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1. Introduction

Illumination engineers and lighting specifiers often need to compare the photometric
specifications of similar light sources. Factors such as luminaire efficiency and color temperature
are easy to compare – they are scalar numbers. Photometric distributions, however, are more
problematic. We must compare two-dimensional plots of intensity values in one or more planes.
Worse, the comparison is inexact; we are usually interested more in the general shape of a
distribution than in its specific values.

The criteria for comparison can vary between disciplines. The photometric distribution
requirements for architectural luminaires, for example, differ greatly from those for automotive
headlights. The means of measuring and reporting the photometric distributions may also vary.
Still, the underlying photometric principles (and hence the problem of comparison) are essentially
the same.

What we need is a technique that automatically compares “similar” photometric distributions
in two and possibly three dimensions. Given a particular photometric distribution as an example
(a template), we need to compare and quantitatively rank a set of similar distributions. For some
applications, we may also need to develop heuristics to guide the comparison process.

This problem is an example of pattern classification. Similar problems occur in fields as
diverse as cartography, satellite surveillance, biomedicine, forensics, industrial machine vision,
image database retrieval, and optical character recognition. As you might expect, many
techniques have been proposed to solve these problems, with thousands of papers and dozens of
books having been published on the topic. Our first challenge is therefore to identify a promising
technique within this body of literature.

2. Shape Analysis

Our particular problem is one of shape analysis, where “shape” is usually defined as the
outline or silhouette of an object. In essence, shape analysis compares digitized images of three-
dimensional objects based on their silhouettes (or more generally, boundary representations)
only. Image information such as gray-scale shading and texture is simply ignored.

As noted by Loncaric (1998), shape analysis techniques are typically applied to the
identification of two- and three-dimensional objects from two-dimensional images. These objects
include organs and cells in biomedicine, manufactured parts in industrial machine vision, military
aircraft in satellite surveillance, and characters in printed and handwritten text. Their application
to photometric distributions is, well, somewhat unusual.

The approach becomes clear when we consider that each photometric distribution defines a
unique three-dimensional photometric solid (Yamauti 1932) whose boundary is represented by
the luminous intensity values in a spherical coordinate system (Figure 2). A plot of these values
for a given vertical plane (Figure 1) defines the object’s intersection with the plane. We can think
of this intersection as a silhouette.

3. A Taxonomy of Techniques

Many shape analysis techniques have been proposed over the past three decades – Loncaric
(1998) identifies over thirty of them in his survey, and he cautions readers that the list is by no
means exhaustive.

This paper will consider only one of these techniques in detail. However, there are many
other possible approaches to the problem of photometric distribution comparison. Given that the
topic of pattern classification is foreign to illumination engineering, it is therefore useful to
provide a taxonomy of existing techniques and references to a few examples in the literature.

Shape analysis techniques can be grouped into several broad classes:
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• Geometric
• Transform
• Moments
• Syntactic (relational)
• Statistical

Geometric techniques model shapes as n-sided polygons. Their common goal is to extract a
vector of real or complex numbers (a feature set) from the list of vertices that represents the
important features of the shapes. (What is considered “important” depends of course on the
problem domain.) Examples include Arkin et al. (1986), Chang et al. (1991), Goshtasby (1985),
Huttenlocher et al. (1993), Lin et al. (1992), Parui and Majumder (1983), and Smith and Jain
(1982).

Transform techniques model the outline as a one-dimensional function and use a Fourier or
similar transform to represent it as a linear combination of orthogonal basis functions. These
techniques produce arrays of real or complex coefficients that correspond to the feature sets of
geometric algorithms. Representative examples include Chuang and Kuo (1996), Jacobs et al.
(1995), Mallet et al. (1997), and Persoon and Fu (1977).

Moment-based techniques calculate the moments of the shapes. A k-dimensional nearest
neighbor analysis is then usually performed to determine which of several template shapes the
unknown shape most closely resembles. Representative examples include Belkasim et al. (1991)
and Teague (1980).

Syntactic and relational techniques typically extract and then combine “skeletons” and other
morphological features of shapes into relational models that can be analyzed as instances of
formal grammars. (As you might expect, these topics are far removed from the needs of
photometric distribution comparisons.) Some examples include Blum (1977), Cortelazzo et al.
(1994), Pavlidis (1979), and Sze and Yang (1981).

Statistical techniques model shapes as one-dimensional signals and attempt to estimate their
parameters using autoregressive modeling and other statistical techniques. Examples include Das
et al. (1990), Dubois and Glanz (1986), Eom (1998), He and Kundu (1991), and Kashyap and
Chellappa (1981).

There are other shape analysis techniques (e.g., Gunsel and Telkap 1998, and Neil and Curtis
1997) that fall outside of these classes, and some that combine features of two or more classes
(e.g., Cohen et al. 1995 and Wang et al. 1994).

4. Comparison Metrics

Many shape analysis techniques can potentially be applied to photometric distribution
comparisons, with arguments made for and against each technique. However, if we are to
compare and quantitatively rank a set of similar distributions, we need a single scalar number – a
metric – for comparison purposes.

Any metric ( )BAd ,  that measures the degree of dissimilarity between two arbitrary shapes A
and B must have the following mathematical properties:

( ) 0, ≥BAd  for all A and B

( ) 0, =BAd  if and only if BA =  (identity)

( ) ( )ABdBAd ,, =  for all A and B (symmetry)

( ) ( ) ( )CAdCBdBAd ,,, ≥+  for all A, B, and C (triangle inequality)

These properties mirror our intuition about shape similarity. Identity means that we expect a
shape to resemble itself and no other shape. Symmetry means that the order of comparison should
not matter. The triangle inequality implies that if A is very similar to B and B is very similar to C,
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then A and C are likewise similar. (This is also referred to as stability in the sense that a small
change to a shape should engender a similarly small change in the value of the metric.)

While there have been many shape analysis techniques proposed in the literature, very few
consider comparison metrics. One likely reason for this is that shapes can be characterized much
more easily using multidimensional feature sets than they can be using a single number. This is
useful for shape classification (the primary goal of shape analysis) using multidimensional k-
nearest neighbor analysis, but not for ranking purposes.

Of the few metrics that have been proposed, one of the most popular has been the Hausdorff
distance metric (e.g., Huttenlocher et al. 1993). While it may not be the best metric for comparing
arbitrary polygonal curves (Godau 1991 and Alt and Godau 1992), it is well suited for simple
polygonal shapes.

5. The Hausdorff Distance Metric

Following Huttenlocher et al. (1993), we can model two photometric distributions as finite
point sets { }paaA ,,1 �=  and { }qbbB ,,1 �= . The Hausdorff distance is then defined as:

( ) ( ) ( )( )ABhBAhBAH ,,,max, = (1)

where:

( ) baBAh
BbAa

−=
∈∈

minmax, (2)

is called the directed Hausdorff distance from A to B, and ⋅  is some norm1 (typically the 2L , or

Euclidean, norm) on the points of A and B.
The function ( )BAh ,  identifies the point Aa∈  that is farthest (in the sense of the chosen

norm) from any point Bb∈ , and measures the distance between them. Thus if ( ) dBAh =, , then
each point of A must be within distance d of some point of B. Furthermore, there is some point of
A that is exactly distance d from the nearest point of B. (This is the most mismatched point.)

The Hausdorff distance ( )BAH ,  is the maximum of ( )BAh ,  and ( )ABh , , and so it measures
the degree of mismatch between the two sets of points. (The directed Hausdorff distance is
asymmetric in that in general, ( ) ( )ABhBAh ,, ≠ .) If the Hausdorff distance is some value d’, then
every point of A must be within distance d’ of some point of B, and vice versa.

The Hausdorff distance is very sensitive to outlying points of A or B. If there is even a single
point of A that is at some large distance d from the nearest point of B, then ( ) dBAH =, . Thus,
even if the shapes represented by the two remaining data sets are almost identical, the Hausdorff
distance will not reflect this fact.

We can avoid this problem by using the partial Hausdorff distance (Huttenlocher and
Rucklidge 1992):

( ) bakthBAh
BbAa

k −=
∈∈

min, (3)

                                                          
1 A Hölder norm pL is a generalization of the Euclidean distance between two points in nℜ , and is defined
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where kth denotes the k-th ranked value. This measure does not obey the metric properties we
require. However, it does partition A into two subsets: those points which are close to the points
of B (that is, within distance ( )BAhk , , and those which are the outliers. Both subsets obey the
metric properties.

This can be very useful. By choosing some value k, we can obtain a measure of the degree of
dissimilarity between the two subsets { }kpk aaA −= ,,1 �  and { }kqk bbB −= ,,1 � , and also identify

the outliers and their degree of dissimilarity.
A further advantage of the Hausdorff distance metric is its extreme simplicity. The time

complexity2 for a trivial implementation is ( )pqO , and Alt et al. (1991) have shown that this can

be improved to ( ) ( )( )qpqpO ++ 2log . However, given the relatively small data sets associated
with most photometric distributions (on the order of 200 to 400 points), it is likely that the
processor time will be dominated by input and parsing of the ASCII data files. Thus, the trivial
(i.e., easily programmed) implementation should be sufficient.

6. Geometric Transformations

Shape analysis techniques should be invariant with respect to translation, rotation, and scaling
of the object in an image. That is, shape analysis techniques should measure shape alone; they
should not be affected by any transformation of the image that preserves the geometric properties
of the object.

Translation invariance: moving one object from one location in the image to another location
should not affect the analysis outcome once the two objects have been aligned (where “aligned”
means that the Hausdorff distance metric ( )BAH ,  is minimal). In our case, there is no translation
– the photometric solid is anchored at the origin.

Rotation invariance: rotating the object about some point in the image plane should not affect
the analysis outcome after alignment. This is clearly desirable – we may for example choose to
compare the beam patterns of two theatre spotlights by rotating one of their photometric
distributions ten degrees about a horizontal axis.

Scaling invariance: changing the size of an object should not affect the analysis outcome after
alignment. This is logical in that the geometric shape of the photometric distribution does not
change with scaling. (As an aside, the European CIE 102 (CIE 1993) and EULUMDAT
photometric data file formats explicitly scale photometric distributions by expressing luminous
intensity values in units of candela per 1,000 lamp lumens. This contrasts with the North
American LM-63 format (IESNA 1995), which expresses intensity in units of the rated test lamp
lumens.)

As noted by Rucklidge (1994), the Hausdorff distance metric is invariant under translation,
rotation, and scaling after alignment

7. The Photometric Solid

Most shape analysis techniques are designed for analyzing two-dimensional images, and so
we have so far considered the comparison of photometric distributions based on single vertical
planes. However, it is evident that the photometric distribution is a continuous function in three
dimensions, as shown by the photometric solid (Figure 2). It therefore makes sense to compare
photometric distributions based on these solids.

                                                          
2 The time complexity ( )( )nfO  of an algorithm means that the time needed to perform its calculations is

proportional to the value of the function ( )nf , where n is the size of the data set. Thus, the Hausdorff

distance metric calculation with a time complexity of ( )pqO  for point sets { }paaA ,,1 �=  and

{ }qbbB ,,1 �=  has an execution time proportional to pq.
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From Equations 1 and 2, it is evident that the Hausdorff distance metric is applicable in
n-dimensional space. We can therefore apply it to the complete set of luminous intensity values
(translated from spherical to Cartesian coordinates) for each photometric distribution.

There is some danger here. Our comparison should produce a distribution ranking that
appears intuitively correct to someone viewing the photometric distributions as two-dimensional
plots (e.g., Figure 1). It is possible that two distributions with similar shapes in the zero-degree
vertical plane will have an unexpectedly large Hausdorff distance because the distributions in the
other planes differ significantly. With this in mind, it will be prudent to provide the user with a
choice of two rankings: the photometric solid and a selected vertical plane.

We must also recognize that two distributions with identical shapes but with different sizes
will not be recognized as being similar by the Hausdorff distance metric. Whether this is
important will depend on the application. If it is, then the photometric distributions should be
“normalized” by dividing each intensity value by the calculated total emitted luminous flux of the
light source (IESNA 1982).

Finally, we should remember that photometric distributions for most architectural luminaires
are sparsely sampled about the vertical axis. (Typical values are 22.5-degree increments in North
America and 15.0-degree increments in Europe.) Luminaires that exhibit strong asymmetries
about the vertical axis may have measured photometric distributions whose Hausdorff distance is
not representative of the dissimilarity between their true photometric solids.

8. Implementation Issues

If we consider photometric distributions based on physical measurements only, we will likely
find that the distribution outlines are relatively smooth in each vertical plane. However, the same
may not be true of synthesized photometric distributions produced by some luminaire design
programs.

The problem is that these programs rely on stochastic ray casting to predict the luminous
intensity distributions of architectural luminaires and other light sources. This is a compute-
intensive process, and users are often tempted to terminate the process before a sufficient number
of rays have been cast. The resultant distributions then exhibit significant stochastic sampling
errors, particularly towards zenith and nadir where the density of randomly cast rays decreases.
(The solid angle density remains constant, but the density per constant angular increment in each
vertical plane decreases towards the poles.)

Given an undersampled synthetic distribution as an example, it is less likely that an
appropriate ranking of physical photometric distributions will be achieved. To alleviate this
problem, the user should be given the opportunity to interactively smooth the synthetic
distribution data.

Press et al. (1992) suggest filtering data in the frequency domain after using a fast Fourier
transform (FFT). This is appropriate for smoothing photometric distribution data, as it can be
represented by a continuous periodic function ( )φθ ,,rf  in spherical coordinates. It is only
necessary to interpolate the data across 2m × 2n points before performing a two-dimensional FFT,
and interpolate it again after performing the inverse FFT to restore the original number of data
points.

Smoothing in the frequency domain requires multiplying the magnitude of each frequency
coefficient by a scaling factor. To simplify the user interface, a smoothing parameter s could be
applied according to:

( )




>
≤

=
s

s
L

ω
ω

ω
,0

,1
(4)

where ( )ωL  represents the transfer function of an ideal low-pass filter.
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Finally, the user may wish to selectively emphasize certain angular regions of a photometric
distribution for comparison purposes. For example, it may be important to determine whether the
angular extent of a theatrical spotlight beam exceeds a specific range. If both data sets have the
same number of points (or if one is interpolated to achieve this), a simple but effective approach
is to scale corresponding values in both sets according to:

( )

( ) 




 +
−−=






 +
−−=

2
1

2
1

,,
,

'
,

,,
,

'
,

φθφθ
φθφθ

φθφθ
φθφθ

ba
mmbb

ba
mmaa

(5)

where 0≥m  is the scaling factor.
The smoothing and scaling parameters are necessarily heuristics that must be individually

determined for each application. Fortunately, their operation is intuitive and the resultant
photometric distributions can be viewed graphically in real time.

9. Experimental Results

A computer program was written to examine the performance of the Hausdorff distance
metric. The criteria were necessarily subjective – the metric should rank distributions in a manner
similar to that of an experienced illumination engineer. Still, there should be general agreement
on the ranking, especially when a large number of comparisons are performed.

The program required approximately 0.5 seconds to calculate the metric for each IESNA
LM-63 or EULUMDAT data file on a Pentium 450 MHz desktop computer. This included the
time required to read and parse each file. Thus, the metric is computationally efficient and
suitable for interactive use.

Figure 3 illustrates the results of one experiment wherein the template distribution shown in
Figure 1 (an indirect linear fluorescent luminaire) was compared against sixty-four different
distributions from the luminaire product line. These included direct, indirect, direct-indirect and
asymmetric distributions. The distributions were not normalized prior to comparison.
Subjectively, the comparison distributions appear to be similar to the template, and the ranking is
similar to what lighting designers would likely choose.

Figure 4 illustrates the results of another experiment with normalized distributions, and with a
direct-indirect linear fluorescent luminaire providing the template distribution. The ranking by
shape is reasonably intuitive, but the range of emitted flux values is beyond that which most
lighting designers would consider as representing similar luminaires. (In practice, the program
allows the user to specify a range of luminous flux values to consider when performing
comparisons.)

Figures 3 and 4 further illustrate that the Hausdorff distance metric values are dependent on
the distribution intensities. If the distributions are scaled by some factor, then their calculated
HDM values will be scaled by the same factor. This underscores an important point: no particular
significance should be assigned to any given metric value. The Hausdorff distance metric is
useful only for ranking purposes.

While our assessment of whether the rankings shown in Figures 3 and 4 are appropriate is
necessarily subjective, it is evident that the seven distributions are similar to the template in both
cases. While different rankings can be obtained by fine tuning the comparison criteria, the
approach clearly works.

10. Conclusions

Of the many pattern classification algorithms that have been proposed in the literature, the
Hausdorff distance metric is one of the few that are suited for comparing photometric
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distributions. It is easy to understand, computationally efficient, and adaptable to the varying
requirements of illumination engineering and lighting design.

At the same time, the Hausdorff distance metric does not provide a computer program with
the intelligence of an experienced illumination engineer or lighting specifier. There are
undoubtedly pathological cases where it will fail to provide reasonable rankings. Rather, it
provides a useful computer tool whose output may require some interpretation and judgment.

Illumination engineers and lighting specifiers are often faced with the task of searching
dozens of manufacturers’ catalogs for light sources with similar photometric distributions. If the
manufacturers’ photometric data files are available, the Hausdorff distance metric can turn a
tedious and time-consuming manual task into a simple computer chore.
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CATALOG NO.: 8216T01PN

Lamp Type: FO32T8 (EO) Description:

No. of Lamps: 1

Rated Lamp Lumens: 2900

Ballast Input Watts: 37.9 Optical Efficiency: 84.8%

CIE-IES Classification: #REF! Lab Report No.: 2100546;

CANDELA DISTRIBUTION Flux POLAR CANDELA PLOT
0 22.5 45 67.5 90 Lumens

0 296 296 296 296 296

5 296 295 297 297 300 29

15 278 286 307 332 358 89

25 240 266 345 401 425 156

35 173 237 325 369 365 183

45 65 117 165 172 144 108

55 9 15 21 25 33 22

65 1 4 4 9 12 6

75 0 0 0 2 1 1

85 0 0 0 0 0 0

90 0 0 0 0 0

95 9 89 51 58 42 71

105 53 188 338 371 335 279

115 109 225 380 506 554 356

125 168 237 413 503 536 337

135 223 268 390 510 551 299

145 269 300 355 429 473 230

155 306 324 355 381 396 164

165 331 340 352 364 370 100

175 344 345 347 349 350 34

180 346 346 346 346 346

COEFFICIENTS OF UTILIZATION   (%)
Pc--- 80 70 50 0

Pw--- 70 50 30 10 70 50 30 50 30 10 0

RCR

02/11/97 0 85 85 85 85 76 76 76 58 58 58 20

1 78 75 72 70 70 67 65 52 50 49 18

2 72 66 62 58 64 59 56 46 44 42 16

3 66 59 53 49 59 53 48 41 38 36 15

4 61 52 46 42 54 47 42 37 34 31 13

5 56 47 41 36 50 42 37 33 30 27 12

6 51 42 36 31 46 38 33 30 26 24 11

7 48 38 32 28 42 34 29 27 24 21 10

8 44 34 28 24 39 31 26 25 21 19 9

9 41 31 26 22 37 28 23 23 19 17 8

10 38 29 23 19 34 26 21 21 17 15 7

*Based on a floor reflectance of 0.2
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Figure 1 – Typical photometric distribution report
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Figure 2 – Equivalent “photometric solid” of Figure 1
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Figure 3 – Hausdorff distance metric comparsion
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Figure 3 continued – Hausdorff distance metric comparsion
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Figure 4 – Hausdorff distance metric comparsion (normalized)
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Figure 4 continued – Hausdorff distance metric comparsion (normalized)


