinear 2-center problem with lower

dependence on the dimension than the algorithm of Ko

and Ching [20].

For the discrete rectilinear 2-center problemwe present

O(N logd�2N log logN+N logN ) algorithmwhere N =

max(n;m). We extend it to solve a general restricted

problem where facility locations are restricted by axis-

parallel segments or even polytopes with axis-parallel

faces.

2 Notation

We assume that the dimension d is �xed througout the

paper except Section 3. For a point p in d-dimensional



space, i-th coordinate of p is denoted by pi, i.e. p =

(p1; : : : ; pd). The l1-distance between points a and b is

denoted by d1(a; b).

A point p dominates the point q if pi � qi for all i. A

point p 2 A is said to be a maximal element in A if p is

dominated by the only point p. Similarly the minimal

element in A dominates only itself. For a set A � Rd

the set of maxima (minima) is the set of the maximal

(minimal) elements in A.

The cube of side 2� with center p 2 F is the set

[p1 � �; p1 + �]� : : :� [pd � �; pd + �]. We will refer to

� as the size of the cube.

For a set A � Rd, the bounding box of A, denoted by

bb(A), is the smallest axis-parallel box that contains A.

The bounding box ofA is determined by 2d coordinates,

two from each axis i = 1; : : : ; d, the leftmost coordinate

li(A) and the rightmost one ri(A). In other words

bb(A) = [l1(A); r1(A)]� : : :� [ld(A); rd(A)]:

We call the point (l1(A); : : : ; ld(A)) as lowest point of

the bounding box bb(A). The diagonal of bb(A) is the

segment whose endpoints are vertices of bb(A) and whose

interior lies in the interior of bb(A).

3 Rectilinear 2-center Algorithm

Ko and Ching [20] considered the weighted version of

the rectilinear 2-center problem where each customer

point p is assigned a weight w(p) and the distance to

a facility is measured as w(p)d1(p; q). Ko and Ching

gave an O(d2n + d2 log� d) algorithm using the prune

and search technique [22] to solve a pseudo-2-center

problem. We present a simpler algorithm for the un-

weighted version with O(nd logd) running time.

Lemma 1 If two cubes of equal size cover a set S of

points in Rd and no one cube is a cover by itself, then

they contain two diametral vertices of the bounding box

of S.

Proof : Let A = a1�: : :�ad andB = b1�: : :�bd be two

cubes whose union contains S. Recall that the bound-

ing box of S is de�ned by 2d coordinates l1(S); : : : ; ld(S)

and r1(S); : : : ; rd(S). Consider the projections of the

two cubes and the bounding box into i-th coordinate

axis. Clearly the union of two segments ai and bi con-

tains the points li(S) and ri(S). We can say that these

points are covered by di�erent segments. If one seg-

ment, say ai, contains both points then other segment

bi (of the same side) contains at least one of the points,

say li(S), and we assign points li(S); ri(S) to the seg-

ments bi and ai, respectively.

Each cube is assigned d coordinates that de�ne a

vertex of the bounding box of S. These 2 vertices form

a diagonal of bb(S).

A linear-time algorithm for the rectilinear 2-center

problem can be obtained using Lemma 1. Suppose that

two diametrical vertices of bb(S) are chosen. We can

assume that they are corresponding vertices of the cubes

(they can be moved to capture the corners). Now a

customer point c is contained in a cube of size � if and

only if the distance between c and corresponding corner

of the cube is at most 2�.

First the algorithm computes the bounding box of

S. For all diagonals of bb(S) we do the following. For

each point of S we compute the closest distance to the

endpoints of the diagonal. Take the largest distance

over all points of S. The minimum distance over all

diagonals is 2�� and corresponding diagonal de�nes the

cubes and the facility locations. The running time of

the algorithm is O(2ddn) because there is O(2d�1) di-

agonals. To improve exponential dependence on d we

use the observation that the 2-radius is determined by

the distance from a customer point to a vertex of bb(S).

p
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d2(p)

l1(S) r1(S)

l2(S)

r2(S)
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Figure 1: 2-radius is equal to d1(p)=2

Theorem 2 The rectilinear 2-center problem in Rd; d �

1 can be solved in time O(nd logd).

Proof : It is su�ce to �nd a diagonal D that de�nes

the cubes of size ��.

Consider the bounding box bb(S) = [l1(S); r1(S)] �

: : : � [ld(S); rd(S)]. For a point p 2 S we de�ne the

distance

di(p) = maxfpi � li(S); ri(S) � pig

and the side si(p) = left if di(p) = pi� li(S), otherwise

si(p) = right. The distances di(p) play important role

because, in the 2-dimensional case, if two cubes inter-

sect and a point p de�nes the 2-radius then it is equal to

minfd1(p)=2; d2(p)=2g, see Fig. 1. On the other hand,

the point p maximizing the objective

minfd1(p)=2; d2(p)=2g de�nes the diagonal correspond-

ing 2-radius. In Fig. 1 q is such a point and common



point (the lowest point of bb(S)) of two sides of the bb(S)

corresponding to d1(q) and d2(q) is an endpoint of the

desired diagonal D. We choose the diagonal to avoid

having that the point q on the boundary of the cubes.

First the algorithm computes all distances di(p) and,

for each point p, it sorts the distances di(p). This takes

O(nd logd) time. We also keep a copy of d1 and s1 in

separate arrays d01 and s01.

To specify the diagonal D in higher dimensions we

use d (pairwise nonparallel) faces of the bounding box

whose intersection is an endpoint ofD. For each dimen-

sion i there is a face orthogonal to it, left xi = li(S) or

right xi = ri(S). We can choose the �rst face in the hy-

perplane x1 = l1(S) because it must contain exactly one

endpoint ofD. The key idea is that the point with max-

imum minfd01(p);maxfdi(p); i 6= 1gg de�nes the second

face, i.e. it is xi = li(S) or xi = ri(S) depending on

the sides s01(d); si(p). If they are the same s01(d) = si(p)

then the sides of the faces orthogonal to the 1-st and

i-th coordinate axis are the same and vice versa. The

computation of di(p) can be done in linear time if the

distances are presorted.

To �nd next face we reduce one dimension in the

d-dimensional problem. We delete the distances di(q)

for all q 2 S and keep track of them by setting d01(q) =

maxfd01(q); di(q)g, and if d01(q) < di(q) then the side

s01(q) is changed to s0i(q). The deletion of the distances

di(q) and the update of d
0

1(q) and s
0

1(q) takes O(n) time

over all points q.

Now we prove the correctness of the algorithm. In

k-th step we have k faces to de�ne D. They actually

de�ne a diagonal in the k-dimensional space formed by

the coordinates orthogonal to the faces. The projection

of the points S gives the k-dimensional 2-center prob-

lem. Suppose the algorithm is not correct and let k

be the smallest dimension such that the diagonal in k

dimensions de�nes cubes of size greater than ��. We

can assume for simplicity that the i-th face is orthog-

onal to the i-th coordinate axis. If we put 2 cubes of

size �� with corresponding vertices of the diagonal then

some point q 2 S would be outside both cubes. Hence

there is an index j such that in the projection plane

� formed by the k-th and j-th coordinates the point

q lies outside the squares which are the projections of

the cubes. Hence dj(q) > 2�� and dk(q) > 2��. In

the k-th step d01(q) > 2��. Therefore dk(p) and d01(p)

are greater than 2�� because the algorithm choose the

point p. If we change the selection of the k-th face the

point p would be at distance greater than 2�� from each

endpoint of the diagonal. It contradicts the de�nition

of ��.

The algorithmof Ko and Ching reduces the weighted

rectilinear 2-center problem to a maximum spanning

tree computation in a complete graph with d vertices.

The proof above can be interpreted as a similar max-

imum spanning tree computation using Prim's algo-

rithm [23]. We avoid computing a graph because the

weight of the edge (i; j) is actually the maximum of

minfdi(p); dj(p)g over all points p 2 S.

4 Discrete rectilinear 2-center algorithm

Finding the two 2-cubes in the discrete rectilinear 2-

center problem can be considered as an optimization

problem where the side of the two cubes is minimizing.

To solve it our algorithm uses a subroutine to solve the

following decision problem.

Decision problem. Given a set S of n customer

points, a set F of m points in Rd, and a parameter �,

determine whether the customer points can be covered

by two cubes of side 2� with centers in F .

4.1 Optimization Algorithm

We apply the parametric search technique with sorted

matrices [9, 11, 13]. Suppose we seek an optimum value

�� of a parameter � and we have a decision algorithm

which, for any particular value �, decides whether � is

equal to, smaller than, or larger than the desired value

��. An n1 � n2 matrix M is a sorted matrix if each

row and each column of M is in nondecreasing order.

The elements of M represent the possible values of the

optimization problem. Let T denote the running time

of the algorithm for decision problem. Frederickson and

Johnson [8, 10] show that the runtime consumed by

optimization algorithm is O(T logn1 + n2 log(2n1=n2))

where n2 � n1.

Consider the two desired cubes with centers in F .

The size of the cubes cannot be decreased. Hence the

boundary of the union of the cubes contains at least one

customer point. In other words the size of the cube is

realized by a distance between points of S and F . In

metric L1 the distance between points is the minimum

distance between corresponding coordinates. For the

k-th coordinate k = 1; : : : ; d, we can represent the cor-

responding distances bym�nmatrixM . Let s1; : : : ; sm
and f1; : : : ; fn be the sorted lists of k-th coordinates of

the customer points of S and the points of F . Set-

ting M [i; j] = fj � si gives us monotone matrix M .

Only drawback of M is that not all elements of the

matrix represent distances along k-th coordinate (some

elements can be negative). To �x it we splitM into two

matrices M+ and M� containing positive and negative

elements of M (in the positive matrix M+ the order of

rows and columns must be changed to keep nondecreas-

ing order of elements), i.e.

M+[m� i+ 1; n� j + 1] =
n
si � fj if si > fj
0 otherwise

M�[i; j] =
n
sj � fi if fi < sj
0 otherwise



For each of 2d matrices, the optimization algorithm

uses the algorithm of Frederickson and Johnson [9, 11].

Lemma 3 The discrete rectilinear 2-center problem can

be solved in O(T logN+M log(2N=M )) time where N =

max(n;m), M = min(n;m) and T is the runtime of the

decision algorithm.

4.2 Decision Algorithm

In this section we generalize planar decision algorithm

of Bespamyatnikh and Segal [3] to higher dimensions.

Let C0 and C00 be two required cubes with centers c0

and c00 respectively. There are 2d cases of relations of

the coordinates of the centers c0 and c00. Without loss

of generality, assume that the center c00 dominates the

center c0.

Consider the bounding box bb(S) = [l1(S); r1(S)] �

: : : � [ld(S); rd(S)]. It is clear that the region S0 =

(�1; l1(S) + �] � : : : � (�1; ld(S) + �] contains the

point c0. Otherwise, for some i = 1; : : : ; d, c0i > li(S)+�

and none of the cubes c0 and c00 contain the customer

point with minimum i-th coordinate. Symmetrically

the region S00 = [r1(S) � �;1) � : : :� [rd(S) � �;1)

contains the point c00.

We can assume that the center c0 belongs to the set

of maxima of F \S0 since if c0 is not a maximal element

of F \ S0, it can be replaced by any element of F \ S0

that dominates c0. Let M 0 denote the set of maxima

of F \ S0. Similarly we can assume that the center c00

belongs to the set M 00 of minima of F \ S00.

Consider customer points that are not covered by the

cube C0, i.e. S nC0. The second cube has to cover this

set. Let l(C0) denote the lowest point of the bounding

box bb(S nC0), i.e. l(C0) = (l1(S n C
0); : : : ; ld(S nC

0)).

The cube C00 contains the set SnC0 if and only if its cen-

ter c00 2M 00 is dominated by the point l(c0)+(�; : : : ; �).

Let L denote the set fl(p)+(�; : : : ; �); p 2M 0g. We have

proved the following lemma.

Lemma 4 The decision problem has answer \yes" if

and only if there is a pair of points p 2 L and q 2M 00

such that p dominates q.

We actually reduced the decision problem to a dom-

inance problem.

Dominance problem. Given sets L and U in Rd.

Are there points p 2 L and q 2 U such that p dominates

q?

One more subproblem concerns determinimg the set

of maximaM 0 and minimaM 00.

Maxima problem. Given set A 2 Rd of points

sorted by all coordinates. Find the set of maxima of A.

In the rest of this section we explain how to accom-

plish the reduction of the decision problem to the max-

ima problem in linear time. The dominance problem

can be solved using the algorithm for maxima problem.

Indeed, the dominating pair exists if and only if the set

of maxima of L [ U does not include L.

It remains to show how to compute the set L in linear

time. For a point c0 2 M 0, denote Ui(c
0) = fp j pi >

c0i + �g. It is clear that S nC0 = S \ ([di=1Ui(c
0)). The

lowest points of bb(S nC0) can be obtained in constant

time if the lowest points of bb(Ui(c
0)) for i = 1; : : : ; d

are known.

Now we show how to compute, say U1(c
0) for all

points c0 2 M 0. We apply sweeping technique where

the sweeping hyperplane has form x1 = const . The set

U1(c
0) is updated by insertions only if the sweeping hy-

perplane is moving down, i.e. const is decreasing. The

processing of the inserted point is only to update the

current lowest point. So we have proved the following

lemma.

Lemma 5 The decision problem can be solved in O(n+

m+TM (n)+TM (m)) time where TM (n) is the running

time of an algorithm for the maxima problem.

The maxima problem is well studied [12, 19] and the

best running time is

TM (n) =

�
O(n) if d = 2

O(n logd�3 n log logn) if d > 2

We conclude our main result of this Section.

Theorem 6 The rectilinear discrete 2-center problem

can be solved in O(N logd�2N log logN+N logN ) time

where N = max(n;m).

5 Axis-parallel segments

In this section we consider a restricted version of the rec-

tilinear 2-center problem where the possible locations of

the facilities are restricted by a set F of m axis-parallel

segments. We apply similar optimization technique as

in the discrete version. The following Lemma describes

all possible values of ��.

Lemma 7 In the rectilinear 2-center problem with fa-

cility locations restricted to a set of axis-parallel seg-

ments F the 2-radius �� is either

� a distance between a customer point and a segment of

F or

� half a distance between two customer points.

Proof : The basic idea of the proof is to improve the fa-

cility locations if the conditions of Lemma are not satis-

�ed. Recall that the objective of the facility locations is

to minimize the maximumof the size of covering cubes.

We add the second objective which is to minimize the

total volume of the cubes. Consider two optimal facility

locations p1 and p2. Two cubes C1 and C2 of size �1
and �2 with centers p1 and p2 cover all customer points.
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Figure 2: 2-radius con�gurations

It is clear that �� = max(�1; �2). We can assume

that �1 = ��. There is at least one customer c1 at

distance �� from the facility p1. The Lemma follows if

c1 is at distance �
� from the segment s1 containing the

facility p1, see Fig. 2 a) and b).

Suppose that the distance between c1 (and all cus-

tomer points on the boundary of C1) and s1 is less than

�1. Hence

� c1 lies on a face of the cube C1 that is not parallel to

s1, and

� p1 is not an endpoint of s1 closest to c1, see Fig. 2 c).

The facility p1 cannot be moved along the segment s1
toward the customer c1 keeping all its customers within

distance ��. Therefore there is at least one customer

c2 on the opposite face of the cube C1. Lemma follows

because the distance between customer points c1 and c2
is 2��.

To apply parametric search of Frederickson and John-

son [9, 11] we build 4d sorted matrices. The �rst 2dma-

trices correspond to the distances between the customer

points and the segments of F . The remaining 2d matri-

ces correspond to the distances between the customer

points.

The decision algorithm builds the set of maximaM 0

of segments F clipped by the cube S1 = [l1(S); l1(S) +

�] � [l2(S); l2(S) + �]. Clearly a segment s can partici-

pate in M 0 by either its endpoint or intersection point

of s and the boundary of S1. There is O(m) points that

could participate in M 0. The algorithm �nds them and

compute the set of maximaM 0 in O(m) time using pre-

sorting of the segment endpoints. The remaining part

of the algorithm is the same as in the discrete version.

We conclude the following theorem.

Theorem 8 The rectilinear 2-center problem with fa-

cility locations restricted to a set of m axis-parallel seg-

ments can be solved in O(N logd�2N log logN+N logN )

time where N = max(n;m) and n is the number of cus-

tomers.

This approach can be extended to the facility restric-

tion to a set of polytopes with axis-parallel faces.

Corollary 9 The rectilinear 2-center problem with fa-

cility locations restricted to a set F of polytopes with

axis-parallel faces can be solved in O(N logd�2N log logN+

N logN ) time where N = max(n;m) and n is the num-

ber of customers and m is the complexity of F , i.e. the

total number of the faces of all dimensions.

6 Conclusion

In this paper we have investigated three rectilinear 2-

center problems, the continuous and two constrained

versions when facility locations are restricted to a set of

points or a set of axis-parallel polytopes. We present a

simple linear-time algorithm for the continuous version

and an e�cient algorithmwith polylog running time for

the restricted versions.

In future research we plan to improve the running

time of the algorithms for the restricted versions in un-

balanced cases n << m and n >> m. Another direc-

tion is to obtain e�cient algorithms for the metric L1.
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