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Abstract

We study the problem of automatically identifying

watershed boundaries from digital elevation data.

Nelson et al. have a vector-based algorithm to solve

this problem, but their approach cannot guarantee

that each watershed is a single polygon because of the

modeling assumptions. We propose a vector-based

algorithm that is provably consistent with its mod-

eling assumptions and that guarantees one polygon

per watershed. Our algorithm �nds the watershed

boundaries for local minima in the terrain in �(n3)

worst-case time.

1 Introduction

The watershed of a river, the region of land that is

drained by the river, is a natural management unit for

land preservation or development. Any land-based

activity within a watershed can a�ect the health of

the river that de�nes the watershed. Consequently,

good land management requires accurate watershed

boundaries.

Historically, watershed boundaries for both rural

and urban areas have been manually traced from

topographic maps. More recently, algorithms have

been developed to identify watersheds from di�er-

ent digital terrain representations. The most com-

mon approaches use raster grids of elevations to lo-

cate terrain features such as ridges and valleys [1,

2, 7, 13, 17, 18, 23] or to simulate rainfall on the

terrain [3, 5, 10, 12, 15] Unfortunately, there are dif-

�culties with extracting watershed boundaries from

raster-based algorithms. For example, the boundary

edges for the watersheds are not explicitly de�ned.

The edges and their connections to one another must

be derived from the discrete raster structure.

Vector-based algorithms generate crisper water-

shed boundaries at the expense of using non-local

properties of the data. The most recent vector

algorithms use terrain-adjusted Voronoi edges as wa-

tershed boundaries [20] or groups of area elements of

a triangulated terrain (a TIN [11]) formed by tracing

paths of steepest descent on the terrain [6, 14, 16].

Although these latter algorithm are common, there

exist degenerate terrain conditions where the algo-

rithms can return incorrect results.

In this paper, we present an algorithm for �nd-

ing watersheds that is provably consistent with the

same modeling assumptions used by Nelson et al. and

de Berg et al.:

� a TIN correctly approximates the drainage char-

acteristics of the terrain,

� water follows the path of steepest descent on a

terrain, and

� every terrain point has unique path of steepest

descent.

Unlike Palacios-Velez and Cuevas-Renaud [16] and

Nelson, Jones, and Miller [14], our approach for iden-

tifying watershed boundaries focuses on the edges of

the boundaries rather than on the area between the

boundaries. We identify a set of edges and paths on a

TIN that form a superset of the watershed boundary

edges for the local minima in the terrain and topo-

logically connect these edges and paths into a graph.

We prove that the graph is planar and that each face

of the graph is the watershed of one local minimumon

the terrain. Finally, a simple graph traversal algo-

rithm extracts the watershed boundaries where each

watershed boundary is a single closed and connected

curve.

2 De�nitions

A Triangulated Irregular Network (TIN) is a

piecewise-planar approximation to a terrain where

each facet of the approximation is a triangle. Our

goal is to identify the watershed boundaries for local
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minima in a terrain when a TIN approximates the ter-

rain and when water follows a unique path of steepest

descent on the TIN. For a point p, let trickle-path(p)

be the unique path of steepest descent from point

p on the terrain. Then the watershed of a point q

is fp j q 2 trickle-path(p)g, that is all points whose

paths of steepest descent include q.

The water 
ow assumption implies that water has

neither volume to over
ow negligible local minima in

the terrain nor inertial to restrict the types of paths

that water can follow. However, the simplicity of

the trickle-paths make the paths locally reversible on

faces of the TIN as paths of steepest ascent. Our

algorithm uses paths of steepest ascent, called trace-

ups, to delimit local areas that can 
ow into a point.

For simplicity, we stop trace-ups when they encounter

a ridge or saddle point in the terrain.

The ridges, valleys, and pits of a terrain govern its

drainage characteristics [22]. A TIN edge e is a valley

if the normals to the faces incident on e both point

towards e. A TIN edge e is a ridge if the normals to

its incident faces both point away from e. A point

p is a pit if it is a local minimum in the elevation of

the terrain. We impose a boundary condition where

the TIN is surrounded by a cycle of ridges, as if the

terrain appeared in a crater.

2�

height

�

incoming ridge

outgoing ridge

incoming valley

outgoing valleydrain

Figure 1: A sample height pro�le.

The valleys correspond to rivers in the terrain and

the ridges correspond to watershed boundaries in the

terrain. As noted by Palacios-Velez et al. and Nel-

son et al., not all watershed boundaries are edges of

the TIN. Some watershed boundary edges can cross

faces of the TIN. We use a height pro�le function to

de�ne a more general version of valleys and ridges

around a point and to identify the cross-face edges.

Let the height pro�le function h�;p(�) : [0; 2�)! R

at a point p to be a function of the angle � that returns

the elevation at which the cylinder (x� p:x)2 + (y �

p:y)2 = �2, z 2 R intersects the terrain in at angle

� from p. We only consider the pro�le around one

point whose elevation is assumed to be 0 and consider

properties of h�;p(�) that are independent of � (for

small �), namely its maxima, minima, and sign.

The local maxima and local minima of the height

pro�le for a point p correspond to ridges and valleys

at p. A local maximum identi�es a direction where

the 
ow of water splits around p: a ridge. A local

minimum identi�es a direction where the 
ow of wa-

ter collects at p: a valley. We also distinguish between

extrema whose elevation is higher than p as incoming

features and extrema whose elevation is lower than p

as outgoing (�gures 1).

When the path of steepest ascent out of a point p is

along a TIN face then that path follows a local max-

imum of the height pro�le function for p. Similarly,

when the path of steepest descent out of a point p

is along a TIN face then that path follows a local

minimum of the height pro�le function for p. We

use many trace-up paths from a single point p even

though there is a unique path of steepest ascent; the

multiple paths for p are the paths of steepest ascent

that begin at an � perturbation of p in the direction

of each local maximum of the height pro�le function.

If the height pro�le value is negative at the global

minimum then the direction of the global minimum

is called the drain for the point. We assume that each

point has at most one one drain.

3 Watershed Graph

We expect the watershed for a point p to be an ir-

regular polygon that contains p, whose interior is a

connected set, and whose boundary does not intersect

itself. While natural watersheds meet these idealized

conditions, the conditions are not consequences of our

modeling assumptions.

We characterize terrains by their level of drainage

complexity as nice terrains, normal terrains, or nasty

terrains. Their watershed behaviours parallel the

best, average, and worst-case analyses of algorithms.

In nice terrains, the local maxima and minima for

the height pro�le functions of every TIN point only

occur at ridge and valley edges of the TIN. In normal

terrains, the local maxima and minima for height pro-

�le functions can occur on faces of the TIN, but the

trace-up paths along incoming ridges must end in the

interior of ridges. Most TINs are normal terrains. In

nasty terrains, there are no restrictions on the height

pro�le function. Figure 2 shows three terrains that

di�er only in the elevation of a few TIN vertices but
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nice terrain normal terrain nasty terrain

Figure 2: Possible watersheds on terrains.

have very di�erent watershed characteristics.

We de�ne a watershed graph for each of these ter-

rain types that abstracts the watershed boundaries

on the terrain. The watershed graphs always have a

planar embedding and each face of the graph corre-

sponds to a single watershed in the TIN.

Section 3.1 describes the watershed graph for pits

in terms of nice terrains. Sections 3.2 and 3.3 adapt

the watershed graph for normal and nasty terrains.

3.1 Nice Terrain

In nice terrains, every local maximum and local min-

imum of the height pro�le function occurs along a

ridge edge or a valley edge of the TIN. The set of

ridge edges in the TIN form an embedded planar

graph where each face either contains a pit or drains

through one corner of the face. This graph is the

basis for the watershed graph on nice terrains.

geometry

drain

watershed topology

drain

valley (
ow in the given direction)

ridge

Figure 3: Watershed graph on a nice terrain.

Watersheds of nice terrains have two desirable

characteristics: the interior of the watershed is a con-

nected set and the boundary is not degenerate. These

characteristics are typical of the results for watershed

extraction algorithms in the literature and match our

intuitive notion of a watershed.

We abstract the drainage characteristics as a water-

shed graph. Let S be the set of TIN vertices that are

either endpoints of ridges or points with more than

one outgoing valley. Let R be the set of ridges in the

TIN and let I be copies of the elements of S; if point

p 2 S has m incoming valleys then I has m+1 copies

of p|one for each incoming valley and one for the

drain. The vertices of the watershed graph are R[ I.

The edges of the watershed graph occur between an

element of R and an element of I and represent the

connection in the TIN between a ridge and its end-

points. If r 2 R is a ridge of the TIN with endpoint p

then there is an edge in the watershed graph between

the vertex of r and the vertex that corresponds to

the �rst element of I that is clockwise from ridge r

around p (�gure 3).

For a planar embedding, the order of the edges

around a vertex in the watershed graph is the same

as the geometric order of the ridges that de�ne the

edges around the corresponding point in the TIN.

Lemma 1 The watershed graph abstracts the local

drainage characteristics on nice TINs.

Proof : Let � be a valley of the TIN around a point

p. If � is an incoming valley then cwp( ) = � and

cwp(� ) is the clockwise predecessor of � in Up [

fupog; the face that contains � is not closed at p

and water along � will reach p. If � 6= up0 is an

outgoing valley bounded by ridges � (clockwise of

�) and  (counterclockwise of �) then cwp(� ) =

cwp( ) since � and  are only separated by � and �

is not an incoming valley. The face of the watershed
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graph that contains � is closed at p. If � = up0 and

there is some incoming valley at p then cwp(� ) =

upk, cwp( ) = up0, and the face of the watershed

graph that contains up0 is open to anything that

reaches the point p. Finally, if � = up0 and there

is no incoming valley at p and p is a peak. All cwp

values at p are up0 and all faces in the watershed

graph are closed at p|no water runs around or

over the peak.

3.2 Normal Terrain

geometry

drain

watershed topology

drain

incoming ridge on a face

Figure 4: Watershed graph on a normal terrain.

Normal terrains relax the assumption of nice ter-

rains: the local minima or maxima of the height pro-

�le can occur along faces of the TIN. In its place, we

assume that all trace-up paths from any TIN vertex

end at the interior of ridges.

The ridges on faces play a di�erent role from ridge

edges in determining the water 
ows around a point

p. An incoming ridge on a face serves two roles: as

a ridge that separates the water 
ows to either side

of p and as a valley that collects the water along the

ridge into p. We model the ridge with two parallel

ridges that are separated by a valley in the TIN. An

outgoing ridge on a face at p has no e�ect on the

watershed boundary under the current assumptions.

The valleys on faces at p play the same role as

valley edges of the TIN in dictating the topology of

the watershed graph.

The incoming ridges along faces in the TIN change

the characteristics of the watersheds. The interiors of

the watersheds are still a single connected set, but the

water along incoming ridges produce dangling edges

in the watershed boundary.

There are two changes to the de�nition of the wa-

tershed graph from Section 3.1:

� incoming ridges along faces must have the e�ect

of two parallel ridges, and

� incoming ridges along faces must be treated as

an incoming valley.

Instead of creating a single edge in the watershed

graph to represent an incoming ridge at a point p, we

create two edges e1 and e2 for the ridge, and create

a new graph vertex to represent the incoming valley

between the two edges. Edges e1 and e2 are assigned

di�erent lower endpoints in the watershed group, but

both meet the same ridge at their upper ends so their

upper ends are connected (�gure 4).

Lemma 2 The watershed graph captures the local

drainage characteristics of ridges of normal terrains.

Proof : When an incoming ridge is modeled by

two ridges that bound an incoming valley, the

two ridges correspond to matching steepest ascent

paths tp;2i+1 and tp;2i+2 in the watershed graph.

Since the paths have di�erent lower endpoints, the

incoming valley bounded by the paths 
ows into

the point p.

3.3 Nasty Terrain

Nasty terrains have no assumptions on the height pro-

�le functions or on where trace-up paths stop. In

particular, they allow trace-up paths to end at TIN

vertices; the condition corresponds to a degeneracy

between the TIN and the water 
ow model. Even

though this does not normally occur in terrains, the

water 
ow and terrain model assumptions do not for-

bid this behaviour so we must gauge its e�ects on the

terrain's watersheds.

geometry

drain

watershed topology

drain

Figure 5: Topology of �gure 4 with incoming

paths of steepest ascent.

Trace-up paths only a�ect the drainage character-

istics at incoming ridges along TIN faces. A trace-

up path � that stops at a ridge creates a dangling
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edge in the watershed boundary and is handled in

Section 3.2. A trace-up path � that stops at a

TIN vertex creates a funnel along �. If the water


ow assumption sends the water at p along � then �

drains the land above p along a single line on the

TIN. Path � can connect disjoint areas of the terrain

in one watershed: the watersheds for nasty terrains

can have disconnected interiors as well as degenerate

boundaries.

The funnels, which appear as two parallel edges

in the watershed graph, a�ect the topology of graph

edges. In normal terrains, trace-up paths always

meet at a common ridge so the corresponding graph

edges meet at a common upper endpoint. In nasty

terrains, trace-up paths can stop at a TIN vertex p

that maps to several vertices in the watershed graph.

The topology of the watershed graph in this latter

case depends on the direction from which the paths

approach p, both of which appear as dashed edges in

�gure 5. If the paths approach p from a non-drain di-

rection then their corresponding graph edges meet at

a common upper endpoint. If the paths approach p

from its drain direction then the corresponding graph

edges do not meet at their upper endpoints; the topol-

ogy of the graph allows the drain of p to 
ow between

the two graph edges.

Lemma 3 The watershed graph abstracts the local

drainage patterns on nasty terrains.

Proof : Given a path of steepest ascent up to a

point q in S, we have a pair of graph edges: tp(2i+1)
and tp(2i+2). Only one such pair of graph edges

can approach q from each of its outgoing general-

ized valleys. If the pair approach from an outgoing

generalized valley that is not the drain, then the

cwq function uses the same point of Vq as the end-

point of the edges, so the face is closed at q. If

the pair approach from the drain of q then the cwq

function assigns uq0 as the endpoint of the most-

counterclockwise edge and vqk as the endpoint of

the most-clockwise edge. The two edges close a

face only if k = 0, which implies that there are no

incoming generalized valleys at q and that q is a

peak.

Since the edges of the watershed graph are derived

from ridge edges of the TIN and from paths of steep-

est ascent on the TIN, we automatically have an em-

bedding for the watershed graph.

Lemma 4 The watershed graph for a nasty terrain

is planar.

So far, all the properties of watershed graphs are

local around individual points. However, the water-

shed graph implies more global properties:

� Every face of the watershed graph contains ex-

actly one pit.

� A point p belongs to the same face as the pit to

which it drains.

� If the terrain is enclosed by an outer ridge box

then the watershed graph is connected.

The �rst two properties combine to prove theo-

rem 5.

Theorem 5 The faces of the watershed graph for a

TIN outline the watershed boundaries of the pits of

the TIN.

The connectedness property allows us to use a sim-

ple face-tracing algorithm to extract all the watershed

boundaries from the watershed graph. These bound-

aries will be simple polygons.

3.4 Watersheds of Rivers

The watershed graph of Section 3.3 identi�es the wa-

tershed boundaries for the pits in the terrain. When

we want the watershed boundaries of rivers, we must

augment the watershed graph with extra edges.

Let � be the river whose watershed is desired and

let p be the most-downstream point of �. The water-

shed of � is the watershed of p. The trace-up paths

from p are the boundaries for the land that can drain

through p and the land that drains directly to a valley

point lower than p; the paths belong to the watershed

boundary for p. By adding p as a vertex of the wa-

tershed graph to the set S and by adding edges for

the ridges at p to the watershed graph, we divide a

face of the watershed graph into two parts: one part

for the watershed of p and one part for the rest of the

watershed into which p drains. Consequently, with

minor changes to the watershed graph, we can �nd

the watershed boundaries for rivers in the TIN.

4 Algorithm Complexity

The watershed graph of Section 3 contains the wa-

tershed boundaries for every pit in the terrain. In

1996, de Berg et al. [4] constructed a terrain whose

river system had an 
(n3) complexity. The same con-

struction demonstrates that the watershed graph for
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the terrain can have 
(n3) points along the water-

shed edges. However, the number of graph edges in

the watershed graph can still be linear in the size of

the TIN.

We use a straight-forward algorithm to construct

watershed graphs. The algorithm identi�es the ver-

tices of the watershed graph (TIN ridges and sad-

dles) in linear time, �nds the O(n )trace-up paths

from the saddles and ridge endpoints in O(nk) time

where k is the path complexity, sorts the ridges and

trace-ups around each vertex in O(n logn) time, and

re-constructs the graph topology with a linear scan

of the sorted lists.

Lemma 6 The straight-forward algorithm con-

structs the watershed graph of a TIN in

O(nk + n logn) time where k is the size of the

paths of steepest ascent on the TIN.

Since a path of steepest ascent on a TIN can have

O(n2) points, k is O(n2) and the algorithm's time

complexity �(n3).

5 Sample Watershed

Under the restrictions of the TIN terrain model and

the water 
ow assumption, the sequence of terrain

types in Section 3 describe increasingly-complex yet

consistent drainage systems. Not only are the ter-

rains consistent, �gure 2 realizes each of the terrain

types as TINs.

The terrains of �gure 2 were constructed to ex-

ploit the weakness of the TIN. In a more general set-

ting, degeneracies do not have as big of an impact

on the watersheds. Figure 6 depicts manually-traced

watersheds and rivers in a 35 km by 35 km mountain

area north of Vancouver, Canada. An interesting

feature of the watersheds is that some tributaries of

rivers have their watersheds traced separately. With-

out user input or river network orders [9, 19, 21], an

algorithm cannot be expected to isolate these water-

sheds separately.

The lines of �gure 7 are the watershed boundaries

as detected by our watershed graph. The internal

structure inside each watershed does not appear in

the �gure. The watershed graph has 64 000 edges

with the polyline for each edge having an average of

3 points and the longest edge having 39 points. If

the internal structure of the watershed graph is elim-

inated, leaving only the watershed face boundaries,

then the watershed graph has 18 200 edges with the

polyline for each edge having an average of 2.5 points

and the longest edge having 29 points. The small

size of the graph edges is an encouraging result with

respect to the time complexity of Lemma 6 for con-

structing the watershed graph. Our watershed graph

contains many more faces than there are watersheds

in �gure 6. The extra faces come from pits in the

TIN that are not present in the actual terrain.

The TIN under the watershed graph was created

from a raster of elevations with a 40 metre error tol-

erance and has the river segments embedded in the

TIN to help correct the TIN's drainage character-

istics. The TIN for Vancouver uses 41 840 points

of the original 694 650 raster points and 125 520

TIN edges. The original raster data has a 10 me-

tre accuracy in the xy-plane and a 5 metre accu-

racy in the elevation and was converted into a TIN

by an adaptation of an algorithm by Heckbert and

Garland [8]. This TIN was not preprocessed to ori-

ent 
at triangles and horizontal edges for the algo-

rithm that constructs the watershed graph. Never-

theless, the automatically-detected boundaries follow

the line-work of the manually-traced boundaries in

most cases.

6 Conclusions

We examined the problem of identifying watershed

boundaries from digital elevation data. As with pre-

vious approaches, we represent the terrain with a TIN

terrain model and assume that water always follows

the path of steepest descent on the terrain. We de-

rive from the TIN a planar graph whose faces are the

watersheds of the terrain. Standard face-tracing al-

gorithms follow the faces of the graph to extract the

watershed boundaries. Unlike previous approaches,

our graph guarantees that each watershed is a sin-

gle polygon and that the watersheds are consistent

with the TIN topology and the assumption on the

direction for water 
ow.

In the worst case, the size of our graph and the

time complexity of the algorithm that constructs the

graph are optimal. Our graph has O(n) edges and at

most O(n3) points along the edges, which match the

lower bounds described by de Berg et al. [4] for river

complexity.

Our approach for �nding watershed boundaries has

a main shortcoming: it does not handle 
at areas such

as plateaus and low-slope rivers. This assumption

fails on 
at faces and horizontal edges of the TIN.

Improvements in two aspects of the terrain and

river system can lead to identifying better watershed
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Figure 6: Rivers and digitized watersheds Figure 7: Derived (lines) and reference

watersheds (shaded polygons)

boundaries. First, the terrain can be sculpted to bet-

ter match the river system with the terrain valleys

and to eliminate spurious pits in the terrain. Second,

the hierarchical structure of the river network leads

to a similar hierarchy in the watershed that we might

exploit when tracing the boundaries of large rivers.
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