
Finding a Minimal Tree in a Polygon with its Medial Axis

Herman J. Haverkort
�

hjhaverk@cs.uu.nl

Hans L. Bodlaender
y

hansb@cs.uu.nl

Abstract

In order to solve a problem arising when generalizing to-

pographical maps, we consider the following problem for

simple polygons, i.e., coherent polygons without holes.

Some edges of the polygon may be marked as hard, and

at least two vertices of the polygon are marked as ter-

minals. We show that the problem to �nd a tree of

minimum total length, spanning the hard edges and ter-

minals, using only edges of the polygon and its medial

axis, can be stated as the problem to �nd a minimum

Steiner tree in a Halin graph, and can be eÆciently

solved in linear time.

Keywords

map generalisation, minimum network Steiner tree,

Halin graph, polygon elimination, polygon dissolution.

1 Introduction

Topographical maps show, among other things, land

use by means of coloured polygons that cover the whole

map. Di�erent polygons represent di�erent uses of land,

e.g. woods, sea, buildings. Thus the area is divided into

coherent polygons with the same land use. When go-

ing from a large scale to a small scale map, this planar

subdivision often needs to be generalised or simpli�ed.

One of the things we would like to do is taking out

faces which would be too small for practical purposes

at the smaller scale. Of course, the elimination of a

face should not create a hole in the map. The space

�
The research of this author was done as part of a graduation

project at the Dept. of Computer Science of Utrecht University, The

Netherlands. The author wants to thank Marc van Kreveld for his

support.
y
Dept. of Computer Science, Utrecht University, The Netherlands

left open after the elimination of the small face, must

be divided among the neighbouring faces (see e.g. �g-

ure 1). Because of conceptual constraints there may be

neighbours that cannot be enlarged by a piece of the

eliminated face. For example, it may be undesirable to

add a part of an area representing a wood to a neigh-

bouring sea area.

In this paper, we consider the problem how to di-

vide the small polygon among its neighbouring faces.

The polygon should be cut at certain places, but where

should we cut?

In topological terms, we need a tree structure (the

cutting lines) with the following properties.

� The complete structure is inside or on the bound-

ary of the eliminated polygon.

� When two neighbour faces meet at the boundary

of the eliminated face, the boundary between the

two faces continues along the cutting tree. That is:

the cutting tree spans all boundary vertices that

are adjacent to at least two other polygons.

� Each boundary between the eliminated face and a

neighbouring face that cannot receive a part of the

eliminated face, is part of the tree.

In geometrical terms, we would like to �nd a tree

structure that maintains the `character' of the neigh-

bouring faces and does not introduce artifacts like nar-

row appendices or strange knobs. Moreover, since the

object of the entire operation is to simplify the map, we

would like to make sure that the new boundaries are less

complex (in an optical sense) than the old boundaries.

Bader and Weibel proposed to use the medial axis

for this purpose [2]. However, this approach can lead to

strange knob-like artifacts (see �gure 1).

An alternative method is to look for a cutting tree

with the smallest possible total length. This gives us

some kind of guarantee that, in a sense, a maximal re-

duction in complexity is achieved. Unfortunately, such

a tree seems diÆcult to compute. It is a variant of



Figure 1: Using the medial axis to divide a polygon

among its neighbours. On top is the situation before

the division; below is the situation after. The cutting

tree is drawn in fat lines.

the general planar Steiner tree problem: given a set

of points in the plane, �nd a tree with minimum to-

tal length that spans the given points. Extra vertices

may be added, i.e. the branches of the tree may meet

each other anywhere in the plane, not only at the given

points. Garey et al. have shown the general planar

Steiner tree problem to be at least as diÆcult as any

NP-complete problem [7]. However, our problem is re-

stricted by the fact that all given points are on the

boundary of a coherent polygon without holes. We de-

mand that no part of the solution is outside that poly-

gon. We do not know if a polynomial time algorithm

exists for this restricted Steiner tree problem. Further-

more, we do not know how the complexity of the (re-

stricted) Steiner tree problem is a�ected if we specify

segments of the polygon boundary that must be present

in every solution (like land-sea boundaries).

In this paper, we combine the medial axis approach

and the Steiner tree approach: we look for a cutting

tree, that only uses edges that belong to either an en-

hanced version of the original polygon or the medial

axis, and that has minimum total length. The advan-

tage of this mixed approach is that we can prove that

such cutting trees can be found in linear time, as we

will show in this article.

Figure 2: The enhanced polygon with its medial axis.

Added vertices are shown as open dots. The actual

medial axis is shown dashed. The added edges (concave

corner bisectors) are printed double dashed.

2 Modelling the problem: Steiner trees in Halin

graphs

We �rst de�ne the graph we work with more precisely.

For this purpose the boundary of the face that must

be eliminated is enhanced with n additional vertices

half-way on all the edges (n being the number of ver-

tices in the original polygon). The medial axis is de-

�ned as the Voronoi diagram of the boundary edges

and vertices of the polygon (using only the part of the

diagram that is inside of the polygon), with O(n) ad-

ditional edges dividing concave corners (see �gure 2).

Hopefully this choice of edges is suÆcient to enable an

algorithm to maintain the `characteristics' of the neigh-

bour faces reasonably well (see explanation given above;

a detailed discussion of this idea is beyond the subject

of this article).All edges are weighted according to their

length.

Lemma 1 Given Euclidian distance metric, the medial

axis of a polygon without holes is a tree, except for edges

to corners (i.e. concave corners) which meet in the cor-

ner.

Proof: This is well known. Suppose the medial axis

contains a cycle that does not contain a corner. By

the de�nition of the Voronoi diagram, this cycle is the

boundary of an area for which some boundary edge or

vertex is closer than any other boundary edge or ver-

tex. Let P be a point inside this area and P 0 the as-

sociated vertex or the closest point on the associated

edge. Since P is inside a cycle inside the polygon, the

segment PP 0 cuts the cycle in some point Q, which

is not on a boundary edge or vertex. Consider any



Figure 3: A corner transformed into multiple leafs of

the medial axis. Double lines represent zero-length aux-

iliary edges.

point R on QP 0 (R 6= Q and R 6= P 0). Let R0 be a

point on the polygon boundary which is closest to R.

Since R is not in the same Voronoi cell as P , R0 is

not on the same boundary segment as P 0 and it has to

be true that RR0 < RP 0. By the triangular inequality,

PR0 � PR+RR0 < PR+RP 0 = PP 0. This means that

the boundary point R0 is closer to P than P 0, which con-

tradicts the de�nition of P 0. Therefore, the medial axis

cannot contain a cycle that does not contain a corner.

We can consider the medial axis to be a real tree if

we consider concave corners to be multiple leafs; one leaf

for each incoming edge of the medial axis (see �gure 3).

Note also that every vertex at the outside of the polygon

is adjacent to an edge of the medial axis.

Thus, the cutting tree that we want to �nd is a sub-

tree of a special (planar) graph: we have a tree, em-

bedded in the plane, and then all leafs of the tree are

connected by a cycle, in the order in which the leafs ap-

pear in the embedding. This kind of graph is known in

graph theory as a Halin graph. Halin graphs are known

to have treewidth three [10] (see also [5]), and hence it

is known that many problems that are NP-hard for gen-

eral graphs can be solved in linear time on these graphs

with a general methodology (see e.g., [1, 4]). The dis-

advantage of the methodology is that usually large con-

stants are hidden in the O-notation. Fortunately, for

the problem considered here, the methodology can also

be used, but the hidden constants are very reasonable,

as discussed later in this paper.

In order to see how to cut the polygon, we have

to �nd a subtree of the Halin graph consisting of the

edges of the polygon and the medial axis. This subtree

must ful�l certain conditions. In the graph, we have the

following types of edges:

� Hard boundary edges. These are edges of the poly-

gon that must be cut, i.e., the edge must be present

in the subtree.

� Boundary edges that are not hard. These edges

may be cut.

Figure 4: Types of edges and vertices. Suppose the

polygon represents a piece of land, that cannot be added

to a sea face which borders it from below. The �gure

shows hard boundary edges (fat lines), other bound-

ary edges (thin lines), internal edges (dashed), termi-

nals (black squares), other boundary vertices (white

squares) and internal vertices (black dots).

� Edges of the medial axis. These also can be cut.

These are called internal edges.

We have the following types of vertices:

� Vertices on the boundary of the polygon, adja-

cent to at least two other faces. These vertices

are called the terminals. The subtree must span

at least each of these vertices.

� Other vertices on the boundary of the polygon.

The terminals and the vertices in this category are

called boundary vertices.

� Internal vertices of the medial axis.

For an example, see �gure 4.

Thus, the subtree of the Halin graph that we search

for should contain all terminals and all hard edges. Note

that if we replace the polygon by such a subtree, then

we have a subdivision of the plane into faces again.

We �rst discuss how to handle hard edges. While

all other edges are given a weight, equal to their nor-

mal Euclidean length, hard edges are given weight 0,

and each endpoint of a hard edge is considered to be a

terminal.

Note that if all edges of the polygon are hard, then

there is no solution to the problem. We further assume

that this degenerate case does not hold. Now, there is

no cycle of weight 0 in the graph.

Given a graph G = (V;E) and a set of vertices W �

V , a tree T is a Steiner tree spanning W in G, if T



is a subgraph of G (i.e., T can be obtained from G by

removing vertices and edges) and every vertex w 2 W

belongs to T .

The following easy lemma shows that it is suÆcient

to �nd a Steiner tree of minimum total weight over all

edges in the tree { every hard edge will automatically

belong to the Steiner tree.

Lemma 2 Suppose we have a graph G = (V;E) with

for every edge e 2 E a weight l(e) � 0. Suppose G

has no cycle of weight 0. Let W be a set of vertices

and suppose that every endpoint of an edge of weight

0 belongs to W . Then every Steiner tree spanning W

in G of minimum total weight contains every edge of

weight 0 in G.

Proof: Suppose l(e) = 0 but e does not belong to a

Steiner tree T spanning W , with the total weight of T

minimum. If we add e to T , we obtain a cycle. This

cycle must have an edge e0 of weight more than 0. Now

T � e0 + e is also a Steiner tree spanning W , but the

total weight of the edges in T � e0 + e is smaller than

that of T , contradiction.

Finding a minimum Steiner tree in a graph is an

np-complete problem, as was already shown by Karp

[8] in 1972. However, in our case, we do not need to

�nd a Steiner tree in an arbitrary graph, but we re-

strict inputs to Halin graphs. By the facts that Halin

graphs have treewidth three [10, 5], and that the mini-

mum Steiner tree problem is solvable in linear time on

graphs of bounded treewidth [1], it follows directly that

the problem we want to solve has a linear time algo-

rithm. However, using the general approach from e.g.

[1] would cause too large constant factors for the algo-

rithm. A �rst step of such an algorithm is usually to �nd

a tree decomposition of bounded treewidth of this input

graph, but the known algorithms are complicated (see

[3, 9]) and often not practical. Thus, instead, we give

a tailor-made algorithm for the minimum Steiner tree

on Halin graphs, exploiting the speci�c structure of this

problem and these graphs, and avoid working explicitly

with tree decompositions, using instead the medial axis

tree as main structure. Our algorithm does not carry

very high constant factors and can be expected to be

fast in practical situations. In our case, we also may

assume that all terminals are boundary vertices { this

helps for slightly easier presentation and better constant

factors.

3 Algorithmic solution

In this section, we describe the algorithm that solves

the minimum Steiner tree problem on Halin graphs.

First note that we may assume that there are at least

two terminals: if there is one terminal, then the Steiner

tree is just the tree containing the one terminal; and if

there is no terminal, the Steiner tree is empty. In both

cases, this corresponds to the case that there is only one

face around the face to be eliminated: the eliminated

face is absorbed completely by it.

Thus, now we assume we have a Halin graph G =

(V;E), and a set W � V of size at least two. Each edge

e 2 E has a weight that is non-negative.

The �rst step of the algorithm is to transform the

problem to one where every vertex has degree exactly

three. Note that vertices of degree at most two cannot

exist (by the manner of construction of G). We now

discuss how to modify vertices of degree at least four.

Each boundary vertex v has degree 3 (convex corners

and half-way vertices) or 5 (concave corners). In the

latter case, the �ve adjacent edges are:

� a boundary edge (v; u);

� an internal edge (v; u0) which is perpendicular to

(v; u);

� a boundary edge (v; w);

� an internal edge (v; w0) which is perpendicular to

(v; w).

� an added bisector edge (v; x), which divides the

angle between (v; u0) and (v; w0).

We replace each 5-degree vertex v by three vertices

vu, vx and vw and two zero-weight edges (vu; vx) and

(vx; vw) that connect them. The edges coming from u

and u0 are now connected to vu, the edge from x is

connected to vx, and the edges coming from w en w0

are connected to vw (see �gure 3). If v was a terminal,

vu, vx and vw are terminals as well.

Internal vertices of degree k > 3 can be reduced in

a similar way to k � 2 vertices of degree three: sup-

pose the neighbours of vertex v are, in (e.g.) clock-

wise order: w1; : : : ; wk. Then split v into v1; : : : ; vk�2,

and add edges (v1; w1), (v1; w2), (v2; w3), (v3; w4), : : :,

(vk�2; wk�1), (vk�2; wk), and (vi; vi+1), 1 � i � k � 3.

Each edge (vi; wj) is given the weight of edge (v; wj),

and each edge (vi; vi+1) is given weight zero.

From now on, we assume that G is the graph result-

ing from this operation. Note that G is still a Halin

graph.

We choose an arbitrary terminal t. From t there

is exactly one internal edge, (t; t0). Let T be the tree

obtained by taking all internal edges except (t; t0). Note

that every vertex in T , except the leafs and t0 has degree

exactly three. t0 is taken as the root of T . (see �gure 5.)

Each internal vertex v now has a unique well-de�ned left

child l(v), a right child r(v), and a parent p(v), t being

the parent of t0. (I.e., t0 is the only node whose parent

is outside T .)



Figure 5: A polygon with its medial axis, redrawn as

a tree rooted at t0, a non-tree edge (t; t0) and bound-

ary edges connecting the leafs and t. Black squares are

terminal vertices.

For each vertex s 6= t, we de�ne the subtree T (s) of

T as the subtree of T with root s, i.e., it is formed by

s and all descendants of s, and the subgraph G(s) of G

as the subgraph, consisting of T (s), and all boundary

edges (u; v), where u and v are leafs of T (s). Going

down into the subtree, starting from s, we �nd a unique

leftmost leaf l�(s) and a unique rightmost leaf r�(s).

(This can be de�ned inductively as follows: if s is a

leaf, then l�(s) = r�(s) = s; otherwise, l�(s) = l�(l(s))

and r�(s) = r�(r(s)).)

Only three edges not inG(s), are adjacent to a vertex

of G(s). These are:

� the internal edge (s; p(s))

� the boundary edges connecting l�(s) and r�(s) to

their respective neighbours not in G(s)

We call s, l�(s) and r�(s) the top, left and right corners

of G(s).

If we have a steiner tree T in G, then the intersection

of T with G(s) forms a forest. Such a forest should meet

the following conditions:

� every terminal in G(s) belongs to one of the con-

nected components of the forest;

� every component contains at least one of the cor-

ners (otherwise there would be no way to construct

a path in T from that component to terminal t,

which is outside G(s)).

(Components that link two or three corners, but con-

tain no terminals, are of interest, because they may be

useful as a part of a path between terminals in neigh-

bouring subgraphs.)

Call a forest, ful�lling these conditions an S-forest in

G(s). Note that from the conditions above, it follows

that an S-forest has at most three components. We

partition the possible S-forests in G(s) into classes. For

each subgraph G(s), there are twenty di�erent classes of

S-forests, depending on which corner vertices are con-

nected by the components and which components con-

tain a terminal.

The forest classes are the following (see �gure 6 for

an illustration).

� Each component contains exactly one corner. Each

of the components can contain a terminal vertex

or not, which makes 23 = 8 subclasses.

� There is one component with two corners, and one

component with one corner. There are a number of

di�erent cases: there are three choices which two

corners can belong to the same component. Also,

this component either contains a terminal or not.

Then, the other component can contain a terminal

or not. This would give 3� 2� 2 = 12 subclasses.



Figure 6: The 20 classes of forests, with terminals shown

as black dots

However, since all terminals are boundary vertices,

any path from the top corner to a terminal will

cross or meet any path from the left corner to

the right. Therefore there are no two-component

forests with the left and right corners in one com-

ponent, and the top and a terminal in another.

This reduces the number of two-component classes

to ten.

� There is one component containing all three cor-

ners. There are two subclasses: one for compo-

nents with a terminal vertex, and one for compo-

nents without a terminal.

Note that forests in the same class are equivalent

with respect to their ability to connect parts of neigh-

bouring subgraphs. They are also equivalent with re-

spect to the need to connect certain corners to establish

paths to all terminals. To be precise, if S-forests F1 and

F2 belong to the same subclass, then if we have a Steiner

tree whose intersection with G(s) is F1, we get another

Steiner tree by replacing F1 by F2. So whenever a forest

is part of a minimum Steiner tree as required, the forest

must be a least weight forest in its class. Otherwise it

would be possible to replace this part of the solution by

an alternative forest of lesser weight.

For each vertex s, except t, and for each of the twenty

classes, we calculate the minimum total weight of a S-

forest in G(s) in that class, if one exists.

Figure 7: 202�23 possibilities to create a forest for G(s)

For boundary vertices (leafs) there is only one possi-

bility. The one-component forest consisting of that sole

vertex. It necessarily connects all three corners, since

all corners are at the only vertex. The class of the for-

est depends on whether or not that vertex is a terminal.

The other 19 classes are empty.

For internal vertices s, forests can be constructed by

choosing:

� one of the minimal forests of l(s);

� one of the minimal forests of r(s);

� whether or not to include (s; l(s));

� whether or not to include (s; r(s));

� whether or not to include (r�(l(s)); l�(r(s))) (this

is the boundary edge that connects the subgraphs

rooted at the children of s).

For each combination, we can easily determine its

class (it depends directly on the �ve choices made above;

no further information needed), and its size (assuming

that the sizes of the minimal forests for l(s) and r(s)

have already been established). We can also check easily

whether the result ful�ls the conditions of being an S-

forest.

The �ve choices establish a �xed number of combi-

nations for each node. There are 20 possibilities for the

�rst choice, 20 for the second, and 2 for each of the oth-

ers. This makes 202�23 = 3200 in total. However, 2632

combinations are useless because they contain loops,

dead-ends without a terminal, components that do not

contain a corner, or unconnected non-corner terminals.

Tables containing the remaining 568 valid combinations

will be used in the implementation, so that only valid

combinations have to be checked.

For each internal vertex, we examine all valid com-

binations. For each of the 20 result classes, we store the

following information about a minimum forest in that

class for that vertex:



� its total weight;

� the �ve construction choices that lead to this for-

est.

For the computations of the total weights of the

forests, we need to have the weight of the boundary

edge (r�(l(s)); l�(r(s))) quickly. In order to do this,

we also maintain for every s the weight of the bound-

ary edge, connecting r�(s) to its right neighbour vertex

outside G(s). This costs O(1) time per vertex. Now we

can conclude that an internal vertex can be handled in

O(1) time.

Processing the tree T bottom-up, we obtain in linear

time for each of the classes the minimum total weight

of a forest in the class for G(t0).

Each of these 20 minimal forests can be extended to

a Steiner tree according to our speci�cations as follows.

For each connected component in the forest, add the

least weight edge that connects one of the corners to t.

Note that all corners of G(t0) are adjacent to a vertex

not in G(t0). There is only one such vertex: it is the

terminal t.

After all components have been connected to t, the

forests have become trees. We still have only an im-

plicit representation of the trees, but we can construct

them easily in O(n) time by processing the graph top-

down, following the construction choices recorded in the

bottom-up phase of the algorithm.

Out of the 20 Steiner trees that can be constructed,

we take the tree of minimum total weight, and output

that tree.

(The number of forests that really need to be checked

is actually smaller than 20. We know that there is at

least one terminal in G(t0). Furthermore, we can forget

about components containing multiple corners, but no

terminals. 13 forests for G(t0) remain.)

Note that the medial axis has linear complexity and

can be calculated in linear time [6]. The complete min-

imum Steiner tree algorithm as explained above, runs

in O(n) time as well (n being the number of vertices in

the input polygon).

4 Conclusions

In this paper, we applied dynamic programming tech-

niques, established for graphs of bounded treewidth,

to give an eÆcient algorithm for a problem arising in

map generalization. Besides the contribution made here

for this map generalization problem, one can also note

that a nice example is given how the methodology es-

tablished for graphs of bounded treewidth (sometimes

deemed of only theoretical interest) can give rise to

practical algorithms for real-life applications.

An interesting open problem that remains is to �nd

a polynomial time algorithm for the variant Steiner tree

problem that was mentioned in the introduction. Given

a polygon, with some vertices and some edges marked as

`hard', can we �nd eÆciently a Steiner tree of minimum

total length that connects at least all hard vertices and

edges, with no part of the tree outside the polygon?

References

[1] S. Arnborg, J. Lagergren, and D. Seese. Easy prob-

lems for tree-decomposable graphs. J. Algorithms,

12:308{340, 1991.

[2] M. Bader and R. Weibel. Detecting and resolving

size and proximity con
icts in the generalization of

polygonal maps. In Proc. 18th Int. Cartographic

Conference, Stockholm, 1997.

[3] H. L. Bodlaender. A linear time algorithm for �nd-

ing tree-decompositions of small treewidth. SIAM

J. Comput., 25:1305{1317, 1996.

[4] H. L. Bodlaender. Treewidth: Algorithmic tech-

niques and results. In I. Privara and P. Ruz-

icka, editors, Proceedings 22nd International Sym-

posium on Mathematical Foundations of Computer

Science, MFCS'97, Lecture Notes in Computer

Science, volume 1295, pages 19{36, Berlin, 1997.

Springer-Verlag.

[5] H. L. Bodlaender. A partial k-arboretum of graphs

with bounded treewidth. Theor. Comp. Sc., 209:1{

45, 1998.

[6] F. Chin, J. Snoeyink, and C.-A. Wang. Finding

the medial axis of a simple polygon in linear time.

In Proceedings 6th Annual International Sympo-

sium on Algorithms and Computation, ISAAC '95,

pages 382{391, Berlin, 1995. Springer Verlag, Lec-

ture Notes in Computer Science, vol. 1004.

[7] M. R. Garey, R. L. Graham, and D. S. John-

son. The complexity of computing steiner minimal

trees. SIAM J. Appl. Math., 32:835{859, 1977.

[8] R. M. Karp. Reducibility among combinatorial

problems. In R. E. Miller and J. W. Thatcher, edi-

tors, Complexity of Computer Computations, pages

85 { 104. Plenum Press, 1972.

[9] J. Matou�sek and R. Thomas. Algorithms �nding

tree-decompositions of graphs. J. Algorithms, 12:1{

22, 1991.

[10] T. V. Wimer. Linear Algorithms on k-Terminal

Graphs. PhD thesis, Dept. of Computer Science,

Clemson University, 1987.


