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Abstract

A geometric spanner with vertex setP� IRD is a sparse approximation of
the complete Euclidean graph determined byP. We introduce the notion ofpar-
titioned neighborhood graphs(PNGs), unifying and generalizing most construc-
tions of spanners treated in literature. Two important parameters characterizing
their properties are the outdegreek 2 IN and the stretch factorf > 1 describing
the ‘quality’ of the approximation. PNGs have been throughly investigated with
respect to small values off . We present in this work results about small values
of k. The aim of minimizingk rather thanf arises from two observations:

a) k determines the amount of space required for storing PNGs.

b) Many algorithms employing a (previously constructed) spanner have run-
ning times depending on its outdegree.

Our results include, for fixed dimensionsD as well as asymptotically, upper and
lower bounds on this optimal value ofk. The upper bounds are shown construc-
tively and yield efficient algorithms for actually computing the corresponding
PNGs even in degenerate cases.

1Partially supported by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT) and DFG
Grants Me872/7-1 and Me872/4-1



1 Motivation

Spanners allow for an efficient solution of many geometric problems. For given finite
setP� IRD, such a graphG= (P;E) approximates the complete Euclidean graph up
to some factorf > 1. f -spanners enabled Rao and Smith to construct a FPTAS (Fully
Polynomial Time Approximation Scheme) for the Euclidean Travelling Salesperson
Problem [21]. Further applications are closest point queries [25], motion planning [7]
as well as many range searching problems [1, 18].

For example, the objective of acircular range queryis reporting all those pointsp of P
lying within a circle of given radiusr and centerc. Having constructed anf -spannerG
for P� IRD of outdegreek, queries with centersc2P can be answered in nearly output
sensitive running time, i.e.,O( f km) independent ofjPj andm close to the number of
points reported [14].
More precisely, this kind of geometric searching problems occurring in interactive
virtual reality animations requiresG to have only aweakenedspanning property: The
‘radius’ of a path froms to t, rather than its total length, needs to be bounded by a
factor f �. In particular, every (strong)f -spanner is a weakf �-spanner for somef � at
most as large asf , usually substantially smaller.

Starting with Yao [28], spanners for givenP are usually computed by a generalization
of proximity graphs[17]: Partition IRD into k 2 IN convex conesC0; : : : , Ck�1. Then,
from vertex p 2 P, draw directed edges (arcs) to the closest point ofP lying in the
translated conep+Cj ; do this for j = 0: : :k� 1. The resulting graph is called a
partitioned neighborhood graph(PNG). Its properties strongly depend on the number
and shape of the conesfC0; : : : ;Ck�1g=: C, but also on the normd(�) inducing the (not
necessarily Euclidean) notion of ‘closest’: A disadvantageous choice for the latter may
result not only in big values off but even fail to produce stronly connected graphs!
However, every PNGG= (P;E) is sparse withjEj � kn= O(n), n := jPj and benefits
from the simple construction principle, numerical robustness [2], fast computability (in
time optimal up to a polylogarithmic factor [6]) and locality properties that allow for
incremental dynamic updates [14]. Furthermore, PNGs have applications in min-cost
perfect matching [27] and answering cone range queries in output sensitive time.

GivenD and smallε > 0, sufficient conditions onC andd(�) have been investigated
in the literature in order to ensure that, for any point setP, the according PNG is an
(1+ ε)-spanner. Indeed, many applications — like the TSP-FPTAS mentioned above
— rely onε! 0.

However, there are cases where the outdegreek = jCj of G is of equal importance
as its stretch factor: Consider the mentioned circular range query with running time
proportional tof � k. But even for other algorithms that donot depend onk, a small
outdegree may be more crucial than a smallf when it comes to actually implementing
it. Suppose, for example, that one can choose between a spannerGf ;k of small f ,
but large outdegreek and one of small outdegreẽk, but large stretch factor̃f , called
Gf̃ ;k̃. On the one hand, the algorithm will run faster withGf ;k, but this graph requires
more memory and access to secondary storage (e.g., a disk) being about 1000 times
slower.Gf̃ ;k̃ on the other hand entirely fits into one’s computer’s main memory so that
eventually it still outperformsGf ;k, even if f̃ is 500 times bigger thanf !
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We therefore aim to determine the minimal value ofk (together with its dependence on
dimensionD) such that PNGs of this outdgree still are spanners/weak spanners. Upper
bounds on this extremal problem in combinatoral geometry are not only of theoretical
interest but also lead to efficient algorithms for constructing such graphs. Particular
emphasis is laid on ensuring that these also work for degenerate cases. Matching
lower bounds prove their optimality.

In Section 2, we give formal definitions for the notionsspanner, PNG, and the goal
we aim for. A survey of both previous and new results can be found in Section 3,
together with a tabular compilation of the actual bounds induced thereof. Proofs of
theorems leading to lower bounds are collected in Section 5 whereas Section 7 contains
those for upper bounds. The part describing algorithms which construct PNGs without
requiring general position have been put one Section in advance since most readers
will probably be more interested in actually computing the optimal graphs that realize
our upper bounds. For similar reasons, conclusions and open problems are exposed in
Section 4.

2 Definitions

2.1 Spanners

Fix dimensionD 2 IN and some normj � j on IRD. Given a paths= p0; p1; : : :;

pm = t from s2 P to t 2 P� IRD in some geometric graphG= (P;E), the numbers

f (p0; : : : ; pm) :=
m

∑
i=1

j pi�1� pi j = j p0� pm j (1)

f �(p0; : : : ; pm) := max
i=1::m

jp0� pi j = j p0� pm j (2)

are called itsstretch factorandweak stretch factor, respectively. Anf -spannerfor P
is a graph which for alls; t 2 P contains a path froms to t of stretch factor at mostf ;
similarly for aweak f�-spanner...
Recall thatevery(strongly) connected graph trivially comprises anf -spanner for some
f < ∞, simply by finiteness ofP. But of course, the goal is to constructf -spanners
with f being independent ofP. This is reflected by calling graphs forming a family
G =

�
G(P) : P� IRD finite

	
to beuniform f-spanners iff eachG(P) is an f -spanner;

call themuniform spannersif there existsf < ∞ such that they are uniformf -spanners.
Respective notions will be used for weak spanners.
Let us remark that, by topological equivalence of any two norms on IRD (Claim 5.5),
transition fromj � j tofj � j affects f by merely a constant factor. In particular, the notion
of ‘uniform spanners’ does not depend on the chosen norm.
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2.2 Partitioned Neighborhood Graphs

To formalize PNGs, consider some familyC = fC0;C1; ::;

Ck�1g of convex cones [15] forming apartition of IRD in
the sense that it covers the whole space and is ‘almost’
disjoint:

k�1[

j=0

Cj = IRD
; 8i 6= j : Cj \Ci � f0g:

0

C0
C1

C2

C5

In this context,C � IRD is said to be aconvex coneif
λ(u+ v) 2 C for all u;v 2 C and λ � 0. Accordingly,
we need a familyD = fd0;d1; : : : ;dk�1g of k normsdj.
Then, for finiteP � IRD, the partitioned neighborhood
graphG(C;D;P) = (P;E) is defined by choosing, to each
vertex u 2 P and each 0� j < k, one neighborv in
(Cj +u)\Pnfug=: Pj (u) nearest tou with respect todj .

u+C0

u

v

v~

5v+C

More precisely, the edgesE of G(C;D;P) are characterized by three conditions:

8u2 P 8 j : Pj(u) = /0 _ 9v2 Pj (u) : (u;v)2 E (3)

(u;v);(u;w)2 E;v 6= w =) 8 j : v 62 Pj(u) _ w 62 Pj(u) (4)

(u;v)2 E =) 9 j : v2 Pj (u) ^ 8ṽ2 Pj(u) : dj(v�u)� dj(ṽ�u) (5)

To define thegreedy pathfrom s to t in PNGG = (P;E), consider the uniqueCj 2 C
such thatt 2 s+Cj. Then, sincet 2 Pj (s) 6= /0, there exists (3) at least and (4) at most
onev2 Pj(s) such that(s;v)2 E. Takes; v as the first step and repeat fromv to t.

2.3 Measures of Distance

In the previous paragraph, proximity of two points was gauged with respect to some
normdj . But in fact, our considerations do not rely on its symmetry property.dj may
therefore be a more general distance functiond : IRD !

�
0;∞

�
� IR which is

positively linear d(λv) = λd(v) v2 IRD
; λ� 0

nondegenerate d(v) 6= 0 IRD 3 v 6= 0

and convex. d(u+v)� d(u)+d(v) u;v2 IRD (6)

It is well known that such mappings uniquely correspond to the compact and convex
subsetsK of IRD with 0 in their interior: According to Claim 5.5, the unit sphere�

v2 IRD : d(v)� 1
	

is such a set and, vice versa,K’s so calledMinkowsky functional
µK fulfills the three conditions above,

µK(v) = inf
�

µ> 0 : v=µ2 K
	

= min
�

µ� 0 : µK3 v
	
:

For dealing with cases where two pointsv; ṽ2 Pj (u) are both closest tou, we permit
the distance functiondj to include arule for breaking ties, i.e., a total (orlinear) order
d̃j �Cj �Cj that extends the partial order2

�
(u;v) : u;v2Cj ; u= v _ dj(u)< dj(v)

	
2O :=

�
(u;v) : u;v2Cj ;dj (u)� dj (v)

	
is no order: It violates axiom ”(u;v);(v;u)2O) u= v”.
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induced bydj onCj in the sense that

8v;w2Cj : dj(v)< dj(w) =) (v;w)2 d̃j :

By the axiom of choice, such̃dj always exists [26] and will be called anextended
norm. Equation (5) then has to be replaced by

(u;v)2 E =) 9 j : v2 Pj(u) ^ 8ṽ2 Pj (u) : (v�u; ṽ�u) 2 d̃j (7)

2.4 Our goal

So, each choice ofC andD̃= fd̃j : j = 0:::k�1g induces a family

G(C;D̃) =
�

G(C;D̃;P) : P� IRD finite
	

of graphs with outdegreejCj, and we aim to determine for different dimensionsD the
quantity k(D) = min

�
k2 IN j f (D;k)< ∞

	
where

f (D;k) := inf
�

f > 1 j 9C disjoint partition of IRD into k convex cones

9 D̃ collection ofk extended norms (8)

8P� IRD finite : G(C;D;P) is f -spanner
	

In other words,k(D) is the least number of cones required such that this family consists
of uniform spanners and their corresponding Euclidean stretch factors. Similarly, we
investigate on the correspondingly defined numbersk�(D) and f �(D;k) for uniform
weak spanners.
Since any f -spanner is a weakf -spanner as well, inequalitiesk�(D) � k(D) and
f �(D;k)� f (D;k)are obvious. Furthermore,f (D;k)� f (D; k̃) and f �(D;k)� f �(D; k̃)
hold wheneverk� k̃: simply choosẽk�k cones empty.

3 Results

There already exist works which, in spite of focussing onf ! 1, showed specific
choices forC andD̃ to yield partitioned neighborhoodf -spanners. In that way, they
imply upper bounds onk(D) and f (D;k). Ruppert and Seidel for example proved [23]:

3.1 Theorem: Suppose everyC 2 C has angular diameter
<)(C) := sup

�
<)(a;b) : a;b2 C

	
at mostθ < π=3: Consider

(arbitrary total extensioñdj of) the normdj with unit sphere
depicted to the right. Then, each steppm; pm+1 of the
greedy path (see 2.2) inG(C;D̃;P) from s= p0 to t = 0 has

0

Cj

dj

Cj+1

Cj−1

jd
Cj

��pm
��
2�

��pm+1
��
2�

�
1�2sin(θ=2)

�
�
��pm+1� pm

��
2 (9)

Sincek = 7 equally sized wedges do form such a partitionC in dimensionD = 2,
G(C;D̃;P) is an Euclideanf -spanners for

f :=
1

1�2sin(θ=2)

���
θ=2π=7

� 7:57 � f (2;7); thus k(2)� 7:

Combining Theorem 3.1 with the following result from Coding Theory due to Hardin,
Sloane, and Smith [16] impliesk(3)� 20 andf (3;20)� 88:1:
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3.2 Theorem: There exists a covering of the unit sphereS3� IR3 with k= 20 caps of
angular diameterθ� 59:25�.

The table below shows a compilation of such results as well as the improved upper
bounds presented in this paper. Note that we are the first to prove lower bounds!

dim reference bound bound

D = 2 Keil, Gutwin 1991 k(2)� 9 k�(2)� 9

Ruppert, Seidel 1992 k(2)� 7 k�(2)� 7
f (2;7)� 7:57 f �(2;7)� 7:57

Fischer, Meyer a.d. Heide, k�(2)� 6
Strothmann ’97 f �(2;6)� 2

Fischer, Lukovszki, Ziegler 1998 k�(2)� 4
f �(2;4)� 2:29

new k�(2)� 4 k�(2) = 4

conjecture k(2) = 4

D = 3 Hardin, Sloane, Smith 1994 k(3)� 20 k�(3)� 20
f (3;20)� 88:1 f �(3;20)� 88:1

new k�(3)� 8
f �(3;8)� 2:53

new k�(3)� 5 k�(3)� 5

D! ∞ Rogers 1963 k(D)� 2O(D) k�(D)� 2O(D)

new k(D)� D+2 k�(D)� D+2

For 60� � θ � 90�, greedy paths be-
come unboundedly long (see figure)
but remain of bounded diameter. As
for degenerate point setsP this may
include the possibility of cycling infi-
nitely without ever reachingt, it does
not necessarily imply obtaining a weak
spanner. By carefully choosing the
cones’ boundaries to be open or closed
and by employing sophisticated exten-
sions of norms, these cases can be
taken care of without some ‘general
position’ presumption. However, do-
ing so becomes a singular combinato-

s=v0 v1

t

v2

v3

v4

v5
v6

v7

v8

v10

v9

rial challenge. The planar cases have been treated in [14] and [12]:

3.3 Theorem: Let D = 2, k� 7, andC consist ofk consequtive wedges

Cj =

n
(r cosϕ; r sinϕ) : r > 0;

2π
k

j � ϕ <
2π
k
( j +1)

o
; j = 0: : :k�1:
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Then, forD̃ as in Theorem 3.1,G(C;D̃;P) is a weak Euclideanf �-spanner for

f � � max
nq

1+48sin4(π=k);
q

5�4cos(2π=k)
o
:

3.4 Theorem: Let D = 2 andC = fC++;C+�;C�+;C��g the
four canonical quadrants with boundaries open/closed as shown
to the right. LetD̃ =

�
d̃++; : : : ; d̃��

	
, d̃j arbitrary total exten-

sion of�
(v;w) : v;w2Cj ;

(jvj∞ < jwj∞) _ (jvj∞ = jwj∞ ^ jvj0 < jwj0)
	

C
0

−+ C

CC

++

+−−−

i.e. the lexicographical order onCj induced byv 7!
�
jvj∞; jvj0

�
,

jvjp =
�
∑
i

jvijp
�1=p

; jvj∞ = max
i
jvij; jvj0 = min

i
jvij

Then potential functionΦ(s) =
�
js� tj∞;ϕ(s� t)

�
, ϕ(x;y) = jx+yj, strictly decreases

in each step of the greedy path.
In particular, the latter does reacht with (not necessarily strictly) decreasingj ��tj∞.
So,G(C;D̃) are uniform weak spanners of Euclidean weak stretch

f � �
n
ja�bj2=jaj2 : jaj∞ = 1= jbj∞

o
=

q
3+

p
5:

3.5 Theorem: Given P � IR2, n := #P, the graphG(C;D̃;P) of Theorem 3.3 can
be computed by sequentially performingk sweep line algorithms, each of timeO(n �
logn). The graph of Theorem 3.4 can be computed in the same magnitude of time.

If P� IRD is restricted to contain no two points which coincide in any coordinate (i.e.,
all projectionsΠi : P! IR, u 7! ui are injective), thenk�(D)� 2D and the correspond-
ing PNG can be computed in timeO

�
n � logD�1 n

�
. However, like in the above result,

we want degenerate cases to work as well. The first of our contributions achieves this
for D = 3. Again, special attention has to be paid to open/closed boundaries. Observe
that the potential functionΦ maps to a lexicographically ordered set of triples instead
of tuples:

3.6 Theorem: Let D = 3 and consider the 8 canonical octants. Turn them into a par-
tition by includingeach of their common boundaries to one of them and excluding it
from the others in the following way:C :=

�
C̄ι : ῑ 2 f+;�g3

	
,

C̄ι :=
�

q2 IR3
;q 6= 0; f̄(sgnqx;sgnqy;sgnqz) = ῑ

	
(10)
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for f̄ = ( fx; fy; fz) : f+;0;�g3!f+;�g3, given by f̄
��
f+;�g3 =identity and otherwise

x 0 0 0 0 + + � � + + � � 0 0 0 0 + � 0
y + + � � 0 0 0 0 + � + � 0 0 + � 0 0 0
z + � + � + � + � 0 0 0 0 + � 0 0 0 0 0
fx + + � � + + � � + + � � + � + � + � +

fy + + � � + � + � + � + � + � + � + � +

fz + � + � + � + � + + � � + � + � + � +

Furthermore, be the partial lexicographical order induced byC̄ι 3 v 7!
�
jvj∞; jvj1

�
ex-

tended to a total oned̄ι. Then,G(C;D̃;P) has weak stretch factor 2 with respect toj � j∞
and Euclidean weak stretchf � �

q
(7+

p
33)=2.

3.7 Theorem: GivenP� IR3, n := #P, the graphG(C;D̃;P) of Theorem 3.6 can be
computed in timeO(n� log2 n) from 48 sweep plane passes.

The lower bounds mentioned are immediate consequences of the following two results:

3.8 Theorem: In the planar caseD = 2, no choice ofC andD̃ of sizek� 3 makes
G(C;D̃) a family of uniform weak spanners, since there existsP� IR2 ands; t 2P such
that no path froms to t is present at all.

3.9 Theorem: In casesD� 3, no choice ofC andD̃ of sizek< D+2 makesG(C;D̃)

a family of strongly connected graphs (and thus neither of uniform weak spanners).
More precisely, inequalitiesk(D)� k(D�1)�1 and k�(D)� k�(D)�1 hold.

This does not rule out the possibility to obtain (weak) spanners forD = 3, k = 6. We
can, however, exclude the choice of 6 convex cones arising canonicaly from the faces

of a cube (
�
C andC denote topological interior and closed hull ofC, respectively):

3.10 Theorem: SupposeC =
�eC̄ι : ῑ = (i;s)2 fx;y;zg�f+;�g

	
and

�
Cῑ � eC̄ι �Cῑ; C̄ι :=

�
q2 IR3

;q 6= 0; jqj∞ � s�qi
	
:

Then to any collectioñD of 6 extended norms there existsP� IR3 such thatG(C;D̃;P)
is not strongly connected.

4 Conclusions/Open Problems

We presented upper and lower bounds for the numbersk(d) andk�(d), i.e., the min-
imally achievable outdegree such that partitioned neighborhood graphs (PNGs) still
form spanners and weak spanners, respectively.

The notion of PNGs we suggested is very general since we allow forarbitrary parti-
tions of space into convex cones. Furthermore, the neighbor needs not be ‘nearest’ in
the Euclidean sense but with respect toanynondegenerate convex distance function
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d which may be different for each cone and even be equipped with a rule for break-
ing ties between equally distant points. In particular, most existing constructions of
spanners are PNGs.

We do not aim to find the minimal outdegree of arbitrary spanners
�
this is well known,

anyway: 3. See [8]
�

but of those which can be constructed in nearly linear time
O(n � polylogn). Our upper bounds are constructive and yield practical algorithms
of this optimal time complexity. We obtained lower bounds by proving that for smaller
outdegree, the corresponding PNGs will in general be not only of unbounded length
and diameter but even disconnected (an important observation, see below!).

This was done by a new technical tool which took care of the vast range of possible
choices for the distance functions. This allowed us to reduce the topological part of
the problem. The remaining challenge of considering all partitions of space intok
convex cones was still difficult enough: finding so called cycles, a simultaneously
combinatorial and geometric property of a family of cones.

For k�(2) = 4, our bounds are tight. Concerning the gap between 4 and 7 fork(2),
we conjecture that the actual value is 4, too. In order to prove the appropriate upper
bound, greedy paths do not suffice any more.
In higher dimensions, we believek(3) = k�(3) = 8 andk(D) = k�(D) = Θ

�
2D
�
. PNGs

then would have the interesting property that

� they are are either disconnected or

� permit paths of uniformly bounded length.

The other cases

� connected but unbounded diameter and

� bounded diameter but unbounded length

could not occur by themselves. This is different for arbitrary families of geometric
graphs!

Apart from filling the remaining gaps by tightening the upper and lower bounds, an-
other direction of research seems promising: What happens if the notion of ‘closest’ is
not deduced from an extended norm̃d but from anarbitrary total order� of coneC?
Perhaps there exists a choice of� that yields PNG-spanners of lower outdegree: : :

Even in case� is required to be compatible with the cone’s operations ”�” and ”+” in
the sense of [15], i.e.,

u� v; λ� 0; w2C =) λ �u � λ �v ^ u+w � v+w;

we have no idea whether this actually affects the valuesk(d) andk�(d) or does not.

The authors would like to thank Artur Czumaj for many seminal discussions and sug-
gestions.
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5 Proofs of lower bounds

For proving a lower bound,everychoice ofC andD̃ has to be taken into consideration.
The following important result allows us to get at least rid off the norms:

5.1 Definition: BeC a collection of (not necessarily disjoint neither covering) convex
conesC� IRD. A cycleof C is a finite sequence(c0;c1; : : : ;cL�1;cL = c0) of nonzero
pointscl 2 IRD such that

8l = 0: : :L�1 9C2 C : 02 cl +
�
C ^ cl+1 2 cl +C (11)

5.2 Proposition: Fix some partitionC of IRD into convex cones. Suppose there exists
subspaceSand nonzero vectorv2 IRD such that

C0 :=
�
C\S: C2 C;v2C

	
(12)

contains a cycle. Then foranychoice of extended norms̃D there existsP� IRD such
thatG(C;D̃;P) is not strongly connected. Here we identifySwith IRD0

, D0 < D.

Proof of Theorem 3.8: In casek= 3,

k�1

∑
i=0

<)(Ci) = 360� =) 9i : <)(Ci)� 120� < 180�:

The tangent lineS at Ci through 0 therefore intersects pre-
cisely the other two cones. Choosev 6= 0 from their com-
mon boundary. IdentifyingS with IRd, we haveC0 =�
(�∞;0]; [0;+∞)

	
with obvious cycle(�42;+42;�42).

In casek= 2, both cones are halfspaces. Choosev from their
boundary andSperpendicular tov. Casek= 1 is trivial.

Ci

v

S

Ci

Proof of Theorem 3.10: Considerv = (1;1;1).
S=

�
u2 IR3 : u?v

	�= IR2 via vectorspace isometry

�
x
y

�
7!

0
BB@
�
p

1=2x�
p

1=6y

+
p

1=2x�
p

1=6y

+
p

2=3y

1
CCA

The collection of conesC0 induced byC is shown to
the right; boundaries may be open or closed. Now,
let 0< δ < 30� arbitrary. Then, points ˜u; ṽ; w̃2 S,

0

u



 δ

C(z,+)

~

C~ C~(y,+)(x,+)

v

w

ũ = (�
p

2=3cosδ;+
p

1=6cosδ�
p

1=2sinδ;+
p

1=6cosδ+
p

1=2sinδ)
ṽ = (+

p
1=6cosδ+

p
1=2sinδ;�

p
2=3cosδ;+

p
1=6cosδ�

p
1=2sinδ)

w̃ = (+
p

1=6cosδ�
p

1=2sinδ;+
p

1=2sinδ+
p

1=6cosδ;�
p

2=3cosδ)
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corresponding to

u =
�

cos( 30�+δ);sin( 30�+δ)
�

v =
�

cos(150�+δ);sin(150�+δ)
�

2 IR2

w =
�

cos(270�+δ);sin(270�+δ)
�

obviously form a cycle(u;v;w;u) of C0.

5.3 Claim: If C� IRD is convex,a2C, b2
�
C, thena+b2C.

Proof: Let an 2 C be a sequence convergent toa. b 2
�
C, therefore exists a ballB

aroundb such thatB� C. For eachb̃2 B and eachn, an+ b̃2 C by convexity and,
lettingn! ∞, a+ b̃2C. This proves that the whole balla+B arounda+b lies within

C, soa+b2
�
C.

Proof: (Proposition 5.2) Be
�
c0;c1; : : : ;cL�1;cL = c0

�
a cycle ofC0, i.e., cl+1 2

cl +
�
Cl \ v?

�
� cl +Cl and�cl 2

�
Cl . v 2 Cl , thereforet := µv2 Cl � IRD for any

µ> 0. Application of Claim 5.3 toa = t, b= �cl ensurest 2 cl +Cl ; cl+1 2 cl +Cl ,
anyway. Now letd̃l 2 D̃ belong toCl 2 C, dl the distance function which̃dl extended

to. Sincedl(cl+1� cl ) is independent ofµ anddl
�
t � cl

� (�)

� µdl(v)� dl (cl)! ∞ as
µ! ∞ (Claim 5.5),

9λ > 0 : 8l = 0; : : : ;L�1 : cl+1; t 2 cl +Cl ; dl
�
cl+1�cl

�
< dl

�
t�cl

�
LettingP= ft;c0; :::;cL�1g, nocl will therefore have an arc tot in G(C;D̃;P).

Proof of Theorem 3.9: SupposeC =
�
C0; : : : ;Ck�1

	
, D̃ =

�
d̃0; : : : ; d̃k�1

	
for k <

D+2. Consider the caseD = 3. SinceCk�1 is convex, we can find at boundary point 0
some tangent hyperplaneH not touchingCk�1 other than in 0. The intersections with
and restrictions to this(D�1)-dimensional subspace

C0
0 =C0\H C0

1 =C1\H : : : C0
k�2 =Ck�2\H

d̃00 =d̃0
��
H d̃01 =d̃1

��
H : : : d̃0k�2 =d̃k�2

��
H

therefore form a partitionC0 of H �= IR2 into k�1< 4 convex cones and a familỹD0

of extended norms thereon. Now, take the counter exampleP� IR2 from Theorem 3.8
and place it ontoB� IR3: The resulting PNGs are disconnected.

p

In casesD > 3, employ the same argument as induction step.

Attentive readers might have remarked that in some degenerate
cases,Ck�1 may include angles as large as 180� andbe closed.
Here, we cannot guarantee the tangent hyperplane to be even ‘al-
most’ disjoint toCk�1. Fortunately, the subsequent Claim per-
mits a characterization of these particularities! So ifH with the
required property does not exist, takev2Ck�1,�v2Ck�1. Sup-
pose first that�v 62 Ck�1. Then, toε = jvj=2 > 0 we can find
w 2 Ck�1 such thatjw� (�v)j < ε and in particularw not col-
inear to�v;v. PlaneV2 := spanf�v;v;wg has the property that
C̃k�1 :=V2\Ck�1 is a halfopen wedge of 180�.

0

v

−v

Ck−1

w

Cl
~

~

S

V
 \ (C

   C
   )

2
 l

k−1
∪

~
~

−c

+c
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The partitionC̃ =
�
C\V2 : C 2 C

	
induced onV2 by C will therefore look like to the

right: SinceC̃k�1 is closed atv, the adjacent wedgẽCl 2 C̃ must form a nonzero angle
(whereas the one containing�v could perhaps be nothing more than a ray). Once
again refer to the Claim below to understand the existence of a lineSthrough 0 which
does not touchV2 n (C̃l [ C̃k�1). Pointsc 6= 0 and�c on this line then form a cycle
(+c;�c;+c) of

C0 =
�
C\S: C2 C̃;v2C

	
=
�
C\S: C2 C;v2C

	
:

Application of Proposition 5.2 completes this case. In case�v2Ck�1, S:= spanfvg
and(+v;�v;+v) similarly forms a cycle.

5.4 Claim: BeC�VD = IRD convex,p2 ∂C. Then, there exists

� either a(D�1)-dimensional hyperplaneHD�1 3 p such thatHD\C� fpg

� or v2VD such thatp+v 2C but p�v 62C.

Proof: W.l.o.g. p = 0 and presume�v 62C 8v2C. The claim that
H with the required properties exists is trivial forD = 1 and obvious
in dimension 2 (see sketch to the right). Proceed now by induction to
D+1. Beq 2C arbitrary. Consider someD-dimensional subspace
VD �VD+1 containingq. And consider the planeV2 going throughq
and 0 perpendicular toVD, i.e.V2\VD is one-dimensional.
0 62 C\V2 =: C2 is a convex set inV2 with 0 at is boundary fulfill-
ing �v 62 C2 8v 2 C2. For this reduction toD = 2, a 1-dimensional
disjoint hyperplaneH1 (simply a line) through 0 is already known to
exist. Now consider the projection ofC parallel to this line ontoVD,

Π
�
H1;VD;C

�
=
�

L\VD : L line throughc parallel toH1;c2C
	
:

C

0

v

−v

H

0 62CD := Π
�
H1;VD;C

�
�VD too is convex (since projectionΠ

�
H1;VD; �

�
linear map-

ping) and 0 a boundary point ofCD (as Π is continuous). Furthermore,�ṽ 62 CD

8ṽ2CD!
Indeed, be ˜v= Π(v), v2 C and�ṽ= Π(w) 2CD, w2C. Be definition ofΠ, linesA
andB throughv; ṽ andw;�ṽ, respectively, are parallel toH1. A, B andH1 therefore lie
on a common twodimensional subspaceṼ2. Line C� Ṽ2 throughv;w however is not
parallel toH1

�
otherwiseΠ(v) = Π(w)

�
and so intersectsH1 in some pointu which,

by convexity, contains toC as well. Butu2 H1\C contradicts the choice ofH1 to be
disjoint toC.
Induction hypothesis is thus applicable toCD and supplies a(D�1)-dimensional hy-
perplaneHD�1 through 0 disjoint to it.
HD := HD�1+H1 then will do the job: Supposec2C\HD. Then its projectionΠ(c)
will be onΠ(C)\HD�1 contradiction thatHD�1 is disjoint toCD.

5.5 Claim: (Topological Equivalence)Be da anddb nondegenerate convex distance
functions on IRD. Then there exist real numbers 0< λ < Λ < ∞ such that
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8v2 IRD : λ �da(v) � db(v) � Λ �da(v):

Proof: Denotee(i) the i-th canonical unit vector of IRD, i.e.,e(i)j = δi j for 1� i; j � D.

We start with the caseda = j � j1 : v= ∑
i

vie
(i) 7!∑

i

jvi j. DefineΛ := max
i

db
�
�e(i)

�
.

Then db
�
v
�

= db
�
∑

i

vie
(i)� = db

�
∑

i:vi>0

jvij(+1)e(i)+ ∑
i:vi<0

jvij(�1)e(i)
�

(6)
� ∑

i:vi>0
db
�
jvij(+1)e(i)

�
+ ∑

i:vi<0
db
�
jvi j(�1)e(i)

�
= ∑

i:vi>0

jvijdb
�
+e(i)

�
+ ∑

i:vi<0

jvijdb
�
�e(i)

�
� ∑

i:vi>0
jvijΛ+ ∑

i:vi<0
jvijΛ =

��v��1 �Λ
This in turn implies thatdb is continuous: Letv(n) a sequence in IRD converging tov.

Then db
�
v(n)
�
�db

�
v
� (�)

� db
�
v(n)�v

�
� Λ

��v(n)�v
��
1 ! 0

and db
�
v
�
�db

�
v(n)
� (�)

� db
�
v�v(n)

�
� Λ

��v�v(n)
��
1 ! 0;

inequalities (*) coming from

db(a)�db(b) = db(a�b+b)�db(b)
(6)
� db(a�b)+db(b)�db(b) = db(a�b):

Now consider the unit sphere SD =
�

u 2 IRD : juj2 = 1
	
� IRD

; well known to
be compact. Continuousdb

��
SD therefore attains its minimal valuẽλ := inf

u2SD
db(u) on

someu(0) 2 SD. db
�
u(0)

�
= λ̃ = 0 contradicts the nondegeneracy ofdb, thusλ̃ > 0.

This means that for arbitraryv2 IRD, u := v=jvj2:

db(v) = db
�
jvj2 �u

�
= jvj2 �db(u) � jvj2 � λ̃ � jvj1 � λ̃

p
D

and thus,λ :=
p

D � λ̃ will do the job.

In the general case, the above considerations show that we findλa;Λa andλb;Λb to
boundda anddb againstj � j1 in the sense thatλaj � j1 � da � Λaj � j1 andλbj � j1 � db �
Λbj � j1: Λ := Λb=λa andλ := λb=Λa have the required property:

λb

Λa
da � λbj � j1 � db � Λbj � j1 � Λb

λa
da

5.6 Remark: If C is not closed,SD \C is not compact.
Claim 5.5 therefore does not hold if the distance function
is defined only on a convex coneC� IR2. The figure to the
right depicts the unit sphere of such ad : C! IR which can-
not be bounded from above byj � j2.

0 C
{ v:d(v)  1}≤
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But even in caseC is closed, there exist counter examples as
illustrated to the right: BeC� IR3 with circular cross sec-

tion. Forv2
�
C, let d(v) = jvj2. For boundary pointsv2 ∂C,

denoteϕ(v) 2
�
0;2π

�
the angle according to the drawing.

Then define

d(v) = Λ
�
ϕ(v)

�
� jvj2; Λ(ϕ) =

2π
2π�ϕ

:

ϕ

0

C

S

a

b

a+b

0

b a

a+b

It is important to observe thatd indeed fulfills triangle in-
equality (6) on wholeC: This is due to the fact that points
on the boundary of sphereS (the cross section ofC) cannot
be represented as sum of two other points inS.
As a consequence, convexd : C! IR possesses in general
no convex extension to the whole space IRD!

Concerning Claim 5.3, the prerequisiteb2
�
C is crucial, too:

For a2 C andb2 C, a+b in general does not lie inC any
more!
To this end, considerC� IR3 with triangular cross section as
sketched to the right. Pointsa andb are on the same face of
C, buta lies in the open part of it. And so doesa+b.

6 Constructing PNGs

Proof of Theorem 3.5, first part: Fix j . We will describe an algorithm to compute
those arcs(u;v) of G(C;D̃;P) with v 2 Pj(u). According to Equation (5), it then
suffices to repeat this process for eachj = 0;1; : : : ;k�1.

For notational convenience, be the coordinate system such
that the symmetry axis ofCj coincides with thex-axis. Then
dj(u) = ux for u 2 Cj , as a look to the unit sphere ofdj

depected in Theorem 3.1 reveals. Sort the points ofP in
ascending order with respect to theirx coordinate — time
O(nlogn) — and let the vertical sweep lineL proceed from

0 v:d (v)  1{ ≤  }j

Cj

left to right. We maintain a data structureS for storing all thoseu2 P lying on the left
of L which have not yet got a neighborv2 u+Cj . WheneverL hits a vertexp2 P, we
will insert p to S, query the data structure about allq2 Ssuch thatp2 q+Cj , create

14



according edges(q; p), and removeq from S: p
indeed is closest toq. For, supposedj(p̃� q) =
p̃x�qx < px�qx = dj(p�q). Then the line which
sweepsP in increasing order ofx would have hit ˜p
beforep, thereby having providedq with an edge and
removed it fromS, a contradiction.

Take asS some realization of a dynamic sorted ar-
ray of m elements (e.g., a balanced binary tree) sup-
porting operations LOCATE, INSERT, and DELETE

in (amortized) timeO(logm).
Each of then points p 2 P is inserted exactly
once, hence m � n, adding to a total time for
insertions ofO(nlogn). After any of the n in-
sertion, the above algorithm performs a query of
O(logm) +O(#elements reported), summing up to
anotherO(nlogn)+O(n). And finally, q 2 P gets
deleted at most once:O(nlogn).

p

L

q+

Π (q )− +

Π (q )++

Π (q )− −

Π (q )+ −

q−

Π (q )+0q +Cj+

q

q +Cj−

Verticesu which still are inS after the sweeping havePj(u) = /0 and remain without
outgoing edge.

Let us now explain how to answer the two-dimensional cone stabbing queriesQ(p) =�
q2 S: p2 q+Cj

	
required above by means of the one-dimensionally ordered data

structureS. To this end, be the elements ofSsorted with respect to theiry-coordinates,
i.e., the projectionΠ0(q) of p parallel to thex axis onto the sweep line.Π0 has the
advantage that is does not change while the sweep line moves and thus can be main-
tained by data structureS. The latter two, on the other hand, do change but they permit
to solve the query

Q(p) =
�

q2 S: Π�(q)� Π�(p)
	
\
�

q2 S: Π+(q)�Π+(p)
	

as follows:

� Find the biggest (w.r.t.Π� ) q2 Swhich is still smaller thanp. Call thisq+.

� Find the smallest (w.r.t.Π+ ) q2 Swhich is still bigger thanp. Call thisq�.

� Report all verticesq2 Sbetweenq+ andq� (w.r.t. Π0 ).

Performing a binary search with respect to one order within items sorted with respect
to another usually fails badly. Here, on the contrary, Claim 6.1 guarantees that it does
work. The first two steps can therefore be performed inO(logm) and the last one
indeed returns the elements ofQ(p) in output sensitive time.

6.1 Claim: With notions as above,C( f0g, the orders induced byΠ� andΠ+ are
weaker than the one induced byΠ0 in the sense that forq; q̃2 S,

Π0(q)�Π0(q̃) =) Π�(q)�Π�(q̃) ^ Π+(q)�Π+(q̃)

Π0(q)�Π0(q̃) =) Π�(q)�Π�(q̃) ^ Π+(q)�Π+(q̃)
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Proof: We consider� and supposeΠ0(q) � Π0(q̃) but
Π+(q)> Π+(q̃). From the definition ofΠ0 andΠ+ as center
and upper boundary ofC, this impliesq̃2 q+C. But then,
q2 Swould have received the neighbor ˜q and been removed
from S at that very moment when sweep lineL hit q̃ — a
contradiction.

q q~

L

Proof of Theorem 3.5, second part:Constructing the PNG of The-
orem 3.4 is more difficult for three reasons: Formerly, we could
(within Cj ) identify the line shaped boundary of the distance func-
tion’s unit sphere with the sweep line and therefore in order of in-
creasingdj process all vertices in one pass.

q

p

p2

1

C/2

L

C/2

This time,two lines are needed to cover that boundary. Therefore, divide the quadrant
along its diagonal axis: Within each partC=2, dj now has only one segment boundary
and can be treated as before. The resulting graph temporarily has outdegree 8, but a
subsequentO(n) processing will compare for eachu its two neighbors corresponding
to the two parts ofC and keep only that arc to the closer one.

The other problem to obey is the boundary of quadrantC and whether it is belongs the
the cone or not. This can be taken care of by choosingq+ biggest but smalleror equal
in the above algorithm andq� correspondingly.

And third, the tie-breaking-rule (total order) must be applied in case two points are
equally close. The latter comes into play when the sweep line simultaneously hits two
(or more) verticesp1 and p2: Eachq 2 Q(p1)\Q(p2) requires to decide which of
jp1�qj0 and jp2�qj0 is smaller and create either arc(p1;q) or (p2;q) accordingly.
Luckily, the quadratic time for comparing eachp2 L to eachq2Q(p) can be reduced:
W.l.o.g. consider the lowerC=2, the upper one being similar. Now, if the queriesQ(p)
for differentp2 L are processed in increasing order ofpy, this will automatically obey
thej � j0 condition!
Indeed, the shape ofC=2 implies thatqy � py for eachq2 Q(p). Furthermore,jvj0 =

min
�
jvxj; jvyj

	
= jvyj= vy for v2C=2. Together, this yields��p2�q

��
0 = p1;y�qy < p2;y�qy =

��p2�q
��
0 for p1; p2 2 L; p1;y < p2;y:

Proof of Theorem 3.7: Like in the two dimensional case, our algorithm will work
in phases, one for each coneC 2 C of the covering to compute those arcs(q; p) with
p2C+q. Instead of a sweep lineL, we will employ a planeH, sweeping the elements
of P in order of increasingx-coordinate.
Again, we have to subdivide each coneC in such a way that
within each part, the distance function’s unit sphere has a
planar boundary, i.e.,d

��
C is a projection. To this end, cut

octantC = C(+;+;+) into three congruent subconesC=3 =�
v2C : vy � vx ^ vz� vx

	
sketched to the right. 0 x

And again, too, the rulej � j1 for breaking ties in caseH simultaneously hits several
verticesp1; p2 will automatically be fulfilled if these are processed in order of increas-
ing py + pz. Put differently, letH sweepP sorted lexicographically with respect to
(x;y+z).
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It now remains to find a dynamic data structureS for efficiently answering the dimen-
sional cone stabbing queriesQ(p) =

�
q2 S : p 2 q+C=3

	
. Unfortunately, there is

no three dimensional analogon to Claim 6.1: DenoteΠ+(q) the projection ofq par-
allel to the upper boundary plane ofC=3 onto sweep planeH, i.e. the horizontal line
H \ (q+∂+C=3) and correspondinglyΠ�(q) for the lower boundary.
Then there exist pointsq; q̃ such thatΠ+(q) < Π+(q̃), Π�(q) > Π�(q̃) but neither
q2 q̃+C nor q̃2 q+C: Take the two-dimensional example sketched in Claim 6.1 and
choose the third coordinates ofq and q̃ so very different that they do not lie in each
other’s cone any more!

We will give it another try and analyze the applicability ofrange trees[1]: These dy-
namic data structures can efficiently answerD-dimensional orthogonal range queries
parallel to the axises

�
q2 S : ai � qi < bi; i = 1; : : : ;D

	
= S \

D

�
i=1

[ai;bi) =: S\
�
a;b
�

in timeO
�

logD m
�
+O(#elements reported). Now consider the four faces ofC=3 and

the planes they lie in. Beu(1);u(2);u(3);u(4) their normal vectors, oriented in direction
of C=3, that is

u(1) = (0; 0; 1) lower boundary plane ofC=3

u(2) = (1; 0;�1)=
p

2 upper boundary plane ofC=3

u(3) = (0; 1; 0) front boundary plane ofC=3

u(4) = (1;�1; 0)=
p

2 back boundary plane ofC=3

Assign to each vertexp2 P the 4-tuplep� of its distances to these planes

p� =
�

∑
i

piu
(1)
i ;∑

i

piu
(2)
i ;∑

i

piu
(3)
i ;∑

i

piu
(4)
i

�
and observe thatv2C=3 if and only if v� 2

�
(0;0;0;0);(∞;∞;∞;∞)

�
. Thus,

q2Q(p) , q2 S\ (p�C=3) , q� 2 S�\
�
� p�;(�∞;�∞;�∞;�∞;)

�
:

So, a four dimensional range treeS� can be employed to answer the queryQ(p). This
gives a sweep plane algorithm of time complexityO(nlog4 n) — two magnitudes of
logn slower than claimed.

One factor can be removed with the well knownfractional cascadingtechnique [5, 19].
For the other one, once again subdivide the coneC=3 by triangulating its quadratic
cross section: The two resultingC=6 will have only three boundary planes. Hence,q�

andS� are three dimensional instead of four.

6.2 Scholium:3 BeC a partition of IRD into k convex cones andD a family of norms
dj , j = 0; : : : ;k�1. Suppose that eachdj equals the maximum of finitely many pro-
jections or, equivalently, its unit sphere is polyhedral.
ThenCj can be subdivided intoδ j < ∞ subconesCj=δ j such that for each one,

3A scholium is a corollary not to a theorem but to a proof: : :
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� its cross section forms a(D�1) dimensional simplex

� and dj

��
Cj=δ j

is a projection.

Furthermore, graphG(C;D;P) can be computed from inputP� IRD of sizen = #P

from performing
k�1
∑
j=0

δ j sweep hyperplane passes, each of timeO
�
n� logD�1 n

�
:

7 Proof of Theorem 3.6

We begin with a

7.1 Remark: concerning the mappinḡf : f+;0;�g3 ! f+;�g3 and its higher di-
mensional generalizations: This represents a convinient way of specifying for points
that are common to the boundary of several octants

�
in general: hyperquadrantsC̄ι,

i 2 f+;�gD
�

to which one it belongs, thereby turing the covering into a partition.
Each possible argumentk̄2 f+;0;�gD assigns to a whole face or subface

Fk̄ =
�

u2 IRD : sgnu= k̄
	
; sgn(u1; : : : ;ud) := (sgnu1; : : : ;sgnud);

one hyperquadrantCf̄ (k̄). Denote #0k̄= Cardfi = 1; : : :D : ki = 0g, thenFk̄ has dimen-
siond�#0k̄.

Alas, not everyf̄ is admissible for this purpose: Thed-dimensional (improper) face

Fk̄ =
�

Ck̄, k2 f+;�gD must of course be mapped toCk̄.
And for example in two dimensions, faceF(+;0) — the positivex-axis — may not be
assigned to the upper left quadrantC(�;+) since it does not belong to its boundary:
f̄ (+;0) must be either(+;+) or (+;�). This indicates that only zero components of
arguments are to be modified. The non-zero ones,f̄ must leave unchaned:

ki 6= 0 =) fi(k̄) = ki (13)

As a generalization to this we require that, if a faceFk̄ is mapped to one hyperquadrant
Cī then all facesFl̄ lying w.r.t. inclusion betweenFk̄ andCī are so, too:

s := fi
�
k̄
�

=) f̄
�
k̄; i = s

�
= f̄

�
k̄
�

(14)

with notation
�
k̄; i = s

�
=
�
k1; : : : ;ki�1;s;ki+1; : : : ;kd

�
. Condition (14) for example

says that if the positivex-axis F(+;0;0) belongs toC(+;+;+) it is not allowed to assign
thexz-planeF(+;0;+) (the relative topological closure of whichF(+;0;0) belongs to) to,
lets say,C(+;�;+). In our proof of Theorem 3:6, this kind of sub-/face compatibility
condition will ensure the monotony of potential functionΦF to hold not only on a
(D�1)-dimensional faceF but also on its boundary, confer Lemma 7.3.

Now eachf̄ fulfilling the above conditions (13) and (14) induces a permissible partition
C of space into hyperquadrants and vice versa. ButCmust also be such that it produces
(weak) spanners. A necessary condition to this is,according to Proposition 5.2, that
not C0 contains a cycle of length 2. We claim that the latter is equivalent tof̄ being
antisymmetric:

f̄
�
� k̄
�
= � f̄

�
k̄
�

8k̄ 2 f+;0;�gD
; k̄ 6= 0̄: (15)
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You will easily verify that thef̄ we proposed forD = 3 indeed complies with all the
above conditions. This can also be seen from its formula representation (17) on page
24. On the other hand, absence of 2-cycles is only necessary: Our proof thatC does
yield weak spanners begins with Lemma 7.3.

7.2 Claim: The following are equivalent:

a) For eachi = 1; : : :D, s2 f+;�g doesC0 as induced byC, v = (0̄; i = s), S=

fu : ui = 0g according to Equation (12) in Proposition 5.2, contain no 2-cycle
(a;b;a).

b) For eachi = 1; : : : ;D, s2 f+;�g, k̄2 f+;0;�gD,

f̄
�
+ k̄; i = 0

�
6= f̄

�
+ k̄; i = s

�
_ f̄

�
� k̄; i = 0

�
6= f̄

�
� k̄; i = s

�
c) f̄ is antisymmetric in the sense of (15).

Proof:

”c)a” : Takei, s and suppose that(a;b;a) is a cycle ofC0, that is there exist̄A; B̄2
f+;�gD such that v2CĀ;CB̄, a;b2 S,

02 a+
�
CĀ\S

�� �CĀ; b2 a+CĀ; 0;a2 b+CB̄:

The first impliesAi = s= Bi. The latter, by definition ofC̄ι in Equation (10),
requiresĀ = f̄

�
sgn(b�a)

�
andB̄ = f̄

�
sgn(b�a)

�
. Due to prerequisite (15),

Ā=�B̄ and in particulars= Ai =�Bi = s, a contradiction.

”a )b” : Given i, s, and k̄. Without loss of generality,ki = 0. Let v := (0̄; i = s),
S=

�
u2 IRD : ki = 0) ui = 0

	
, a := (�k̄; i = 0) 2 S3 (+k̄; i = 0) =: b, Ā =

f̄
�
+ k̄; i = s

�
, B̄= f̄

�
� k̄; i = s

�
. Note thatv2CĀ;CB̄ asAi = s= Bi. Suppose

b) does not hold. Then

Ā= f̄
�
k̄; i = s

� (�)
= f̄

�
k̄; i = 0

�
= f̄

�
sgn(�a)

�
= f̄

�
sgn

z }| {
(b�a)
=2k̄

�
and henceb�a;�a2CĀ. SinceS is of dimensiond�#0k̄, it even even follows
that�a2 (CĀ\S)�. Similarly,a�b2CB̄,�b2 (CB̄\S)�. So,(a;b;a) forms a
2-cycle ofC0 in contradiction to a).

”b )c” : Suppose that componentfi is not antisymmetric. From all̄k with fi
�
� k̄
�
=

fi
�
+ k̄
�

take one of minimal #0, i.e., the least number of zeros. Since

ki 6= 0 =) +ki
(13)
= fi

�
+ k̄
� (�)
= fi

�
� k̄
� (13)
= �ki ;

necessarilyki = 0. Sets := fi
�
+ k̄
�
) and verify

fi
�
+ k̄; i = 0

�
= fi

�
+ k̄
�
= s

(14)
= fi

�
+ k̄; i = s

�
and fi

�
� k̄; i = 0

�
= fi

�
� k̄
� (�)
= fi

�
+ k̄
�
= s

(13)
= fi

�
� k̄; i = s

�
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This contradicts b) unless there existsj 6= i such that

f j
�
+ k̄; i = 0

�
6= f j

�
+ k̄; i = s

�
_ f j

�
� k̄; i = 0

�
6= f j

�
� k̄; i = s

�
:

Again necessarilykj = 0. This time, set ˜s := f j
�
+ k̄
�
.

In casef j is not antisymmetric for this̄k either, we will find a third component
j̃ different from i and j such thatkj̃ = 0, and so on. This process obviously
terminates after at mostD steps, simply because then there are not components
left: k̄ = 0 in contrast to the prerequisite of Equation (15). So without loss of
generality bef j antisymmetric:

f j
�
� k̄; i = 0; j = 0

�
= f j

�
� k̄
�
= � f j

�
+ k̄
�
= � f j

�
+ k̄; i = 0; j = 0

�
= �s̃:

=) fi
�
+ k̄; j = s̃; i = 0

� (14)
= fi

�
+ k̄
�
= s=

= s
(�)
= fi

�
� k̄
�
= fi

�
� k̄; j = 0; i = 0

� (14)
= fi

�
� k̄; j = �s̃; i = 0

�
:

fi is therefore not antisymmetric at argument(k̄; j = s̃), neither. But #0(k̄; j =
s̃) = #0k̄�1 contradicts the minimality of̄k.

7.3 Lemma: GivenC, D̃ as in the prerequisites of Theorem 3.6,s2 P and w.l.o.g.
t = 02 P, jsj∞ = 1. The greedy path inG(C;D̃;P) from s to t has nonincreasingj � j∞.
And, while staying on one faceF of this cubeQ :=

�
p : jpj∞ � 1

	
, it is even strictly

decreasing with respect to some potential functionΦF . More precisely, bea; b one
greedy step andjaj∞ = 1= jbj∞. Then

ax =+1= bx =) (+by;+bz)< (+ay;+az)� (0;0)

ay =+1= by =) (+bz;+bx)< (+az;+ax)� (0;0)

az =+1= bz =) (+bx;+by)< (+ax;+ay)� (0;0)

ax =�1= bx =) (�by;�bz)< (�ay;�az)� (0;0)

ay =�1= by =) (�bz;�bx)< (�az;�ax)� (0;0)

az =�1= bz =) (�bx;�by)< (�ax;�ay)� (0;0)

7.4 Lemma: The greedy path will at most once change4 to a different face

F̄ι =
�

q2 IR3 : jqj∞ = 1;sgn(qi) = s
	
; ῑ = (i;s)2 fx;y;zg�f+;�g

of Q. More formally, supposea; b; c; d are subsequent steps of this path with
a;b;c2 ∂Q, a 62 F̄ι, b2 F̄ι. Thenjdj∞ < 1.

Proof of Theorem 3.6: Denote� addition modulo 3. Withineach faceF(i;s), the
potential function

Φ(i;s)(v) =
�
jvj∞;s�vi�1;s�vi�2

�
lexicographically

4Observe thatF̄ι is relatively closed. Therefore, changing can mean ”entering new, then leaving old
one” in two steps, or ”already lying in two faces; leave one, then enter another”, or in one step ”leave old
and enter new”.
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strictly decreases. The only ‘escape’ — changing to another face — can occur at most
once. The greedy path thus finally does reacht and remains inQ. This implies a weak
stretch factor of 2 w.r.t.j � j∞, and the Euclidean weak stretch facter is at most

f � =

n
ja�bj2=jaj2 : jaj∞ = 1= jbj∞

o
: (16)

Equivalence of norms (c.f. Claim 5.5)jaj∞ � jaj2 �
p

Djaj∞ implies f � � 2
p

3, but
this bound is not tight. For a better one, square both sides of (16) and note that, for
symmetry reasons (simultaneously permuting or inverting components ofa andb), the
maximum is w.l.o.g. attained inaz = +1, 0� ax;ay � 1. The extremal location of
b is thusb = (�1;�1;�1) and ax = ay. It therefore remains to maximize the one
parameter function

[0;1]3 λ 7! ja�bj22
jaj22

�����a=(λ;λ;1)
b=(�1;�1;�1)

= 1+
4λ+5
2λ2+1

via highschool calculus, obtainingλ0 = (�5+
p

33)=4 and f � =
q

(7+
p

33)=2�
2:524.

7.5 Scholium: Suppose that̄f : f+;0;�gD ! f+;�gD is admissible in the sense of
Equations (13), (14),(15) and̃D a family of 2D total orders extending the normj � j∞
such that inG(C;D̃;P), greedy paths visit no vertex more than once.
Then this graph has Euclidean weak stretch

f � �

vuuut max
0�λ�1

��a�b
��2
2��a��22
�����a=(λ;::: ;λ;1)

b=(�1;::: ;�1;�1)

=

s
1+

2(d�1)λ+d+2
1+(d�1)λ2

����
λ=
�p

d(d+8)�d�2
�
=2(d�1)

=

sp
d(d+8)�4+dp
d(d+8)�2�d

'
p

d

7.6 Claim: Let a;b 2 IR3 n f0g, a 6= b andC as in (10). There existsC 2 C with
02 a+C andb2 a+C iff for each i = 0;1;2 one if the following holds:

a) ai �
�
sgnai�1;sgnai�2

�
�(0;0) ^ (bi�ai) �

�
sgnai;sgnai�1;sgnai�2

�
� (0;0;0)

b) ai �
�
sgnai�1;sgnai�2

�
<(0;0) ^ (bi�ai) �

�
sgnai;sgnai�1;sgnai�2

�
< (0;0;0)

where inequalities are to be understood with respect to lexicographical order and mul-
tiplication performed componentwise.

7.7 Claim: Let a; b be a greedy step,jaj∞ = 1.
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a) ja�bj∞ � 1. ja�bj∞ = 1, thenja�bj1� jaj1.

b) az 6= 1, bz = 1. Thenaz = 0, jax�bxj+ jay�byj � jaxj+ jayj�1.

c) az= 1, �1< ax < 0, 0 6= ay 6= +1. Thenjbj∞ < 1.

d) az= 1, �1� ax < 0, 0< ay < 1. Thenjbj∞ < 1.

The same holds for coordinates(x;y;z) exchanged with(y;z;x), (z;x;y), (�x;�y;�z),
(�y;�z;�x), (�z;�x;�y).

Proof of Lemma 7.4: Since Claim 7.6 and Claim 7.7 are invariant under cyclic
permutation and inversion of coordinates, we may assume without loss of generality
that ῑ = (z;+), bz = 1. According to Claim 7.7b),az = 0. Consider the 25 cases
ax;ay 2 f�1g;(�1;0);f0g;(0;+1);f+1g:

a) �1< ax < 0, 0< ay < 1 contradictsa2 ∂Q.

b) �1 < ax < 0, ay = 0; �1 < ax < 0, �1 < ay < 0; ax = 0, 0< ay < 1;
ax = 0, ay = 0; ax = 0, �1< ay < 0; 0< ax < 1, 0< ay < 1; 0< ax < 1,
ay = 0; 0< ax < 1, �1< ay < 0 similarly.

c) ax = 1, ay =�1:
a; b greedy, so by definition9C2 C: b;02 a+C. Sinceaz � (sgnax;sgnay) =

(0;0), case a) of Claim 7.6 fori = 2 implies lexicographically:

(0;0;0)� (bz�az) � (sgnaz;sgnax;sgnay) = (0;bz�az;az�bz)

Thereforebz� az, a contradiction: this case does not occur.

d) ax = 1,�1< ay < 0; ax = 1, ay = 0; ax = 1, 0< ay < 1; ax = 1, ay = 1;
0< ax < 1, ay = 1; 0< ax < 1, ay = �1; ax = 0, ay = 1 don’t either.

e) ax = �1, ay = +1:
This time, case b) of Claim 7.6 fori = 1 holds, ensuringby < ay = 1. Further-
more, by Claim 7.7a), 1�by � jay�byj � ja�bj∞ � 1. Similar application of
Claim 7.6 fori = 0 yields 0� bx >�1. Thus�

1�jbxj
�
+
�
1�jbyj

�
= jax�bxj+ jay�byj � jaxj+ jayj�1= 1;

the inequality coming from Claim 7.7b). Hencejbxj+ jbyj � 1. As we already
know jbxj; jbyj< 1, this meansbx 6= 0 6= by, thereby proving

bz = 1; �1< bx < 0; 0< by < 1:

Put this into Claim 7.7c) to see: 1> jcj∞ � jdj∞
p

f) �1< ax < 0, ay = +1:
Again, Claims 7.6 and 7.7b) saybz= 1,�1< bx < 0, 0< by < 1, sojcj∞ < 1.
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g) ax = �1, ay = 0:
By (bx + 1) + jbyj � 0 (Claim 7.7b), necessarilybx = �1, by = 0. Which in
turn requires (Claim 7.6)cz < 1, cx > �1, cy < 1. So jcj∞ < 1 unlesscy =

�1. Analogously to case e),cy = �1 means�1 < cx < 0, 0< cz < 1 and
thereforejdj∞ < 1 due to Claim 7.7c) for coordinates(x;y;z) exchanged with
(�y;�z;�x).

p

h) ax = 0, ay =�1:
Then necessarilyb= (0;�1;+1), cx = 1,�1< cy < 0, 0< cz < 1, jdj∞ < 1.

i) �1< ax < 0, ay = �1:
Apply Claim 7.7b) to see�1< bx � 0,�1� by < 0. If bx was 6= 0, then Claim
7.7c) would meanjcj∞ < 1. Thus,bx = 0 and (Claim 7.7b)by = �1. As above,
cx = 1,�1< cy < 0, 0< cz < 1, andjdj∞ < 1.

j) ax = �1,�1< ay < 0 similarly:
�1� bx < 0, �1 < by � 0. For by 6= 0, we havejcj∞ < 1. And for by = 0,
we havebx = �1, implying (like in g)cy = �1, �1 < cx < 0, 0< cz < 1 and
jdj∞ < 1.

k) ax = �1, 0< ay < 1:
Claim 7.6 prohibitsbx = �1. Claim 7.7b) then infers�1< bx < 0, 0< by < 1.
And jcj∞ < 1 by Claim 7.7c).

l) ax = �1, ay = �1:
Then�1� bx � 0, �1� by � 0. Consider sub-cases

i) by 6= 0, 0 6= bx 6= �1 ) jcj∞ < 1 by applying Claim 7.7d).

ii) by 6= 0, bx =�1 ) �1< cy� 0, 0� cz< 1 using Claim 7.6 and Claim
7.7a).jcj∞ = 1 requirescx =�1. But then, neither dob norc leave the face
F(x;�) whicha started in, preserving strict decrease of the sameΦ(+;�) all
the time due to Lemma 7.3.

iii) bx = 0
7:7b)
=) by =�1. Refer to case h) to see:jdj∞ < 1.

iv) by = 0
7:7b)
=) bx = �1 which transforms to case h) under change of co-

ordinates(x;y;z) 7! (�z;�x;�y), and therefore cy = �1, 0< cz < 1,
�1< cx < 0, jdj∞ < 1 as well.

Proof of Lemma 7.3: Considerax = 1 = bx, the other cases being similar. Since
(bx� ax) �

�
� � �
�
= (0;0;0), we have case a) rather than b) of Claim 7.6. Therefore,

ax �
�

sgnay;sgnaz
�
� (0;0) which means(ay;az) � (0;0). Now, apply Claim 7.6 to

i = y and get
(by�ay) �

�
sgnay;sgnaz| {z }

�(0;0)

;sgnax| {z }
=1

�
� (0;0;0);

henceby � ay. If by < ay, we are done.
So, beby = ay. This requiresay �

�
sgnaz;sgnax

�
� (0;0). Combining that with

(ay;az)� (0;0) impliesaz� 0 for ay 6= 0 anday = 0. One more time, look at Claim
7.6 to see (bz�az) �

�
sgnaz| {z }
�0

;sgnax| {z }
=1

;sgnay
�
� (0;0;0) andbz� az.
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Let’s finally exclude the possibility ofbz= az by remarking that this meansa; b= a,
a self loop. Such, on the other hand, cannot occur in PNGs, as eachC 2 C has 062C
and thusu 62 Pj (u) in Equation (7).

Proof of Claim 7.7: Since, as a prerequisite to Theorem 3.6,d̃̄ι 2 D̃ is an extension
of
�
j � j∞; j � j1

�
w.r.t. lexicographical order,everyarc — greedy or not — inG(C;D̃;P)

trivially obeys a).

For b),jaj∞ = 1 andaz 6= 1 and require�1� az < 1. 1�az= jbz�azj � jb�aj∞
a)
� 1

further restrict to 0� az < 1. Supposeaz > 0, then application of Claim 7.6 toi = 3
yields

(1�az; any; any) = (bz�az) �
�

sgnaz;sgnax;sgnay
�
� (0;0;0)

independent of which of the two cases actually holds. Hence,az� 1: a contradiction.
The rest of b) is obtained by insertingaz = 0, bz = 1 into a).

�1< ax < 0 implies�1
7:6
< bx

a)
< 1, thereforejbxj < 1. Similarly, cases�1< ay < 0

and 0< ay < 1 yield jbyj < 1. Analogous arguments in caseay = �1 only gives
�1� by � 0, butby = �1 is ruled out by part b) of Claim 7.6. Finally, fromaz = 1
follows 0� bz� 1, and againbz = 1 prohibited:jbzj< 1, too. Togetherjbj∞ < 1, the
claim of c).
Finally, part d): 0< ay < 1, so�1< by < 1. �1< ax < 0, so�1� bx < �1. Even
for ax =�1, bx =�1 is impossible due to Claim 7.6b). The same holds forbz = 1, so
0� bz < 1 andjbj∞ < 1.

Proof of Claim 7.6: The reader will easily verify that̄f : f+;0;�g3!f+;�g3;

fi : k̄ = (k0;k1;k3) 7! ki� j(k̄); i� j
�
k̄
�

:= i +min
�

j = 0;1;2 : ki� j 6= 0
	

(17)

is exactly the one used in Equation (10) and has the following property:

fi
�
k̄
�
= s2 f+;�g , s� (ki;ki�1;ki�2)� 0̄ ) s� (ki;ki�1)� 0̄; (18)

Remember, that w.r.t. lexicographical order and forx;y2 IR, ū2 IRn, v̄2 IRm:

(x;y)T (0;0) , (sgnx;y)T (0;0) , (sgnx;sgny)T (0;0) (19)

ū� 0̄; v̄� 0̄ =) ū
 v̄� 0̄ (20)

ū> 0̄; ū
 v̄� 0̄ _ v̄
 ū� 0̄ ) v̄� 0̄ (21)

ū
 v̄ := (u0v0;u0v1; : : : ;u0vm; u1v0;u1v1; : : : ;u1vm; : : : : : :unv0;unv1; : : : ;unvm):

Thus, fors̄2 f+;�g3,

0;b2 a+Cs̄
(10)() 8i = 0;1;2 : fi

�
sgn(b�a)

�
= si = fi

�
sgn(�a)

�
(18)()
(19)

�
bi �ai;bi�1�ai�1;bi�2�ai�2

�
�si =: ūi � (0;0;0) (22)

^ �
�

sgnai;sgnai�1;sgnai�2
�
�si =: v̄i � (0;0;0)

which by (20) yields, considering only the first 3 components of ¯ui
 v̄i :

�s2
i (bi�ai) �

�
sgnai;sgnai�1;sgnai�2

�
� (0;0;0) (23)
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and in particular (s2
i = 1) part a) of the claim. For b), beai �

�
sgnai�1;sgnai�2

�
< (0;0):

Hence, 06=�sgnai = fi(�sgna) = si =�si�1 by definition of fi and fi�1. It suffices
to showbi 6= ai since the rest follows from (23).
To this end, suppose on contraryai = bi. First component of Equation (22) vanishes:

(0;0)� si �
�
bi�1�ai�1;bi�2�ai�2

�
= �si�1 �

�
bi�1�ai�1;bi�2�ai�2

�
Application of (22) toi�1 instead ofi requires the reversed inequality to hold, too:

=) si�1 �
�
bi�1�ai�1;bi�2�ai�2

�
= (0;0); bi = ai by assumption

implying (si�1 6= 0) a= b in contradiction to the prerequisites.

Be now valid, for eachi = 0;1;2, one of cases a) and b);si := fi
�
sgn(�a)

�
and we

will prove�a;b�a2Cs̄ by verifying Equation (22). Suppose

(bi�ai) �
�

sgnai;sgnai�1;sgnai�2
�
< (0;0;0):

Multiply by s2
i = 1� 0 according to (20) to find out

si � (bi�ai) �si �
�

sgnai;sgnai�1;sgnai�2
�| {z }

=:ū

< (0;0;0);

ū being� (0;0;0) by definition ofsi and (18). As ¯u 6= (0;0;0), we have even ¯u <

(0;0;0) and may concludesi � (bi�ai)> 0, yielding Equation (22).
If (bi�ai) �

�
sgnai;sgnai�1;sgnai�2

�
= (0;0;0), necessarilybi = ai and (case a)

ai �
�

sgnai�1;ai�2
�
� (0;0): (24)

If 0 6= sgnai = �si, this means�si �
�
sgnai�1;sgnai�2

�
� (0;0), and if 0= sgnai,

ki = �sgnai = 0 reduces Equation (18) to�si �
�
sgnai�1;sgnai�2

�
� (0;0), too. So,

take prerequisite w.r.t.i�1

(bi�1�ai�1) �
�

sgnai�1;sgnai�2
�
� (0;0)

and multiply withs2
i = 1 to end up atsi � (bi�1�ai�1) � (0;0). For ai�1 6= bi�1, this

proves (22), so suppose equality. Similar to above, this means (case a)

a�1 �
�
sgnai�2;sgnai

�
� (0;0) and (bi�2�ai�2) �

�
sgnai�2;sgnai

�
� (0;0);

the latter from prerequisite fori�2. Therefore,si�1 � (bi�2�ai�2)� (0;0). Equation
(24) finally requiressi = si�1 for bothai = 0 andai 6= 0.
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