
Near-Optimal Partitioning of Rectangles and Prisms

Prosenjit Bose� Jurek Czyzowiczy Evangelos Kranakis� Danny Krizanc�

Dominic Lessard�

1 Introduction

This paper focuses on the following problems:

Problem 1 Given an axis parallel rectangle, how do you cut it in k equal area pieces such that the total

length of the cuts is minimum? What are the properties of an optimal cut?

Problem 2 Given an axis parallel prism, how do you cut it in k equal volume pieces such that the total

surface area of the cuts is minimum? What are the properties of an optimal cut?

The problems depend on how the cuts are made. Although cuts may take a general form, in this paper

we restrict our attention to straight line cuts and planar cuts. We assume that each cut is complete in that

it divides a rectangle or a prism into two pieces (such a cut is often referred to in the literature as a glass

cut or a guillotine cut).

1.1 Previous Work

Several variants of this problem have appeared in the literature. Overmars and Welzl [OW85] studied the

problem of cutting a polygon drawn on a piece of paper in the cheapest possible way. Croft, Falconer

and Guy [CFG91] studied problems related to tiling and dissection of circles and squares. Bose et al.

[BCK+98, BCL98] studied the problem of cutting squares and circles into equal area pieces.

Kong et al. [KMW87] and [KMR88] addressed a variant of Problem 1 in the context of parallel

computing, where they were concerned with partitioning a rectangle equitably among a set of processors.

However, their objective was to minimize the maximum perimeter of the rectangles in their decomposition.

2 Orthogonal Cuts are Sometimes Optimal

Suppose we want to cut a square into k equal-area pieces using glass cuts. In this section, we show that if

k is a perfect square, then the optimal solution consists of orthogonal cuts.

Lemma 1 The sum of the perimeters of a unit area triangle and a unit area circle is more than twice the

perimeter of a unit square.

�Research supported in part by NSERC. School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, Canada, K1S 5B6. E-mail: (jit, kranakis, krizanc, dlessard)@scs.carleton.ca. Web: www.scs.carleton.ca/�dles-
sard/papers/.

yResearch supported in part by NSERC. D�epartement d'Informatique, Universit�e du Qu�ebec �a Hull, Pavillon Lucien-Brault,
101 St-Jean-de-Bosco, case postale 1250, succursale B, Hull, Qu�ebec, J8X 3X7. E-mail: jurek@uqah.uquebec.ca

1

Proof: A square of �xed area a has a perimeter of 4
p
a. The perimeter of a circle containing also area a

is given by 2
p
a�, since its area equals to �r2 and its circumference equals to 2�r. We can assume that T is

an equilateral triangle in order to minimize its perimeter which is 2 � 3 3
4
p
a. Since a = bh

2
and h2 + b2

4
= b2,

where b is the length on one side of T . Therefore the sum of the perimeters of T and C is

2 � 3 3
4

p
a+ 2

p
a� � 8:1039

p
a

which is greater than 8
p
a.

Theorem 1 If k = p2 where p is an integer then the length of the cuts required to cut a square into k

equal-area pieces using straight line glass cuts is minimized when each of the pieces is a square.

Proof: Suppose that the optimal solution does not cut k squares. Let S be the sum of the number of

vertices in each piece of the optimal solution. Since a glass cut can introduce at most 4 vertices, the number

of vertices in the optimal solution is at most 4k.

If the optimal solution only consists of quadrilaterals, then we obtain a contradiction since the square

is the minimum perimeter quadrilateral enclosing a �xed area.

If this is not the case, then a counting argument shows that for every piece in the solution with more

than 4 vertices there must exist at least one triangle. Otherwise, the upper bound on the total number of

vertices is violated. Using the previous lemma, we have to match each piece with at least 5 vertices with

one triangle, this is possible since we have enough triangles. Any pair has total perimeter greater than

twice the perimeter of a square. Therefore we derive another contradiction (because our solution solution

is worse than the one with squares), thereby proving the theorem.

This leads to a similar result for rectangles.

Corollary 1 Let R be a 1� b rectangle, b � 1, if k = r � p and r

p
= b then the optimal solution of cutting

R in k equal area pieces is given by straight line orthogonal cuts, say r � p squares.

3 Near-Optimal Partitioning of Rectangles

If we restrict our attention to orthogonal straight-line cuts, then in [BCK+98], it was shown how to

decompose a unit square (in O(1) time) into k equal area rectangles such that the sum of the lengths of the

cuts is at most 1 + 1

2(
p
k�1) times the optimal solution. In this section, we generalize this decomposition to

rectangles.

Theorem 2 There exists an approximation algorithm solving problem 1 for 1� b rectangles such that the

length of the cuts is no more than 1 + b+1

2
p
kb�b�1 where b � 1. This algorithm runs in O(1) time.
(k) time

is required to report the cuts.

Proof: Without loss of generality, we assume that the longest side of the rectangle R is vertical. First,

the algorithm computes the ratio k

b
. Then it computes the number of columns c. Let r be the ratio and

m = bprc. If r � m(m + 1) then c = m + 1. Otherwise, c = m. Once this step is done, it remains to

compute how many rectangles (p) will appear in each of the c columns. Three solutions are computed in

O(1) time and we keep the best one.

The �rst solution has c � 1 complete vertical cuts in it. It can be described in the following way: If

the number of pieces to cut is equal to jc where j is an integer, then the solution will contain only one

2

type of rectangle, say j rectangles in each column. Otherwise, it will contain k mod c columns with bk
c
c+1

rectangles and c � k mod c columns with bk
c
c rectangles. Figure 1 shows an example with c � 1 complete

vertical cuts. This solution does not always �nd the optimal, thus, we compute two other solutions in which

the �rst cut is horizontal. The construction of such solutions is similar to the current one. The di�erence is

that there is no complete vertical cut (the �rst cut being horizontal). Figure 2 shows two solutions where

the �rst cut is horizontal. The number of pieces below and above that cut is also shown.

Using the fact that a square is the minimum perimeter rectangle enclosing a �xed area, we have that

Copt � 2
p
kb � b � 1. Then each total length of the cuts is divided by Copt. The total lengths of the cuts

and their upper bounds for the three di�erent solutions appear in the following table. The parameters of

the total lengths come from the �gures 1 and 2.

k mod c
columns

rows
floor(k/c) floor(k/c) + 1

rows

c columns

x

Solution 1

Figure 1: Cutting a rectangle with k rectangles, using c columns (c� 1 complete vertical cuts).

The upper bounds are obtained in the following way. Each total length of the solutions is divided into

two cases: 1) c = m = b
q

k

b
c and 2) c = m + 1 = b

q
k

b
c + 1. In the worst case, k mod c = c � 1. For the

�rst solution (the one with complete vertical cuts only) x =
b k
c
+1c(k mod c)

k
� 1.

Solution Total Length Upper Bound

1 (c� 1)b+ x� 1 + bk
c
c 1 + b+1

2
p
kb�b�1

2 (c� 1)b+ y + k2
c
� 1 + k mod c 1 +

b+1+2
p

b
k

2
p
kb�b�1

3 (c� 1)b� z + k2
c
� 1 + (c� k mod c) 1 + b+2

2
p
kb�b�1

Even if the upper bounds proven for solutions 2 and 3 are worse than the �rst solution, there are cases

where one of them is the optimal solution1. Note that if k < b then the total length of the cuts given by

1The complete proof of the upper bounds can be found at www.scs.carleton.ca/�dlessard/papers/.

3

pieces

k2/c rows

c columns

c+1 columns

k mod c
 rowsy

k2 = k - k1

k1 = (k mod c)*(c+1)
pieces

k2 = k - k1
pieces

Solution 2 Solution 3

c-1 columns

c columns

k2/c rows

c - (k mod c)
 rowspieces

k1 = [c-(k mod c)]*(c-1)
z

Figure 2: Computation of 2 solutions with the �rst cut as horizontal.

the algorithm is k � 1. Therefore, there exists an approximation algorithm solving problem 1 for 1 � b

rectangles and the length of the cuts is no more than 1+ b+1

2
p
kb�b�1 times the optimal solution where b � 1.

Conjecture 1 The previous algorithm gives optimal solutions for cutting rectangles into equal area pieces.

Conjecture 2 The previous algorithm when computing only the �rst proposed solution gives optimal results

for rectangles with dimensions 1� b, where b � 1 is an integer and k � 2.

4 Near-Optimal Partitioning of Prisms

In this section we study problem 2. We �rst show lower bounds on the total surface area of the cuts. We

then provide an exponential time algorithm for �nding optimal solutions. Finally, we show a constant time,

near-optimal approximation algorithm. We restrict our attention to orthogonal cuts.

Theorem 3 The total area of the cuts, which is a solution to problem 2, is at least equal to 3
3
p
k� 3 for a

unit cube.

Proof: Let P0 be a cube with volume 1. By cutting P0 into k equal volume pieces, we get P1, P2; :::; Pk .

The total surface area of these rectangular cuts is given by A. We also know that the area of the boundary

of P0 is 6.

4

Since each cut is a rectangle touching two pieces Pi and Pj (Pi and Pj are adjacent and they shared a

boundary) where i 6= j and 0 � i; j � k, we have

A+ 6 =
1

2

kX
j=0

area(Pj)

This implies that

A =
1

2

kX
j=0

area(Pj)� 6 =
1

2

kX
j=1

area(Pj)� 3

� 1

2

kX
j=1

6

k2=3
� 3 =

3k

k2=3
� 3 = 3

3
p
k � 3

Because each smaller cube has volume 1
k
and side of length 1

3
p
k
and each of its face has surface area of

1
k2=3

. We used the fact that a cube is the prism enclosing a �xed volume with the smallest boundary area.

Therefore, this bound may be lower than the optimal solution for a given instance.

This leads to a more general result:

Corollary 2 The total area of the cuts which is a solution to problem 2, is at least equal to 3
3
p
k(abc)2=3 �

(ab+ ac+ bc) where a; b and c are the dimensions of the prism.

We present here an algorithm solving problem 2. It visits all possible solutions and returns the optimal

one.

Optimize3D(P , k)

Inputs: A prism P (a� b� c) and a positive integer k.

Outputs: Set of surface cuts (or k � 1 rectangles). The k pieces having equal volume (volume(P)/k).

BEGIN

S �. L 1.

FOR i = 1 to bk
2
c

fP1; P2g CutPrism(XY; i; k).

S1 Optimize3D(P1, i).

S2 Optimize3D(P2, k � i).

l total area of the cuts from S1 [S2 + area of current cut.

IF l < L THEN

S S1 [S2 [current cut.

L l.

Repeat the loop for Y Z and XZ cuts.

Return S.

END.

The function CutPrism cuts P into two smaller prisms with a surface cut speci�ed by the �rst parameter.

The second and third parameters are the number of pieces to cut in P1 and the total number of pieces

respectively. The cut is done with respect to the proportion of the number of pieces to cut in P1 and P2.

Theorem 4 Let k be the number of pieces to cut. Algorithm Optimize3D runs in O(6k) time.

5

Proof: The number of elementary operations is given by

T (k) = 3

bk=2cX
i=1

(T (i) + T (k � i) + c1)

where c1 is a small constant. From this we deduce the following:

T (k)� T (k � 1) = 3

b k2cX
i=1

(T (i) + T (k � i) + c1)

� 3

b k�1
2 cX

i=1

(T (i) + T (k � 1� i) + c1)

� 3T (bk=2c) + 3T (k � 1) + 3c1

Therefore,

T (k) � 4T (k � 1) + 3T (bk=2c) + 3c1 � 6T (k � 1)

The for loop in the previous algorithm is executed three times. But if the input is a cube then applying

this loop only once is suÆcient. Similarly, if two sides of the prism have same dimensions, that loop can

be executed two times instead of three. This is a slight improvement, since the following result states an

exponential lower bound.

Theorem 5 Let k be the number of pieces to cut. Algorithm Optimize3D runs in
(2k) time.

Proof: Since the best case (number of pieces to cut) is a cube, the total number of operations is given by

T (k) �
bk=2cX
i=1

(T (i) + T (k � i) + c2) where c2 is a small constant.

We deduce the following (whether k is even or odd):

T (k)� T (k � 1) =

b k2cX
i=1

(T (i) + T (k � i) + c2)�
b k�1

2 cX
i=1

(T (i) + T (k � 1� i) + c2)

� T (bk=2c) + T (k � 1) + c2

In fact, the number of pieces to cut is not a cube at each level of recursion. Therefore,

T (k) � 2T (k � 1):

Thus, Optimize3D runs in
(2k) time.

The exponential algorithm does not keep track of all computed solutions. Hence, subproblems may

be computed many times. Suppose now that while the algorithm is running, we put in a table all di�erent

optimal solutions to subproblems. Before computing a solution to an instance of the problem, the algorithm

could look into the table in order to verify if the solution is already known. But, this is a small improvement

since the number of di�erent subproblems is still exponential, as stated in the following theorem.

6

Theorem 6 Let k be the number of pieces. There exist instances where the algorithm Optimize3D runs in

�
2k

1��
�
time for any � > 0.

Proof: We will show that the algorithm needs to compute many di�erent instances, each of which is

described by the number of pieces and the dimensions of the prism. The proof is similar to the one presented

in [BCL98].

Let P be an axis-parallel prism with volume of 1 and dimensions a � b � c. Let m be the number of

prime numbers smaller than or equal to k, determined by the prime numbers theorem (m = db k

log k
c, for

some constant d). Let p1 > p2 > � � � > Pm represent those primes. There are �(2m�1) subsets containing 3q
elements, q is an integer. For each of those we will show how to build a unique problem instance, yielding

to an exponential number of di�erent instances.

Let S be a subset with 3q prime numbers: ps1 > ps2 > � � � psq . We alternatively apply XY , Y Z and

XZ cuts, until we get a prism of volume 1
k
. This prism will be a unique problem instance and the prime

numbers determine where the cut occurs. The �rst cut C is parallel to the XY plane and ps1 equal volume

pieces will be cut above C. Let P1 be the part of P above C with dimensions
�
ps1a

k
� b� c

�
. The next

cut C2 is parallel to the Y Z plane and splits P1 into two parts such that the right prism will be cut in

ps2 pieces. That prism has dimensions
�
ps1a

k
� ps2b

ps1
� c

�
. We continue splitting the prism in this way until

we �nally get a prism with dimensions

�
aps1ps4 :::ps(3i�2)

kps3ps6 :::ps3i
� bps2ps5 :::ps(3i�1)

ps1ps4 :::ps(3i�2)

� cps3ps6 :::ps3i

ps2ps5 :::ps(3i�1)

�
. As you can see,

the volume of the prism is 1=k.

Each instance is unique since the dimensions of the �nal prism is determined by the prime numbers.

The number of subsets is �(2m�1) which implies the result since

lim
k!1

k�

log k
= lim

k!1
ln(10)�k� =1

The exponential time algorithm has been implemented in order to study the results.

Conjecture 3 The optimal solution for problem 2 contains at most 3 types of prisms when the input is a

cube.

An example of an optimal decomposition is given in Figure 3, where a cube has been cut into 7 pieces

of equal volume by algorithm Optimize3D. But this conjecture is false when the input is not a cube.

1 x 2 x

4 x

Figure 3: A cube cut into 7 pieces of equal volume. The solution contains 3 types of prisms.

7

We have found an instance of the problem 2 where the optimal solution contains 4 di�erent smaller

prisms. There is no optimal solution with at most three types of prisms for it. Figure 4 shows that instance:

a 1� 1� 1
2
prism cut into 12 pieces optimally. The total surface area of the cuts is 419

168
.

9/28 x 7/27 x 1/23/8 x 2/9 x 1/2

��
��
��

��
��
��

3/7 x 7/18 x 1/4

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

1/4 x 1/2 x 1/3

Figure 4: An example where the optimal solution contains 4 di�erent prisms: a 1� 1� 1
2
prism cut into 12

equal volume pieces. The total surface area is 419
168
� 2:494.

By observing the optimal solutions produced by the exponential algorithm, we were able to �nd a

simple decomposition of a cube into k equal volume prisms such that the total surface area of the cuts is

near optimal.

Theorem 7 There exists an approximation algorithm solving problem 2 for a cube such that its solution is

no more than 1 + �
�

1
3
p
k

�
times the optimal solution, for k � 8.

Proof: Without loss of generality, assume that the cube has volume 1. The number of pieces k may be

written as a3 + z, where 0 � z � a3 + 3a2 + 2a. Let the ranges [a3; a3 + a2], [a3 + a2; a3 + 2a2 + a], and

[a3+2a2+a; (a+1)3] be R1, R2 and R3 respectively. First, we show how to partition a cube where k 2 R1

is a multiple of a. In that case,

k = a
2(a� y) + ay(a+ 1) where 0 � y � a.

The solution contains 2 types of pieces. There are a2(a� y) pieces below the �rst cut and ay(a+ 1) pieces

above it. An example is shown in �gure 5 where a cube has been cut into 33 pieces. Below the �rst cut

there are 9 pieces and above it 24 pieces, according to our partitioning scheme.

3

3

3

2

First cut

4

a-y

a

a

a+1

y

a

1

Figure 5: Cutting a prism in k pieces, k is a multiple of a and lies in the �rst range. On the right, a cube

has been cut into 33 equal volume pieces. The solution contains 2 types of pieces.

8

The following table shows how to cut a cube into k pieces, where k is a multiple of a if k 2 R1 and

a multiple of a + 1 otherwise. The partitioning produces only 2 types of pieces. From left to right, the

number of pieces increases from a3 to (a+ 1)3, covering R1, R2 and R3.

a� a a a� 1 a� 2 � � � 0 0 0 � � � 0 0 0 � � � 0

a� (a+ 1) 0 1 2 � � � a a� 1 a� 2 � � � 0 a a� 1 � � � 0

(a+ 1)� (a+ 1) 0 0 0 � � � 0 1 2 � � � a 1 2 � � � a+ 1

Let us bound the quality of the solution, versus the theoretical lower bound from theorem 3. Recall

that the cube has volume 1. We will show the upper bound when k 2 R1 but the proof is similar when

this is not the case. Let Copt = 3
3
p
k � 3 from theorem 3. The total surface area of the cuts given by our

partitioning scheme is C = 3a� 2y � 3 +
ay(a+1)

k
. Its upper is the following

C � 3b 3
p
kc � 3 +

�
b 3
p
kc
�2 �
b 3
p
kc+ 1

�
k

� 3
3
p
k � 2 +

1
3
p
k

Therefore
C

Copt

� 3
3
p
k � 1

3
3
p
k � 3

=
3

3
p
k � 3 + 2

3
3
p
k � 3

= 1 +
2

3
3
p
k � 3

:

It still remains to show how to cut a cube in k pieces where k is not a multiple of a or a+1 (depending

in which range k lies). Let k = a2(a� y) + ay(a + 1) + b = a3 + ay + b. We will describe our partitioning

scheme only for the �rst range. The way to partition a cube is similar when k lies inside R2 or R3. We

split the method into 3 cases:

Case 1: k 2 (a3; a3 + a)

We �rst cut the prism such that a3 � a2 pieces lie below the �rst cut. (The �rst cut being parallel to

the XY -plane.) Below the �rst cut there will be only one type of prism while two types will be partitioned

in the remainder of the cube. Let P1 and P2 be the prisms below and above the �rst cut respectively. We

put a � a � (a � 1) pieces in P1 (a � 1 layers of a � a pieces). The last layer of the partitioning contains

x = k�a3+a2 pieces. Since the top face P2 is a square, we use the O(1) time algorithm from [BCK+98] to

cut that square into x pieces, where a2 < x < a2 + a. Therefore, the solution for P2 will have one layer of

the best partitioning of the square. (We say best partitioning because it is still not known if the algorithm

from [BCK+98] gives an optimal solution.) The total surface area of the cuts is

C = 1 + (a� 2) +
2(a3 � a2)(a� 1)

k
+ L

1� a3 � a2

k

!

where L is the total length of the cuts of the partitioning of a square into x equal area pieces of the

algorithm2 from [BCK+98]. Their algorithm won't have more than a2 + a� 1 pieces to cut. Hence

L � 2a� 2 +
(a� 1)(a + 1)

a2 + a� 1

Then the upper bound of C is

C � a� 1 + 2
a4

k
� 4

a3

k
+ 2

a2

k
+

�
2a� 2 +

(a� 1)(a+ 1)

a2 + a� 1

�
1� a3

k
+

a2

k

!

� 3a� 3 +
a2 � 1

a2 + a� 1
� 3

3
p
k � 2

2See case 1 of theorem 3.2 on page 3 of [BCK+98].

9

Therefore
C

Copt

� 1 +
1

3
3
p
k � 3

:

Case 2: k 2 (a3 + a2 � a; a3 + a2)

The �rst cut partition the prism in such a way that a3 pieces lie in P1 (the prism below that cut). And

P2 (prism above the �rst cut) will be cut into k � a3 pieces. As shown in �gure 6, P1 has only one type of

pieces, i.e. it is splitted into a layers of a � a pieces. It remains only one layer of k � a3 pieces to cut in P2

using the algorithm from [BCK+98] as explained in case 1. The total surface area of the cuts is given by

C = 1 + (a� 1)� 1 + 2

a3

k

!
(a� 1) + L

1� a3

k

!
:

The upper bound for L is the following3

2(a� 1)� 1 +
a(r � a+ 1)

a2 � 1

Thus,

C � a+ 2
a3

k
(a� 1) +

�
2a� 3 +

a(r � a+ 1)

a2 � 1

�
1� a3

k

!

� 3a� 3 +
ar

a2 � 1
� a4r

k(a2 � 1)
+

a5r

k(a2 � 1)
� a4

k(a2 � 1)

� 3
3
p
k � 3 +

2k2=3

a2 � 1

Then for k � 8 we have
C

Copt

� 1 +
2

3
3
p
k � 3

:

3

2 1

3

3

3

a

a

a
1

3

First cut

2

1

Second cut

2

2

Figure 6: Cutting a prism in k pieces, k 2 R1 (case 2) and not a multiple of a. The square on the right has

been cut into 8 equal area pieces.

3See case 2 of theorem 2.3 on page 4 from [BCK+98].

10

Case 3: k 2 (a3 + a; a3 + a2 � a)

Let P1 and P2 be the prisms below and above the �rst cut. P1 is cut into a � 1 layers of a � a pieces.

Let x = k�a2(a� 1). P2 is cut into one layer of x pieces if x is odd and in 2 layers of x=2 pieces otherwise.

Again, we use the O(1) time algorithm from Bose et al. for the partitioning of the top face of P2 into x

equal area pieces. It remains to analyze the quality of the solution given by this strategy. We will only

consider the case where k is odd. The proof is similar when k is even. The total area of the cuts is given by

C = 1 + (a� 2) + 2

a2(a� 1)

k

!
(a� 1) + L

1� a2(a� 1)

k

!
:

The upper bound of L is the following (observe that the number of pieces being cut is smaller than or equal

to 2a2)

L � 2(a+ 1)� 1 +
(r � a� 1)(a + 2)

2a2

We assumed the second case of the theorem 3.2 from [BCK+98]. But the proof is similar for the �rst case.

Therefore

C � a� 1 + 2

a3

k
� a2

k

!
(a� 1) +

�
2a+ 1 +

(r � a� 1)(a+ 2)

2a2

�
1� a3

k
+

a2

k

!

� 3a� 7a3

2k
+

7a2

2k
+

2

a
+

1

a2
� 3

k
+

a

k

� 3
3
p
k +

7

2
+

2

b 3
p
kc

+
1

b 3
p
kc2

+
1

k2=3
� 3

k

Since r � 2(a+ 1), a = b 3
p
kc and k � 8.

Therefore
C

Copt

� 1 +
5

3
3
p
k � 3

:

Which completes the proof.

References

[BCL98] Bose, P.K., Czyzowicz, J., and Lessard, D. (1998), Cutting Rectangles into Equal Area Pieces,

Proceedings of the Tenth Canadian Conference on Computational Geometry, pp. 94{95.

[BCK+98] Bose, P.K., Czyzowicz, J., Kranakis, E., Krizanc, D., and Maheshwari, A. (1998), Cutting

Circles and Squares in Equal Area Pieces, FUN'98.

[CFG91] Croft, H.T., Falconer, K.J., and Guy, R.K. (1991), Unsolved Problems in Geometry, Springer-

Verlag.

[KMR88] Kong, T.Y., Mount, D.M., and Roscoe, A.W. (1988), The Decomposition of a Rectangle Into

Rectangles of Minimal Perimeter, SIAM Journal on Computing, Vol. 17, n. 6, pp. 1215{1231.

[KMW87] Kong, T.Y., Mount, D.M., and Werman, M. (1987), The Decomposition of a Square Into Rectangles

of Minimal Perimeter, Discrete Applied Mathematics, Vol. 16, pp. 239{243.

[OW85] Overmars, M.H. and Welzl, E. (1985), The Complexity of Cutting Paper, Proceedings of the 1st

ACM Symposium on Computational Geometry, Baltimore, Maryland, USA, pp. 316{321.

11

