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Abstract

Rectangular p-centers of a �nite planar point set P are
the centers of at most p axis-parallel congruent squares
of minimal size covering P . We give a simple linear
time algorithm based on linear selection for the case
p = 3. A linear algorithm for this problem is already
known [7]. But it makes use of an LP -type [6] formula-
tion of the problem with high combinatorial dimension
(roughly 40) which makes it unlikely to perform well
in an actual implementation. The motivation for our
algorithm is such an implementation.

1 Theoretical Results

Let P be a set of points in the plane and denote its
bounding box by BP . The 3-radius of P is the minimal
% 2 R such that P can be covered by three axis-parallel
congruent squares of side length 2%. Excluding trivial
cases we have BP = [xl; xr]� [yb; yt]; xl < xr; yb < yt.
For the sake of simplicity let us furthermore assume
that P is in general position, i.e. no two points have a
common x{ or y-coordinate nor the same jj�jj1-distance
to one of the corners of BP . We will �rst repeat a
number of simple observations as listed in [7].

Observation 1

1. We can restrict ourselves to squares that are con-

tained in BP .

2. Since each of the four line segments bounding BP
contains at least one point from P, we have to

place a square on each of them. Consequently,
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since there are four segments but only three squares,

one of the squares has to be placed at a corner of

BP .

So let us assume w.l.o.g. that one of the squares is
placed at the top-left corner Ctl of BP . If we can com-
pute the minimal covering of this type in linear time,
it can be done similarly for the other three corners and
the overall minimum will just be the minimum of the
four resulting coverings.

Observation 2 If the �rst square sits at Ctl, there are

two possibilities for the other two squares to be placed.

1. Either one sits at the bottom and the other at the

right side of BP

2. or one is placed at the bottom-right corner Cbr

of BP and the other at the top-left corner of the

bounding box of the set of points not covered by

the �rst square.
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Figure 1:

Let us have a look at the latter case �rst, i.e. two
squares qtl and qbr are placed at Ctl and Cbr. Consider
the process of continuously increasing the radius of both
qtl and qbr starting from a value of zero. At any time
some of the points from P are covered by S := fqtl; qbrg
and some are not. The moment we are interested in
during this process is the �rst where those points not
covered by S can be covered by another square of the
same radius.



More formally de�ne for a point p 2 P


(p) := min f jjp� Ctljj1; jjp� Cbrjj1 g

to be the minimal radius needed to cover it by S and
denote by

�(p) := fq 2 P j 
(q) > 
(p)g

the set of points from P which are not covered by S

with radius 
(p).
The 3-radius is now 1

2
min 
(p), where p 2 P such that

�(p) can be covered by a square of side length 
(p), and
it can be computed easily by the following algorithm.

Algorithm 3 (3-Cover-1(P))

1. B  ;, Pt P.

2. while (jPtj > 1)

(a) Compute the (lower) median 
(m) of 
(Pt).

(b) Compute the quadratic bounding box B0 of �(m).

(c) if (sidelength(B0) > 
(m))

Pt Pt \ �(m).

(d) else

Pt Pt n �(m), B  B0.

3. if (
(p); p :2 P > sidelength(B t fpg))

Return the radius % = sidelength(B t fpg)
and the corresponding squares qtl, qbr and B t

fpg.

else

Return the radius % = 
(p) and the corre-

sponding squares qtl, qbr and B.

where A t B denotes the quadratic bounding box of

A [ B.

Lemma 4 Algorithm 3-Cover-1(P) computes rectan-

gular 3-centers of P under the assumptions from Ob-

servation 2.2 in O (jPj) time.

Proof:

For the correctness note that the distinction in step 3
is necessary since we have been a bit too pessimistic in
step 2c. The point m is excluded from Pt although it
might still be the one de�ning the radius in the sense
that it is the last one to be covered by the two corner
squares. In other words the question is whether or not
it is cheaper to cover p with the middle square.
Considering the runtime note the following invariant
that is valid after step 2a in each iteration of the loop.

B is the quadratic bounding box of �(m) \ (P n Pt) :

This implies that the computation of B0 in step 2b can
be done in O (jPtj) time with help of B (the union of
two bounding boxes can be computed in constant time).
It is well known that one can select from an ordered
set in linear time (see e.g. [2]). Hence step 2a can
be done in O (jPtj) time as well and this is the time
bound for one iteration of loop 2. Since the size of Pt is
approximately halved in each iteration, we can bound
the overall runtime T (jPj) for Algorithm 3 by

T (jPj) � c � jPj+ T (

�
jPj

2

�
) = O (jPj) :

�

Next we restrict our attention to the �rst case (see Ob-
servation 2.1) and call the three squares qtl, qb and qr,
to be placed at the top-left corner, bottom side and
right side of BP respectively. Note that it is su�cient
to compute the set of points covered by qtl in an optimal
covering, since we then can run a 2-center algorithm (see
e.g. [3]) on the rest of the points to obtain a solution.
The idea of the following algorithm is to try to cover
P with a certain radius and according to the result
of this try to assign a number of points to one of the
three squares. This indicates that a point is assigned to
square indicates that it has to be covered by this par-
ticular square. Luckily, there is no need to keep track of
all the points assigned to a square, since a set of points
is covered by a square s i� its bounding box is covered
by s. Hence, what has to be stored is just one bound-
ing box for each square. For qtl things are even simpler.
We just have to store a lower bound %min for its radius,
since its position is already �xed.

Algorithm 5 (3-Cover-2(P))

1. %min  0, %max  1, Qb  ;, Qr  ;.

2. while (jPj > 6):

(a) Adjust the size %; %min � % � %max of qtl, such

that it contains exactly k :=
j
jPj

7

k
points.

(b) Place qb and qr accordingly, such that no un-

covered point is to the left resp. above them.

Let G := (qb � qr) n qtl where � denotes the

symmetric di�erence and R := (qb \ qr)n qtl.

(c) if (one of P ; Qb or Qr is not covered):

i. P  P n (qtl [ R).

ii. %min  %.

(d) else if (jGj � k):

i. P  P nG.

ii. Qb  Qb [ (G \ qb), Qr  Qr [ (G \ qr).

iii. %max  %.



(e) else shrink down qtl such that { if qb, qr, G

and R are set accordingly as described in the

previous steps { R as well as G contain at

least k points. Again check for covering and

continue as described above in 2c resp. 2d.

3. Compute the solution with radius within [%min; %max]
and such that qb covers Qb and qr covers Qr di-

rectly.

First of all let us argue that the algorithm is correct in
assigning the points as described.

Theorem 6 Algorithm 3-Cover-2(P) computes rect-

angular 3-centers of P under the assumptions from Ob-

servation 2.2.

Proof: The algorithm terminates, since the loop in step
2 is only entered if jPj � 7, and in each iteration at leastj
jPj

7

k
� 1 points are discarded.

Now consider the situation as depicted in �gure 2, where
the sets G and R are drawn light resp. dark shaded.
If P is not covered, the size of the squares has to be
increased in order to produce a covering. This implies
that the set of points covered by qtl will be a superset of
the points covered presently. Consequently the squares
qb and qr will not move left{ resp. top wards. Since
there is no point in letting them pass the right resp.
bottom border of BP , the points presently in R will
remain covered by both qb and qr.
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G

Figure 2:

On the other hand, if P is covered, the radius possibly
has to be decreased to �nd a covering with smaller side
length. If qtl shrinks down, some points might get ex-
posed that have been covered by qtl before. This causes
qb and qr to move left{ resp. top wards in order to cover
them. But qb and qr will never move to the right resp.
below the current position anymore. Hence, in order to
produce a covering, the set of points covered by qb resp.
qr has to be a superset of the set covered now. �

The crucial point here is to show that each of these steps
in Algorithm 5 can be handled in O (jPj) time. Then
the overall linearity easily follows by observing that we

discard
�
1
7

�
of the points in each iteration. Thus the

runtime T (n) of the algorithm for input size n := jPj
can be expressed as

T (n) � c � n+ T
�
n�

jn
7

k�
= O (n) :

Lemma 7 One step of Algorithm 5 can be handled in

O (n) time where n := jPj.

Proof: If we order P according to jj��Ctljj1, step 2a is
just again an instance of the selection problem and can
thus be computed in linear time. Obviously, the same
time bound su�ces for step 2b and the covering test
as well as for the computation of R and G whereas the
other operations in step 2c and 2d are constant time.
We will show below that step 2e requires linear time as
well. �

The goal in step 6 is to shrink down qtl such that R

as well as G contain at least k =
j
jPj
7

k
points. Let

us have a closer look at the set R. The con�guration
corresponds to a covering of P and neither qtl nor G
contain more than k points (for qtl remember the gen-
eral position assumption). Hence R contains at least�
5�n
7

�
points.

Consider the vertical line l such that
�
n

7

�
points lie in

the intersection of the closed halfplane to the left of l
with R and similarly the lines that cut o�

�
n

7

�
points

from the right, bottom and top of R. Each of these
lines can be computed in O (n) time using a standard
selection algorithm with the appropriate ordering on x{
resp. y-coordinates. Note that the set B that remains
in the middle of R still contains at least

�
n

7

�
points.
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Figure 3:

The idea is to shrink the squares continuously until at
some point at least one of qb and qr does not cover the
region B anymore. Of course, we do not simulate this
continuous process, but replace it by a discrete process
such that at any step there is a new point from P on the
right or bottom side of qtl. Recall that due to the gen-
eral position assumption there will never be two points
from P on these two sides at the same moment. Let us



call these moments, where qtl hits a point from P dur-
ing the shrink-process, events and associate an event
with the point that causes it.
Once we have reached the event described above (the
�rst event where at least one of qb and qr does not cover
B anymore) which we will call E now, we check for cov-
ering. If P is still covered, we can discard the points
from G. These are at least

�
n

7

�
by de�nition of B. On

the other hand, if P is not covered anymore, we consider
the event P immediately before E. That is, where the
point P 2 fq 2 P j jjq � Ctljj1 > jjE � Ctljj1g that has
minimal distance to Ctl determines qtl. If P is still not
covered at P , we can discard the points from R, which
are at least

�
n

7

�
by de�nition of B. Otherwise we pre-

cisely know the set of points to be covered by qtl in an
optimal covering, except for P . The question whether
or not to include P can be solved by calling the 2-center
algorithm on (P n qtl) [ fpg. If the resulting 2-covering
is smaller than jjP � Ctljj1, there is not need to cover
P with qtl and otherwise we have to do so.
The remaining question is how to �nd this moment E.
This amounts to a search on the set P \ qtl ordered by
� := jj � �Ctljj1. While we do not know this ordering
explicitly and cannot a�ord to compute it, we can again
apply the standard technique for linear selection. This
is formulated in the following algorithm which has four
parameters, the set S to be searched (initially P \ qtl),
the set B that should not be enclosed by both qr and
qb, and �nally pos(qb) and pos(qr) denoting the current
position of qb resp. qr during the process.

Algorithm 8 (search E(S,B, pos(qb), pos(qr)))

while (jSj > 1)

1. Compute the (upper) median m of S w.r.t. � using

a standard linear selection algorithm.

2. Compute the positions posm(qb) of qb and pos
m(qr)

of qr at event m.

3. If qb and qr enclose B at m,

recurse with search E(S<m,B, posm(qb), pos
m(qr))

where S<m := fs 2 S j s < mg.

4. Otherwise

recurse with search E(S�m,B, pos(qb), pos(qr))
where S�m := fs 2 S j s � mg.

We will now show the linear runtime bound for this
algorithm thereby completing the proof of Lemma 7.

Lemma 9 Algorithm 8 computes the event E in O (jSj)
time.

Proof: Step 1 together with the computation of S�m
resp. S<m needs O (jSj) time while step 3 can be han-
dled in constant time. For step 2 note that the position

of qr at m is either determined by some point in S�m
or stays the same as before (pos(qr)). Similarly for qb.
Hence both can be determined in O (jSj) time as well.
Since jSj is halved in each step, the running time T (jSj)
can be expressed by the recursion

T (n) � c � jSj+ T

��
jSj

2

��
= O (jSj) :

�

Theorem 10 Rectangular 3-centers of a �nite point set
P can be computed in O (jPj) time using Algorithm 3

and 5.

Proof : Lemma 4, Theorem 6 and Lemma 7 �

2 Implementation

There are a few things to note regarding an actual im-
plementation of our algorithm. First one has to get rid
of the general position assumptions. This is not really
problematic here and can be solved by imposing some
total ordering on the points e.g. with same jj � jj1-
distance to a corner (perturbation). It turns out that
this ordering does not even have to be computed explic-
itly, but this is a minor detail. Second one has to imple-
ment the algorithm for linear selection. Although this
can be done in deterministic linear time as noted, the
constants in this linear term are rather large. Thus from
a practical point of view the standard randomized se-
lection algorithm that needs expected linear time seems
preferable. This is what we used in our implementation.

2.1 Test Data

In order to test the performance of an implementation,
one has to have a set of test data. An important ques-
tion in this context is always, for what kind of input
data one wants to evaluate the algorithm and some-
times also how to generate this data e�ciently.
In our case the input consists of a set of points, so one
of the most simple test data would be a set drawn uni-
formly at random from the unit square. But as the
number of points increases, the 3-coverings of these ran-
dom point sets tend to consist of three almost coinciding
squares with side length close to one. So in some sense
these are very special input sets where we do not ex-
pect to �nd a \nice" way to divide the points into three
clusters.
Therefore we have experimented with a second type of
random point sets. These consist of points drawn uni-
formly from three congruent squares of side length 1

4
.

The squares in turn are placed uniformly at random in-
side the unit square. In these cases we always expect a
\nice" 3-clustering, so this is where doing a 3-covering
really makes sense.



2.2 Heuristics

We have also added two simple heuristics to speed up
the algorithm in many cases.
In step 2a of Algorithm 5 the size of the corner square
is adjusted such that it contains 1

7
of the points. This

leads to a rather slow convergence if the square contains
many points in the optimal covering.

Heuristic 11 (Pre�lter) To speed up these cases, we

�rst try to cover half of the points with the corner square.

If covering is not possible, these points are discarded as

in step 2c and we continue with cuto� 1
2
. But as soon

as we get a covering, we switch to 1
7
for the rest of the

algorithm.

In the description above we restricted ourselves to the
case that one square is placed at the top-left corner.
Hence we have to run Algorithm 3 two{ and Algorithm
5 four times to �nd the overall best covering. As soon
as the �rst of these runs has ended, the resulting radius
serves as an upper bound for the �nal result. In the
following it does not make sense to compute coverings
with a radius exceeding that bound.

Heuristic 12 (Check) Thus we check at the start of

each run whether we can beat the current bound in the

actual setting and proceed only if this is possible.

Obviously neither of these heuristics changes the asymp-
totic behaviour. While in some cases either one of them
might result in a loss of performance, we expect this
slowdown to be small compared to the overall runtime.
Regarding the test data as described in the previous
section, we expect

� pre�ltering to improve the performance signi�cantly
for point sets drawn uniformly from the unit square,

� pre�ltering to have less positive in
uence for point
sets drawn uniformly from three clusters as the
side length of the cluster squares decreases and

� checking to improve the performance in most cases
independently from the input data.

For the check-heuristic note that there is a gain when-
ever we �nd good solutions �rst. Hence, if we randomize
the order in which the di�erent cases are handled, we
can expect a gain. We only loose in the rare case that
we encounter the solutions in worst-to-best order.
Indeed, our expectations can be con�rmed by looking
at the experimental results depicted in Figure 4 and
5. The x-axis describes the input size in units of 1000
points and the y-axis gives the corresponding runtime
in seconds1 for the algorithm with and without the two
heuristics.

1on an SGI Indigo2 with 175MHz MIPS R10000(IP28) processor
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Figure 4: Comparison of heuristics with input points
from the unit square.
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Figure 5: Comparison of heuristics with input points
from three clusters.



It turns out that for the clustered input data the e�ect
of pre�ltering is about half and half positive or negative,
but even for very small cluster sizes (results not shown
here) the slowdown is small compared to the overall
runtime, such that the general use of both heuristics is
justi�ed.

2.3 Comparison to the algorithm in CGAL

The Cgal[1] library contains anO (n � logn) implemen-
tation for computing rectangular 2{4-centers based on
searching in sorted matrices [4],[5]. We have compared
the performance of our new algorithm compared to the
3-center algorithm currently in Cgal expecting to beat
it at least for su�ciently large point sets.
It turned out that the linear algorithm outperforms the
matrix-search even for small point sets from our test
data, at least as soon as we apply both heuristics de-
scribed in the previous section. Without pre�ltering the
matrix-search is faster on point sets drawn uniformly
from the unit square. But as already noted above,
these point sets that cannot be three-clustered nicely
are somewhat special. It seems that the matrix-search
is fairly e�cient if the value one searches for is close to
the maximum value of the set.
The results of the test runs are shown below in Figure 6
and 7. Again the x-axis describes the input size in units
of 1000 points and the y-axis gives the corresponding
runtime in seconds for the di�erent algorithms, i.e. the
p-center algorithm from Cgal and our new 3-center
algorithms with both heuristics as described above.
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Figure 6: Comparison to p-center algorithm with input
points from the unit square.
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Figure 7: Comparison to p-center algorithm with input
points from three clusters.

3 Conclusion

We have described and implemented a new linear al-
gorithm for the rectangular 3-center problem and two
heuristics to improve its performance in practice. A
number of tests on certain randomly generated test sets
have been made to compare the new algorithm to the
existing O (n � logn) implementation in Cgal. In all
tests the linear algorithm outperformed the O (n � log n)
algorithm with factors ranging from 3 to 8. Thus it is
very likely that the new algorithm will appear in the
next release of the Cgal library.
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