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Abstract

A total order of the facets of a polytope is a geometric shelling if there exists a com-

binatorially equivalent polytope in which the corresponding order of facets becomes a line

shelling. The subject of this paper is (geometric) shellings of 3-polytopes. Recently, a graph

theoretical characterization of geometric shellings of 3-polytopes were given by Holt & Klee

and Mihalisin & Klee.

� We �rst give a characterization of shellings of 3-polytopes.

Then we show su�cient conditions for a shellings to be geometric:

� the �rst and the last facet being adjacent,

� any facet (except the �rst two) being adjacent to no less than two previous facets or

� the induced orders being geometric shellings for two smaller polytopes made by dividing

the polytope at a triple of facets adjacent to each other but not sharing a vertex.

Simple 3-polytopes allow perturbations of facets, thus may have more chance a shelling is

geometric. As su�cient conditions for this case we show:

� the induced order being a geometric shelling for a smaller polytope made by removing

a triangular or a quadrilateral facet or joining two consecutive facets in a shelling or

� the polytope only having triangular or quadrilateral facets.

A nongeometric shelling of a (simplicial) 3-polytope was �rst shown by Smilansky.

� We show such example for a simple 3-polytope, which is minimal with respect to the

number of facets.

The discussions proceed in the polar setting: as total orders of vertices of the polar polytope.

All of our main results can be stated in graph theoretical terms.

1 Introduction

A total order of the facets of a polytope is a shelling if it satis�es some topological condition

(de�ned below at (�)). Shellings have many applications both in combinatorial and computational

geometry: for example, they are crucial for the upper bound theorem [1] [7], and are used in convex

hull construction [10]. A total order of the facets of a polytope corresponds to a total order of

the vertices of the polar polytope. Such order of the vertices is a polar shelling. A line shelling is

some special shelling, and its polar becomes an ordering of the vertices by a sweep of hyperplanes,

�Extended abstract version to appear in Canadian Conference on Computational Geometry '99. Updates to be

available at http://malts.is.s.u-tokyo.ac.jp/~fumi/publications.html
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which we call a polar line shelling (see [4] [11] [12]). Polar line shellings are relevant to simplex

methods in linear programming.

A total order of the facets of a polytope is a geometric shelling if in some combinatorially

equivalent polytope the corresponding order becomes a line shelling. We call the total order of

the vertices in the polar a polar geometric shelling. If a (polar) shelling is not a (polar) geometric

shelling, it is called a (polar) nongeometric shelling.

In this paper, we discuss combinatorial properties of shellings of 3-polytopes. The face lattice

of a 3-polytope is completely determined by its graph. Most of our discussions proceed in the

polar setting: as total orders of the vertices of (a graph of) a 3-polytope. The main results of this

paper can be described in purely graph theoretical terms. Holt &Klee [6] and Mihalisin & Klee [8]

recently gave a characterization for polar geometric shellings in terms of directed graphs. Their

results are used in some of our proofs.

Special cases of our interests are shellings of simple 3-polytopes (polar shellings of simplicial

3-polytopes). Such polytopes do not change their combinatorial properties under perturbation

of facets (vertices). So, there may be more chance shellings (polar shellings) of such polytopes

become geometric shellings (polar geometric shellings).

We give su�cient conditions or reductions for a total order of the facets (vertices) of a 3-

polytope to be a geometric shelling (polar geometric shelling). Some of the results are for the

special case of simple (simplicial) 3-polytopes.

All graphs considered are simple (i.e. no loops or multiple edges). Connectivity means vertex

connectivity.

The following is basic for graphs of 3-polytopes.

Lemma 1.1 � (Steinitz' theorem) A graph is a graph of a 3-polytope if and only if it is

planar and 3-connected.

� A graph is a graph of a simplicial 3-polytope if and only if it is maximal planar and has no

less than four vertices.

Now to directed graphs. A total order of the vertices of a graph induces a directed graph by

directing
�!
st for an edge fs; tg with s < t. Directed graphs by such directing are acyclic. The

symbol k will be used for the cardinality of the vertices, and the vertices will be labeled 1 < � � � < k

according to the total order.

We de�ne a total order F1; : : : ; Fk of the facets of a 3-polytope to be a shelling if

i[
j=1

Fj
�= B2 (1 � i < k); (�)

where �= B2 means homeomorphic to a 2-ball. A total order of the vertices of a 3-polytope is a

polar shelling if the corresponding order of the facets of the polar polytope is a shelling. The face

lattice of a 3-polytope is determined by its graph. The graph of the polar of a 3-polytope is the

dual of the graph of the original polytope. Since the de�nition of shellings and polar shellings

are topological, (polar) shellings can be de�ned for graphs of 3-polytopes. We have a simple

characterization for polar shellings:

Proposition 1.2 A total order of the vertices of a graph of a 3-polytope is a polar shelling if and

only if the induced directed graph has a unique source and a unique sink. (The source vertex 1,

the sink vertex k.)

Proof. Section 2. 2

Since (polar) geometric shellings of 3-polytopes are also combinatorial properties depending

only on the face lattice and the total order of the facets (or vertices), we can de�ne them for graphs

of 3-polytopes. A total order of the vertices of a graph of a 3-polytope is a polar geometric shelling

if and only if there exists a 3-polytope with the face lattice as the graph and the z-coordinates of

the vertices sorted according to the total order. This observation will be used later.
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A necessary and su�cient condition for a total order of the vertices of a graph of a 3-polytope

to become a polar geometric shelling was given recently by Holt &Klee and Mihalisin & Klee:

Theorem 1.3 ([6] [8]) A total order of the vertices of a graph of a 3-polytope is a polar geometric

shelling if and only if the induced directed graph has a unique source, a unique sink (the source

vertex 1 and the sink vertex k) and three independent paths from 1 to k.

The paths in a directed graph should be monotone.

We de�ne a total order F1; : : : ; Fk of the facets of a 3-polytope to be a strong shelling if it is

a shelling and

Fi \

0
@

i�1[
j=1

Fj

1
A is the union of no less than two edges (3 � i � k):

The corresponding order of the vertices of the polar is a polar strong shelling.

Now, our main results:

Theorem 1.4 The following conditions are su�cient for a polar shelling total order of the vertices

of a graph G of a 3-polytope to be a polar geometric shelling.

(i) Vertices 1 and k are adjacent.

(ii) The total order is a polar strong shelling.

(iii) There exists a nonface 3-cycle in G and the induced total order for both/either side(s)

of the graph according to Theorem 5.1 is a polar geometric shelling.

Furthermore, when G is a graph of a simplicial 3-polytope, we have the following su�cient condi-

tions. (1 < s < k, k > 4 for (iv), (v), (vi).)

(iv) Let G0 be the graph obtained by deleting a degree 3 vertex s. The induced total order

of G0 is a polar geometric shelling.

(v) Suppose s is a degree 4 vertex with adjacent vertices t; u not adjacent to each other,

t < s < u and s; t; u not forming a nonface 3-cycle. Let G0 be the graph obtained by deleting

s and adding the edge ft; ug. The induced total order of G0 is a polar geometric shelling.

(vi) Suppose the only smaller vertex adjacent to vertex s (s > 2) is s� 1 (or the only larger

vertex adjacent to vertex s� 1 is s), and there are no nonface 3-cycles including these two

vertices. Let v; w be the vertices adjacent to both s�1 and s, contract the edge fs�1; sg and

delete parallel edges (say, delete fs; vg; fs; wg, leaving fs � 1; vg; fs � 1; wg). The induced

total order of the graph G0 thus obtained is a polar geometric shelling. The vertex previously

forming the endpoints of fs� 1; sg is labeled s� 1 (or s).

(vii) The degree of G is at most 4.

Nongeometric shellings of 3 or 4-polytopes were given by Smilansky [11] and Gr�unbaum &

Sreedharan [5]. Both of the examples are for simplicial polytopes. We give a nongeometric

shelling of a simple 3-polytope with 8 vertices and 6 facets, which is minimal with respect to the

number of facets.

The results are discussed in detail in the following sections. Section 3 is used in section 4, but

other sections are independent. The sections containing the results above are:

2. the proof of Proposition 1.2

3. (i) [Theorem 3.5]

4. (ii) [Theorem 4.2]

5. (iii) [Theorem 5.1], (iv), (v), (vi), (vii) [Theorem 5.3]

6. an example of a nongeometric shelling [Example 6.1]
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2 Characterization of polar shellings

Proof. (Proposition 1.2)

only if: Suppose the total order was a polar shelling. By the de�nition (�) of shelling, any

vertex i > 1 is adjacent to a smaller vertex. Thus the only source is 1. The reverse order of

a shelling is also a shelling. So, similarly, the only sink is k.

if: Suppose the induced directed graph had a unique source and a unique sink. Suppose

the condition (�) for shelling was satis�ed for 1; : : : ; i � 1, but violated for i (> 1). If

B = Fi \ (
S

i�1
j=1 Fj) is empty or a vertex, i is also a source, contradicting the assumption.

Thus, B should consist of no less than two connected components. Take a polytope with

facets F1; : : : ; Fk realizing the situation. There exists a Jordan arc in
S

i

j=1 Fj having in each

side (interior points of) some facet Fj (j > i). Hence, there should be at least one sink in

each side, contradicting the assumption.

2

The \if" proof is not valid for dimension larger than 3. Indeed, we have a counterexample in

dimension 4. Here the de�nition of shelling is (�) with �= B3, homeomorphic to a 3-ball, instead

of �= B2.

Example 2.1 The 4-polytope with vertices

p1 = (0 0 0 0); p2 = (2 0 0 0); p3 = (0 6 0 0);

p4 = (1 1 2 0); p5 = (1 2 3 0); p6 = (0 0 0 1)

is made by coning p6 to the 3-polytope with vertices p1; : : : ; p5. The total order of the facets

hp1p2p4p6i; hp1p4p5p6i; hp1p3p5p6i; hp2p3p5p6i; hp2p4p5p6i; hp1p2p3p4p5i; hp1p2p3p6i forms a Hamil-

tonian path (indeed, a Hamiltonian cycle), thus the induced directed graph has a unique source

and a unique sink. However, the union of the �rst four facets is not homeomorphic to B3.

We give another characterization for polar shellings of simplicial 3-polytopes:

Proposition 2.2 Let G� be a graph of a simplicial 3-polytope, take its embedding into the plane,

and regard this as a 2-dimensional simplicial complex C�. A total order F �
1 ; : : : ; F

�
k
of the vertices

of G� is a polar shelling if and only if

[

F2
S

i
j=1

star(F�

j
)

int(F ) �= int(B2) (1 � i < k);

where star(F �
j
) is the star of F �

j
, int(F ) and int(B2) the interior of face F and 2-ball B2.

Proof. Let C be the 2-dimensional simplicial complex de�ned by an embedding of G, the dual

graph of G�. The two simplicial complexes C and C� are in dual (or polar) relation. Their stellar

subdivisions sd(C) and sd(C�) are isomorphic. Denote the corresponding total order of the facets
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of C by F1; : : : ; Fk. For i = 1; : : : ; k,

int(

i[
j=1

Fj)

=
[
fint(F ) : F 2 C; star(F ) �

i[
j=1

�Fjg

=
stellar subdivision

[
fint(h�1 � � ��si) : h�1 � � ��si 2 sd(C); �t 2 C; �1 ( � � � ( �s;

star(�s) �

i[
j=1

�Fjg

�=
duality

[
fint(h��

s
� � ���1i) : h�

�
s
� � ���1i 2 sd(C�); ��

t
2 C�; ��

s
( � � � ( ��1 ;

���
s
�

i[
j=1

star(F �
j
)g

�=
(��)

[
fint(h��

s
� � ���1i) : h�

�
s
� � ���1i 2 sd(C�); ��

t
2 C�; ��

s
( � � � ( ��1 ;

��1 2

i[
j=1

star(F �
j
)g

=
stellar subdivision

[
fint(F ) : F 2 C�; F 2

i[
j=1

star(F �
j
)g;

where �F = fG : face of Fg. The homeomorphism (��) can be made easily: the vertices in C� are

denoted by � for F �
1 ; : : : ; F

�
i
and � for the others.

Let i be smaller than k.

if: If
S

i

j=1 Fj
�= B2 then int(

S
i

j=1 Fj) �= int(B2).

only if: If
S

F2
S

i
j=1 star(F

�

j )
int(F ) �= int(B2) then we have int(

S
i

j=1 Fj) �= int(B2). This im-

plies that F1; : : : ; Fi are connected with respect to the relation being adjacent. If
S

i

j=1 Fj 6�=

B2 then we can take a sequence of adjacent edges (i.e. a circuit) in
S

i

j=1
�Fj where points not

in
S

i

j=1 Fj exist in both sides. Then there is a corresponding sequence of adjacent facets inS
i

j=1 star(F
�
j
) where points not in

S
fint(F ) : F 2

S
i

j=1 star(F
�
j
)g exist in both sides. This

contradicts
S
fint(F ) : F 2

S
i

j=1 star(F
�
j
)g �= int(B2).

2

The proposition is not applicable for nonsimplicial cases or cases with dimension larger than three.
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3 Network ows

The characterization by Holt & Klee and Mihalisin & Klee (Theorem 1.3) used \three independent

paths from the smallest vertex 1 to the largest vertex k". The number of independent paths can

be described in terms of network ow:

Lemma 3.1 For a directed graph and its vertices s and t,

(the maximum size of ows from s to t in the network of the di-

rected graph with edge and vertex capacity 1)

= (the maximum cardinality of a set of independent paths from s to

t in the directed graph)

Networks with both edge and vertex capacity 1 are not easy to handle directly. However,

such cases can be reduced easily to the case only with edge capacity 1 condition. Let the original

directed graph be G. Make another directed graph G0 splitting any vertex v (6= s; t) with indegree

and outdegree both larger than 1 into v0 and v00, and taking instead of the edges connected to v,

f
�!
xv0 : �!xv 2 Gg [ f

�!
v00x : �!vx 2 Gg [ f

��!
v0v00g:

Lemma 3.2 For a directed graph G, its vertices s and t, and the directed graph G0 made as

above,

(the maximum size of ows from s to t in the network of G with

edge and vertex capacity 1)

= (the maximum size of ows from s to t in the network of G0 with

edge capacity 1)

The ows in networks with edge capacity 1 have good characterization (see, for example [9]):

Lemma 3.3 (Max ow-min cut theorem) For a network with a source s and a sink t,

(the maximum size of ows from s to t)

= (the minimum size of cuts separating s and t):

Furthermore, when the capacity of the edges are 0=1, a maximum ow with 0=1 entries exists.

The splitting above obviously causes splitting of the underlying undirected graph. For an

undirected graph G, we split a vertex v by replacing it with v0 and v00, connecting vertices adjacent

to v either to v0 or v00 and adding an edge fv0; v00g. The following can be checked easily:

Lemma 3.4 Let v be a degree � 4 vertex in a 3-connected graph. If we split v into v0 and v00 so

that both v0 and v00 have degree 3 at least, the resulting graph is also 3-connected.

Combining these lemmas, we get a rather surprising result:

Theorem 3.5 If a total order of the vertices of a graph G of a 3-polytope is a polar shelling and

the vertices 1 and k are adjacent, it is a polar geometric shelling.

Proof. Since the total order is a polar shelling, vertex 1 is the unique source and k is the unique

sink in the induced directed graph, which we also denote by G.

As above Lemma 3.2, split each vertex s of G other than 1 or k, having indegree and outdegree

both larger than 1. Label the new vertices s0 := s�0:1, s00 := s+0:1. The directing of the splitted

directed graph G0 becomes equal to the one induced by the total order of this new labeling. It can

be checked that G0 is also planar and 3-connected (Lemma 3.4), 1 and k are the unique source

and the unique sink and they are connected by an edge. The existence of independent paths from

1 to k is the same for G and G0.
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If three independent paths from 1 to k did not exist in G, by Lemmas 3.1, 3.2, 3.3, we can

take a partition V;W of the vertices of G0, 1 2 V; k 2 W , and at most two edges directed from a

vertex in V to a vertex in W .

The edge
�!
1k is directed from V to W . By 3-connectivity, there are at least 3 edges going out

from vertex 1. Thus V contains at least two vertices. The same for W . Since G0 is 3-connected,

there are at least three edges between V and W , thus an edge
�!
cd , c 2 W; d 2 V , 1 < c < d < k

should exist. (The labels of the vertices can be fractionals.) Since c is not a source, there should

exist an edge
�!
ab , a 2 V; b 2 W , 1 � a < b � c. Since d is not a sink, there should exist an edge

�!
ef , e 2 V; f 2 W , d � e < f � k. We found three di�erent edges

�!
1k,

�!
ab and

�!
ef from V to W , a

contradiction. 2

Remark 3.6 The theorem is not true in dimension 4. Smilansky's treatment [11] of Gr�unbaum

& Sreedharan's example [5] shows a nongeometric shelling of a simplicial 4-polytope with the �rst

and the last facet adjacent.

4 Polar strong shellings

Lemma 4.1 Let 1; : : : ; k be a total order of the vertices of a graph. Suppose vertices 1; 2 are

adjacent and any vertex s (> 2) is adjacent at least to two among the vertices 1; : : : ; s� 1. Then

for any vertex s (> 2), there exist two independent paths from 1 to s in the induced directed

graph.

Proof. Induction on s. The claim is true for s = 3. Suppose it was true for 3; : : : ; s � 1. Case

analysis by the vertices adjacent to s:

� Vertices 1 and 2 are adjacent to s. Clear.

� Vertex 1 is adjacent, but 2 not. Suppose vertex (2 <) p (< s) was adjacent to s. There

should exist two independent paths from 1 to p. Connecting one of them with edge �!ps makes

a path from 1 to s. The edge
�!
1s makes another path.

� Vertex 2 is adjacent, but 1 not. Suppose vertex (2 <) p (< s) was adjacent to s. There

should exist two independent paths from 1 to p. No matter whether 2 is on these paths or

not, we can take a path from 1 to s with edges
�!
12;

�!
2s and another one with edges from 1 to

p and the edge �!ps.

� Both of the vertices 1; 2 are not adjacent to s. Suppose vertices (2 <)p < q (< s) were

adjacent to s. There should exist two independent paths from 1 to q. If p is on these paths,

we can make two independent paths from 1 to s using edges �!ps and �!qs . Suppose p was not

on these paths. Consider the directed graph with these paths, two independent paths from

1 to p and edges �!ps;�!qs.

Now, split some vertices as before Lemma 3.2. (Vertices, 1; p; q; s are not splitted.) Consider

the network with edge capacity 1. The followings are equivalent: (1) there were two inde-

pendent paths from 1 to s in the graph before splitting, (2) there is a ow of size two from

1 to s and (3) any cut separating 1 and s has size at least two.

Finally, we show (3). Let V;W , 1 2 V , k 2 W be a partition of the vertices corresponding

to a cut. If p; q 62 W , edges �!ps;�!qs contributes two to the size of the cut. If p 2 W , the cut

separates 1 and p. Since there were two independent paths from 1 to p in the original graph,

the cut has size at least two. The case q 2W is similar.

2

Theorem 4.2 If a total order of the vertices of a graph G of a 3-polytope is a polar strong

shelling, it is a polar geometric shelling.
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Proof. Split some of the vertices of the induced directed graph as before Lemma 3.2. (Vertices

1; 2; k are not splitted.) Consider the network with edge capacity 1. By Lemmas 3.1, 3.2, 3.3, the

total order is a polar geometric shelling if and only if any cut separating 1 and k has size at least

three.

Let V;W , 1 2 V , k 2 W be a partition of the vertices corresponding to a cut. If #V � 2, the

cut has size at least three, because vertex 1 has degree � 3 and there is no sink among the vertices

in V . The case #W � 2 can be shown similarly.

Now suppose #V;#W � 3. Analyze the cases by the types of vertices in W . Remind that a

vertex i 2 Z>0 became i� 0:1 and i+ 0:1 when splitted.

� Suppose there was a vertex of type i; i�0:1(6= 2; k); (i 2 Z>0) inW . Let x be the smallest of

such vertices. By Lemma 4.1, in the original directed graph there were two independent paths

from 1 to the vertex which became x. Thus there still are two corresponding independent

paths in the splitted graph. Hence there are at least two edges e; f from V to W . If there

are more, we are done. Remark that all vertices in V are smaller than x. Otherwise, we can

�nd a third edge from V to W , because there are no sinks in V .

Since the graph is 3-connected, there should exist edges other than e; f between V and W .

If some of them are directed from V to W , the cut has size at least three. Suppose not. For

any edge from W to V , the terminating vertex should be smaller than x. Thus, the origin

vertex is also smaller than x. Hence it should be of type j + 0:1 (j 2 Z>0) or 2. In either

case, there is a unique edge having this as a terminating vertex, and it should be an edge

from V to W , thus e or f . Now we have shown that the vertices in W adjacent to vertices

in V are the two terminating vertices of the edges e; f . This contradicts 3-connectivity.

� Suppose all vertices in W were of type i+ 0:1 (i 2 Z>0) or 2; k. A vertex of type i+ 0:1 or

2 is a terminating vertex of a unique edge, and the edge should be coming from V . Vertex

k has degree 3. Thus, whether #W is 3 or more, the size of the cut is at least three.

2

We give another proof for the case of simplicial 3-polytopes. This is more geometric.

Proof. (for graphs of simplicial 3-polytopes)

First, a claim.

Claim: We can make a non-crossing straight line embedding of G into the plane satisfying the

following conditions.

� By viewing the triangular regions as triangles, the graph can be regarded as a triangulation

� of a triangle.

� For any i � 3,
S

�2�:vertices of ��f1;:::;ig j�j, the realization (union of faces as point sets) of

the subcomplex of � induced by vertices 1; : : : ; i, is a convex polygon (� � �).

Proof: Denote the embedding of the vertex i by vi. Choose three points not included in a line as

v1;v2;v3. We will place v4; : : : ;vk in this order. Suppose v1; : : : ;vj�1 could be placed satisfying

the conditions in the claim. The vertices adjacent to j are consecutive points w1; : : : ;wl of the

boundary of the subcomplex of � induced by vertices f1; : : : ; j � 1g. Otherwise, there should be

more than one sinks, and the total order of the vertices is not a polar shelling. The set of vertices

becomes equal to the whole set of vertices in the boundary only when j = k.

The vertex vj can be placed outside the realization of this subcomplex where the visible edges

are fw1;w2g; : : : ; fwl�1;wlg. Such a point can always be chosen by performing a projective

transformation on the subcomplex, if necessary. Since such projective transformations do not

change the oriented matroid inside the subcomplex, (� � �) is preserved for i = 1; : : : ; j � 1. 2

Now we make a simplicial 3-polytope showing the order is a polar geometric shelling. Lift vi
to (vi; hi), where 0 = h1 � h2 � � � � � hk, and take their convex hull. This simplicial 3-polytope

has � as the projection of its lower hull to z = 0 and G as its graph. The z-coordinates of the

vertices are sorted according to the total order. 2

8



Remark 4.3 � A strong shelling of a simplicial 3-polytope with the �rst and last vertex

adjacent is equivalent to \a shelling order of vertices" in [2] [3].

� The only graph of a simple 3-polytope (i.e. planar, 3-connected and degree 3) which has a

polar strong shelling is K4.

Question 4.4 Can Theorem 4.2 be true for dimension � 4 ?

5 Reductions

A nonface 3-cycle in a plane graph divides the graph into two sides, one inside and one outside.

Both sides have the 3-cycle as their faces.

Theorem 5.1 Let fs; t; ug be a nonface 3-cycle in a plane graph G. Fix a total order of the

vertices of G for which the induced directed graph has a unique source and a unique sink (the

source vertex 1 and the sink vertex k). There are three independent paths from 1 to k, if the same

property holds for the graphs and their induced total orders of vertices as in the following.

� when s; t; u 6= 1; k and 1; k are in di�erent sides, both (1) the graph with the side including

1 with an extra vertex \k" and edges
�!
sk;

�!
tk ;

�!
uk and (2) the graph with the side including k

with an extra vertex \1" and edges
�!
1s;

�!
1t ;

�!
1u.

� when s; t; u 6= 1; k and 1; k are in the same side, the graph with the side including 1; k.

� when s = 1 and t; u 6= k (this case is the same as s = k and t; u 6= 1), the graph with the

side including k.

� when s = 1; t = k, either of the two sides.

Proof. Easy. 2

This theorem enables us to divide the graphs of 3-polytopes when showing polar geometric shelling.

For the rest, we restrict our attention to graphs of simplicial 3-polytopes.

Lemma 5.2 Let G be a graph of a simplicial 3-polytope with more than four vertices, fs; tg its

edge not included in a nonface 3-cycle, and v; w the vertices adjacent to both s and t. The graph

G0 obtained by contracting fs; tg and deleting parallel edges (say, delete ft; vg, ft; wg, leaving

fs; vg, fs; wg) is a graph of a simplicial 3-polytope with one less vertices.

Proof. The edge fs; tg not being in a nonface 3-cycle guarantees G0 not having double edges

other than the parallel edges deleted. Thus G0 is simple, maximal planar and has no less than

four vertices. 2

The graph of a simplicial 3-polytope is unique for each case the number of vertices 4 or 5. It

can be checked easily that every polar shelling of the vertices of such graphs is a polar geometric

shelling (cf. Example 6.1).

Theorem 5.3 The following conditions are su�cient for a polar shelling total order of the vertices

of a graph G of a simplicial 3-polytope to be a polar geometric shelling. (1 < s < k, k > 4 for

(iv), (v), (vi).)

(iv) Let G0 be the graph obtained by deleting a degree 3 vertex s. The induced total order

of G0 is a polar geometric shelling.

(v) Suppose s is a degree 4 vertex with adjacent vertices t; u not adjacent to each other,

t < s < u and s; t; u not forming a nonface 3-cycle. Let G0 be the graph obtained by deleting

s and adding edge ft; ug. The induced total order of G0 is a polar geometric shelling.

9



(vi) Suppose the only smaller vertex adjacent to vertex s (s > 2) is s� 1 (or the only larger

vertex adjacent to vertex s� 1 is s), and there are no nonface 3-cycles including these two

vertices. Let v; w be the vertices adjacent to both s�1 and s, contract the edge fs�1; sg and

delete parallel edges (say, delete fs; vg; fs; wg, leaving fs � 1; vg; fs � 1; wg). The induced

total order of the graph G0 thus obtained is a polar geometric shelling. The vertex previously

forming the endpoints of fs� 1; sg is labeled s� 1 (or s).

(vii) The degree of G is at most 4.

Proof.

(iv), (v), (vi): By Lemma 5.2, the graph G0 obtained after the operations in (iv), (v), (vi)

is also a graph of a simplicial 3-polytope. Since we are assuming the induced total order

of G0 to be a polar geometric shelling, we can make a simplicial 3-polytope P 0 with G0 its

graph and the z-coordinates of the vertices sorted according to the total order. We want to

show that a new vertex s (and s� 1) can be added to P 0 making a polytope P whose graph

is G with the z-coordinate of the new vertex in accordance with other vertices.

(iv) Place s just outside the facet of P 0 spanned by the three vertices originally adjacent to

s in G. This will be the only facet visible form s. The polytope with this new vertex

added to P 0 will be P . We can choose the z-coordinate of s between the smallest and

largest of the z-coordinates of the adjacent three points.

(v) Place s just outside the edge ft; ug of P 0. The two facets of P 0 adjacent at ft; ug will

be those visible from s. The polytope with this new vertex added to P 0 will be P . We

can choose the z-coordinate of s between the z-coordinates of t and u.

(vi) Choose supporting hyperplanes for edges fs � 1; vg and fs � 1; wg in P 0. Their inter-

section is a line touching P 0 at vertex s � 1. We choose two new vertices s, s � 1 on

the line near the current s � 1 in the opposite sides. The polytope with new vertices

added to P 0 will be P with G as its graph.

Since we have 1-dimensional freedom in choosing each of the hyperplanes, we have 2-

dimensional freedom for the line, and can assume its z-coordinate not to be constant.

Among the two new vertices, choose the one with larger z-coordinate to be s and the

other s�1. The one adjacent to vertices larger than s in the graphG (thus corresponding

to the original s in G) is the larger one.

The rest of the proof depends on which of the conditions in the �rst statement was

satis�ed. Suppose the only smaller vertex adjacent to vertex s was s� 1. If the vertex

with smaller z-coordinate was adjacent to vertices larger than s in G, it becomes a local

minimum in P when minimizing z, because all of its neighbouring vertices have larger

z-coordinates. This contradicts the existence of the vertex 1 (< s� 1) in P . The case

the only larger vertex adjacent to vertex s� 1 was s can be shown similarly.

(vii): Induction on the number of vertices. Cases with 4 or 5 vertices are true. We prove by

case analysis.

{ When there are nonface 3-cycles, all of them not including 1 or k, having a single vertex

either 1 or k in one side of the 3-cycle. Dividing by such a 3-cycle does not decrease

the number of vertices included, and we cannot apply induction. Since the degree is at

most 4, exactly one such 3-cycle exists. Hence, there exists a vertex other than 1 or k

not in the 3-cycle, and we can apply the reduction (iv) or (v) for this vertex.

{ When there are nonface 3-cycles of other kind. We can divide the graph to the inner and

outer side of the 3-cycle. In these subgraphs, the induced total order is a polar shelling,

the degree of the vertices do not increase, and the vertices are less. By induction, the

total orders of these graphs are polar geometric shellings. By Theorem 5.1, the total

order of the original is also a polar geometric shelling.

{ When there are no nonface 3-cycles. Apply reduction (iv) or (v) to a vertex other than

1 or k.
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2

Remark 5.4 � By Euler's formula, graphs of simplicial 3-polytopes satisfying condition (vii)

have six vertices at most. The unique combinatorial types of graphs of simplicial 3-polytopes

with 4 or 5 vertices have degree at most 4. One type of the graphs of simplicial 3-polytopes

with 6 vertices has degree at most 4. It can be checked directly that every polar shelling of

the vertices of these three types of graphs is a polar geometric shelling.

� The condition being a graph of a simplicial 3-polytope is necessary for (iv), (v), (vi), (vii).

Example 6.2 is a counterexample for (vii) without this condition.

� If we remove vertex s = 1 or k in (iv), (v), (vi), there is no guarantee we can add the vertex

back to P 0 in accordance with the z-coordinate of the other vertices. In fact, examples in

which local changes in P 0 as in the argument above does not work exist.

6 Examples

Example 6.1 The �gure shows an example of a polar nongeometric shelling of a simplicial 3-

polytope. Since the total order is de�ning a Hamiltonian path, it is a shelling. There are 6

vertices and 8 facets.

The graph of a 3-polytope with 4 vertices is K4, thus of a simplicial 3-polytope. Any total

order of its vertices is a polar geometric shelling. There are two combinatorial types of graphs of

3-polytopes with 5 vertices, one of a simplicial 3-polytope and the other not. Any polar shelling

of the vertices of these graphs is a polar geometric shelling. Thus, this example is minimal with

respect to the number of vertices. (There also exist other 3-polytopes with 6 vertices having polar

nongeometric shellings. Though not simplicial, one with 5 facets is the smallest among them with

respect to the number of facets.)

1

2

3

4

5

6

Example 6.2 In the polar setting, Smilansky's example [11] is a polar nongeometric shelling of

a simple 3-polytope. It has 8 vertices and 6 facets.

1 2

34

5

7 8

6

Example 6.3 There is a polar geometric shelling of a graph of a simplicial 3-polytope which

we cannot show by our su�cient conditions. (All vertices have degree � 5, no edges fs � 1; sg

(2 < s < k) between consecutive vertices, no nonface 3-cycle.)
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