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Abstract

A geometric spanner with vertex setc IRP is a sparse approximation of
the complete Euclidean graph determined?byVe introduce the notion gfar-
titioned neighborhood grapi®NGs), unifying and generalizing most construc-
tions of spanners treated in literature. Two important parameters characterizing
their properties are the outdegriee IN and the stretch factof > 1 describing
the ‘quality’ of the approximation. PNGs have been throughly investigated with
respect to small values df. We present in this work results about small values
of k. The aim of minimizingk rather thanf arises from two observations:

a) k determines the amount of space required for storing PNGs.

b) Many algorithms employing a (previously constructed) spanner have run-
ning times depending on its outdegree.

Our results include, for fixed dimensioBsas well as asymptotically, upper and
lower bounds on this optimal value kf The upper bounds are shown construc-
tively and yield efficient algorithms for actually computing the corresponding
PNGs even in degenerate cases.
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1 Motivation

Spanners allow for an efficient solution of many geometric problems. For given finite
setP  IRP, such a grapl& = (P,E) approximates the complete Euclidean graph up
to some factoff > 1. f-spanners enabled Rao and Smith to construct a FPTAS (Fully
Polynomial Time Approximation Scheme) for the Euclidean Travelling Salesperson
Problem [21]. Further applications are closest point queries [25], motion planning [7]
as well as many range searching problems [1, 18].

For example, the objective ofcrcular range queryis reporting all those pointsof P

lying within a circle of given radius and centec. Having constructed af-spannefc

for P  IRP of outdegreé, queries with centerse P can be answered in nearly output
sensitive running time, i.eQ( fkm) independent ofP| andm close to the number of
points reported [14].

More precisely, this kind of geometric searching problems occurring in interactive
virtual reality animations requirgs to have only aveakenedpanning property: The
‘radius’ of a path fromsto t, rather than its total length, needs to be bounded by a
factor f*. In particular, every (strongf)-spanner is a weak*-spanner for somé* at
most as large a$, usually substantially smaller.

Starting with Yao [28], spanners for givéhare usually computed by a generalization

of proximity graphq17]: Partition IR into k € IN convex cone€y, ..., Ck_1. Then,

from vertexp € P, draw directed edgesics) to the closest point o lying in the
translated cong + C;; do this for j = 0...k<1. The resulting graph is called a
partitioned neighborhood grap{PNG). Its properties strongly depend on the number
and shape of the coné€y, ... ,Cx_1} =: €, but also on the norm(-) inducing the (not
necessarily Euclidean) notion of ‘closest’: A disadvantageous choice for the latter may
result not only in big values of but even fail to produce stronly connected graphs!
However, every PNG = (P,E) is sparse withE| < kn= O(n), n:= |P| and benefits

from the simple construction principle, numerical robustness [2], fast computability (in
time optimal up to a polylogarithmic factor [6]) and locality properties that allow for
incremental dynamic updates [14]. Furthermore, PNGs have applications in min-cost
perfect matching [27] and answering cone range queries in output sensitive time.

GivenD and smalle > 0, sufficient conditions o€ andd(-) have been investigated

in the literature in order to ensure that, for any pointRethe according PNG is an
(1+ ¢)-spanner. Indeed, many applications — like the TSP-FPTAS mentioned above
—rely ong — 0.

However, there are cases where the outde@ree|C| of G is of equal importance

as its stretch factor: Consider the mentioned circular range query with running time
proportional tof - k. But even for other algorithms that dmt depend ork, a small
outdegree may be more crucial than a sniallhen it comes to actually implementing

it. Suppose, for example, that one can choose between a sp@npef small f,

but large outdegrek and one of small outdegrefe but large stretch factof, called

Gt - On the one hand, the algorithm will run faster wéh x, but this graph requires

more memory and access to secondary storage (e.g., a disk) being about 1000 times
sIower.GﬁR on the other hand entirely fits into one’s computer’'s main memory so that
eventually it still outperform&s , even iff is 500 times bigger thafi!



We therefore aim to determine the minimal valu&@fogether with its dependence on
dimensiorD) such that PNGs of this outdgree still are spanners/weak spanners. Upper
bounds on this extremal problem in combinatoral geometry are not only of theoretical
interest but also lead to efficient algorithms for constructing such graphs. Particular
emphasis is laid on ensuring that these also work for degenerate cases. Matching
lower bounds prove their optimality.

In Section 2, we give formal definitions for the notiogisanner PNG, and the goal

we aim for. A survey of both previous and new results can be found in Section 3,
together with a tabular compilation of the actual bounds induced thereof. Proofs of
theorems leading to lower bounds are collected in Section 5 whereas Section 7 contains
those for upper bounds. The part describing algorithms which construct PNGs without
requiring general position have been put one Section in advance since most readers
will probably be more interested in actually computing the optimal graphs that realize
our upper bounds. For similar reasons, conclusions and open problems are exposed in
Section 4.

2 Definitions

2.1 Spanners

Fix dimensiorD € IN and some norm-| on IRP. Given a patts= pp~+ pp~+ ...~
pm=tfromse Ptot € P C IRP in some geometric grap@ = (P,E), the numbers

m
f(po,-.. Pm) _lepi_mpil / | Po<=Pm| 1)
1=

max | po<=pi| / | Po=Pm| (2)
i=1..m

f*(p07---7pm)

are called itstretch factorandweak stretch factqgmrespectively. Anf-spannerfor P

is a graph which for al§,t € P contains a path fromtot of stretch factor at most;
similarly for aweak f*-spanner..

Recall thakevery(strongly) connected graph trivially comprisesfaspanner for some

f < oo, simply by finiteness oP. But of course, the goal is to construcispanners
with f being independent d?. This is reflected by calling graphs forming a family
G = {G(P) : P C IR finite} to beuniform f-spanners iff eacks(P) is an f-spanner;
call themuniform spannerg there existsf < c such that they are uniforspanners.
Respective notions will be used for weak spanners.

Let us remark that, by topological equivalence of any two norms 8n@®aim 5.5),
transition from|- | to |N| affectsf by merely a constant factor. In particular, the notion
of ‘uniform spanners’ does not depend on the chosen norm.



2.2 Partitioned Neighborhood Graphs
To formalize PNGs, consider some famidy= {Co,Cy, .., /

C«_1} of convex cones [15] forming partition of IRP in ~. G /
the sense that it covers the whole space and is ‘almost’ Cz\\\ / Ci//
disjoint: pa—
0 3
k-1 | T~
UGci = R®, Vi£j: CynC c {0}. ,/
j=0 I
In this context,C C IRP is said to be aconvex conef !
A(u+v) € C for all u,ve C andA > 0. Accordingly, | Ve s
we need a familyD = {do,dy,...,dk_1} of k normsd,;. / U"‘Q//:/ .
Then, for finiteP ¢ IRP, the partitioned neighborhood / 7 v+G
graphG(C,D;P) = (P,E) is defined by choosing, to each | - *
vertex u € P and each X j < k, one neighborv in u \\\
(Cj+u)NP\ {u} =: Pj(u) nearest ta with respect tal;. .
More precisely, the edgdsof G(C,D; P) are characterized by three conditions:
VvueP Vj: Pjuy=0vVv IvePj(u): (uv)cE (3)
(uv),(uw) e E,vEwW = Vj: v¢Pj(u) v wgPi(u) (4)

(uv)eE = dJj:vePj(u) A WePj(u): dj(veu) <dj(Veu)  (5)

To define thegreedy patfrom stot in PNGG = (P, E), consider the uniqug; € €
such that € s+C;j. Then, since € P;(s) # 0, there exists (3) at least and (4) at most
onev € Pj(s) such thaf(s,v) € E. Takes~- v as the first step and repeat framo t.

2.3 Measures of Distance

In the previous paragraph, proximity of two points was gauged with respect to some
normd;. But in fact, our considerations do not rely on its symmetry propeltynay
therefore be a more general distance functiofR® — [0,) C IR which is

positively linear d(Av) = Ad(v) veRRP A>0
nondegenerate d(v) #£0 IRP>v+£0
and convex. d(u+v) <d(u)+d(v) u,ve RP (6)

It is well known that such mappings uniquely correspond to the compact and convex
subsetK of IRP with 0 in their interior: According to Claim 5.5, the unit sphere
{ve IRP:d(v) < 1} is such a set and, vice versés so calledVinkowsky functional

Mk fulfills the three conditions above,

(V) = inf{u>0:v/ueK} = min{u>0: pK>v}.

For dealing with cases where two point§ € P;(u) are both closest ta, we permit
the distance functiod; to include arule for breaking tiesi.e., a total (ofinear) order
dj C Cj x Cj that extends the partial ordef (u,v) : u,ve Cj, u=v Vv dj(u) < dj(v)}

29:= {(u,v) :u,v € Cj,dj(u) < dj(v) } is no order: It violates axiom(t,v), (v,u) € O = u=V".
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induced byd; onC; in the sense that
Y,we G dj(v) <dj(w) = (v,w)ed;.

By the axiom of choice, such always exists [26] and will be called axtended
norm Equation (5) then has to be replaced by

(uv)eE = dj:vePj(u) AVWeP(U): (veuVeu) € d; (7)

2.4 Ourgoal
So, each choice af andD = {ch : j = 0...ke=1} induces a family
5(e,D) = {G(e,D;P) : P ¢ R finite}

of graphs with outdegrel€|, and we aim to determine for different dimensidhshe
quantity k(D) =min{ke IN| f(D,k) < o} where

f(D,Kk) ;= inf { f>1 | 3¢ disjoint partition of IR into k convex cones
3D collection ofk extended norms (8)
¥ P C IRP finite : G(€,D;P) is f-spanne}

In other wordsk(D) is the least number of cones required such that this family consists
of uniform spanners and their corresponding Euclidean stretch factors. Similarly, we
investigate on the correspondingly defined numik&(®) and f*(D, k) for uniform

weak spanners.

Since anyf-spanner is a weal-spanner as well, inequalitidg (D) < k(D) and
f*(D,k) < f(D,k) are obvious. Furthermoré(D,k) > f(D,k) andf*(D,k) > f*D,k)

hold whenevek < k: simply choosé«k cones empty.

3 Results

There already exist works which, in spite of focussing for» 1, showed specific
choices forC andD to yield partitioned neighborhootispanners. In that way, they
imply upper bounds ok(D) andf (D, k). Ruppert and Seidel for example proved [23]:

3.1 Theorem: Suppose everg € € has angular diameter
«(C) :=sup{«(a,b) : a, b e C} at most8 < 1/3. Consider
(arbitrary total extensiod; of) the normd; with unit sphere
depicted to the right. Then, each stpg ~+ pm;1 Of the
greedy path (see 2.2) (E(G,@; P)froms= pptot =0 has

| Pm|, | Pmyi1|, > (125iN(6/2)) - |pmi1 ©Pm|, (9)
Sincek = 7 equally sized wedges do form such a partitiom dimensionD = 2,
G(C,D;P) is an Euclidearf-spanners for
f = ;‘
12sin(8/2) le=2my7

~ 757> £(2,7), thus k(2)<7. O

Combining Theorem 3.1 with the following result from Coding Theory due to Hardin,
Sloane, and Smith [16] implidg3) < 20 andf(3,20) < 88.1.:
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3.2 Theorem: There exists a covering of the unit sph&fec IR® with k = 20 caps of
angular diamete ~ 59.25°. O

The table below shows a compilation of such results as well as the improved upper
bounds presented in this paper. Note that we are the first to prove lower bounds!

dim | reference bound bound
D=2 | Keil, Gutwin 1991 k(2) <9 k*(2) <9
Ruppert, Seidel 1992 k(2) <7 k*(2) <
f(2,7) <757 | f*(2, 7) < 7.57
Fischer, Meyer a.d. Heide, k*(2) <
Strothmann '97 f*(2, 6) < 2
Fischer, Lukovszki, Ziegler 199 k*(2) <
f*(2,4) < < 2.29
new k(2) >4 k*(2) =4
conjecture k(2)=4
D =3 | Hardin, Sloane, Smith 1994 k(3) <20 k*(3) <20
f(3,20) <881 | f*(3,20) <881
new k*(3) <8
f*(3,8) < 2.53
new k*(3) > 5 k*(3) > 5
D — o | Rogers 1963 k(D) < 29() | k*(D) < 29(P)
new k(D)>D+2 | k"(D)>D+2

For 60 < 0 < 90°, greedy paths be-
come unboundedly long (see figure)
but remain of bounded diameter. As

for degenerate point sef this may
include the possibility of cycling infi-
nitely without ever reaching, it does ®
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not necessarily imply obtaining a weak
spanner. By carefully choosing the
cones’ boundaries to be open or closed
and by employing sophisticated exten-
sions of norms, these cases can be
taken care of without some ‘general
position’ presumption. However, do-
ing so becomes a singular combinato-

rial challenge. The planar cases have been treated in [14] and [12]:

3.3 Theorem: LetD = 2,k > 7, andC consist ofk consequtive wedges

C = {(rcosd),rsinq)):r -

2 —j<b< —

2;(J+1)},

j=0...k&el.




Then, forD as in Theorem 3.1G(C, D; P) is a weak Euclideari*-spanner for

f* < max{\/1—|-485irf‘(n/k),\/5<:>4005(2n/k)}. O

3.4 Theorem: LetD = 2 and€ = {C,,,C,_,C_,,C__} the

four canonical quadrants with boundaries open/closed as show@ , | C,
to the right. LetD = {d,,,...,d__}, dj arbitrary total exten- !

sionof 0

{(vw) : vweCj, C ! C
(Vo < W) V' (Moo = [Wleo A [Vl < [Wio) } -

i.e. the lexicographical order @y induced by — (|V]w, |V]o),

1/p ,
Mp= (T NP)",  Mo=maxul,  Mo=minjy|
|

Then potential functio®(s) = (|s&t|w, d(s<t)), d(xy) = [x+y
in each step of the greedy path.

In particular, the latter does reathvith (not necessarily strictly) decreasingst|c.
So,5(C, @) are uniform weak spanners of Euclidean weak stretch

o< {|a<:>b|2/|a|2:|a|oo:1:|b|oo} = /3+VE O

3.5 Theorem: Given P C IR?, n:= #P, the grath(G,@;P) of Theorem 3.3 can
be computed by sequentially performikgweep line algorithms, each of tinfgn -
logn). The graph of Theorem 3.4 can be computed in the same magnitude of tithe.

, Strictly decreases

If P c IRP is restricted to contain no two points which coincide in any coordinate (i.e.,
all projectiond; : P — IR, u— u; are injective), thei* (D) < 2P and the correspond-

ing PNG can be computed in tin@z(n-logD*ln) . However, like in the above result,

we want degenerate cases to work as well. The first of our contributions achieves this
for D = 3. Again, special attention has to be paid to open/closed boundaries. Observe
that the potential functio® maps to a lexicographically ordered set of triples instead

of tuples:

3.6 Theorem: Let D = 3 and consider the 8 canonical octants. Turn them into a par-
tition by includingeach of their common boundaries to one of them and excluding it
from the others in the following waye := {Cr:1 € {+,<}3},

Cr:= {qe IR® q# 0, f(sgnay, sgnoy, sgng,) =1} (10)



for f = (fy, fy, f2) : {+,0,<33 = {+,<}3, given byf_\{+ _ys =identity and otherwise

X0 0 0 0|+ + & <+ + & <0 0 0 0+ <0
y(|+ + & /0 0 0 0|+ & + /0 0 4+ < 0 0O
z|+ & + |+ ¢+ /0 0 0 0/+ «« 0 0 0 0]O0
x|+ + & <+ + & &+ + & <+ &+ & + <+
b+ + & e+ @+ o+ &+ &+ &+ &+ &+
fl+ & + &+ &+ |+ + & &+ &+ &+ &+

Furthermore, be the partial lexicographical order induce@iyy v — (|V]eo, |V]1) €X-
tended to a total ondr. Then,G(C, D; P) has weak stretch factor 2 with respect {2,

and Euclidean weak stretdh < 4/(74-/33)/2. O

3.7 Theorem: GivenP ¢ IR3, n:= #P, the grapr(G,@; P) of Theorem 3.6 can be
computed in time& (n- log? n) from 48 sweep plane passes.

The lower bounds mentioned are immediate consequences of the following two results:

3.8 Theorem: In the planar cas® = 2, no choice of¢ andD of sizek < 3 makes
(e, D) afamily of uniform weak spanners, since there exstsIR? ands, t € P such
that no path fronstot is present at all. O

3.9 Theorem: In case® > 3, no choice of2 andD of sizek < D +2 makesg(C, @)
a family of strongly connected graphs (and thus neither of uniform weak spanners).
More precisely, inequalitiek(D) > k(D<1) <1 andk*(D) > k*(D) <1 hold. O

This does not rule out the possibility to obtain (weak) spannerBfer3, k = 6. We
can, however, exclude the choice of 6 convex cones arising canonicaly from the faces

ofa cube((ft andC denote topological interior and closed hull@frespectively):

3.10 Theorem: Suppos@ = {Cr: 1= (i,s) € {x,y,2} x {+,<} } and

CGcGcC,  Gi={qeR%q#0,/q.<sxq}.

Then to any collectiotd of 6 extended norms there exigts™ IR such thaG(C, D; P)
is not strongly connected. O

4 Conclusions/Open Problems

We presented upper and lower bounds for the numkighsandk*(d), i.e., the min-
imally achievable outdegree such that partitioned neighborhood graphs (PNGs) still
form spanners and weak spanners, respectively.

The notion of PNGs we suggested is very general since we alloarbitrary parti-
tions of space into convex cones. Furthermore, the neighbor needs not be ‘nearest’ in
the Euclidean sense but with respectatty nondegenerate convex distance function



d which may be different for each cone and even be equipped with a rule for break-
ing ties between equally distant points. In particular, most existing constructions of
spanners are PNGs.

We do not aim to find the minimal outdegree of arbitrary span(teis is well known,
anyway: 3. See [E}] but of those which can be constructed in nearly linear time
O(n-polylogn). Our upper bounds are constructive and yield practical algorithms
of this optimal time complexity. We obtained lower bounds by proving that for smaller
outdegree, the corresponding PNGs will in general be not only of unbounded length
and diameter but even disconnected (an important observation, see below!).

This was done by a new technical tool which took care of the vast range of possible
choices for the distance functions. This allowed us to reduce the topological part of
the problem. The remaining challenge of considering all partitions of space into
convex cones was still difficult enough: finding so called cycles, a simultaneously
combinatorial and geometric property of a family of cones.

For k*(2) = 4, our bounds are tight. Concerning the gap between 4 and k{( 29y

we conjecture that the actual value is 4, too. In order to prove the appropriate upper
bound, greedy paths do not suffice any more.

In higher dimensions, we belieké3) = k*(3) = 8 andk(D) = k*(D) = ©(2°). PNGs

then would have the interesting property that

e they are are either disconnected or

e permit paths of uniformly bounded length.
The other cases

e connected but unbounded diameter and

e bounded diameter but unbounded length

could not occur by themselves. This is different for arbitrary families of geometric
graphs!

Apart from filling the remaining gaps by tightening the upper and lower bounds, an-
other direction of research seems promising: What happens if the notion of ‘closest’ is
not deduced from an extended nodnbut from anarbitrary total order< of coneC?
Perhaps there exists a choice-othat yields PNG-spanners of lower outdegree

Even in casex is required to be compatible with the cone’s operatiohafid "+” in
the sense of [15], i.e.,

u<v, A>0, weC = AU =< AV A U+W =< VW,
we have no idea whether this actually affects the vakidsandk*(d) or does not.

The authors would like to thank Artur Czumaj for many seminal discussions and sug-
gestions.



5 Proofs of lower bounds

For proving a lower bounckverychoice ofC andD has to be taken into consideration.
The following important result allows us to get at least rid off the norms:

5.1 Definition: Be C a collection of (not necessarily disjoint neither covering) convex
conesC C IRP. A cycleof € is a finite sequencgy,Cy, ... ,CL—1,CL = Cp) of nonzero
pointsg € IRP such that

VI=0..Lel 3CeC: 0eg+4C A gueq+C (11)

5.2 Proposition: Fix some partitior€ of IRP into convex cones. Suppose there exists
subspac& and nonzero vectore IRP such that

¢:={CnsS:CecCveC} (12)

contains a cycle. Then fanychoice of extended norms there exist® C IRP such
thatG(C, D; P) is not strongly connected. Here we ident8yvith RY, D'<D. O

Proof of Theorem 3.8: In casek = 3,
k—1
%{(Ci) =360 = di: «G) <120 < 180C. G
i=

The tangent linéS at C; through O therefore intersects pre- G 7
cisely the other two cones. Chooge: O from their com- P
mon boundary. IdentifyingS with IRY, we have¢ = /§
{(«,0],[0,+c0) } with obvious cycle(<42,+42,<42). -

In casek = 2, both cones are halfspaces. Choofem their v
boundary an&perpendicularte. Casek—= listrivial. O

Proof of Theorem 3.10: Considerv = (1,1,1).
S= {u€ R3:uLlv} = IR?viavectorspace isometry

&/1/2x/1/6y
X -
( ) = | +v/1/2x=4/1/6y
y
+/2/3y
The collection of cone€’ induced by is shown to

the right; boundaries may be open or closed. Now,
let 0< & < 30 arbitrary. Then, points,V,W ¢ S

( (21/2/3¢083, +1/1/6CoB+/1/25ind, ++/1/6 OB+ 1/1/25sind)
U = (+1/1/6c03+ /1/25ind, <+/2/3c0SB, ++/1/6 0D <>/ 1/2sind)
W = (+/1/6C0B/1/25ind,++/1/2sind+ 1/1/6c0S3, </2/3 o)
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corresponding to
u = (cog 30°+3),sin( 30°+9))
v (cog150° + 8),sin(150° + 3)) € IR?
w = (cog270 +9),sin(270 +))

obviously form a cyclgu,v,w,u) of ¢'. O

5.3 Claim: If C c IRP isconvexacC,be COZ thena+ boe C.

Proof: Let a, € C be a sequence convergentao b € C, therefore exists a baB
aroundb such thatB  C. For eachb € B and eachn, a,+b e C by convexity and,
lettingn — o0, a+ be C. This proves that the whole bal- B arounda- b lies within

C,soa+beC. O

Proof: (Proposition 5.2) Be (co,C1,...,C_1,CL = Co) a cycle of€, i.e.,ci11 €

¢+ (GNvt) Co+C andeg € G. ve G, thereforet := pve C C IRP for any
p> 0. Applicatiop ofNCIaim 53t@=t,b=«g ensures c ¢ +G; Cl+1€C +G,
anyway. Now led, € D belong toC, € €, d; the distance function whicty extended

(%)
to. Sinced(c+1<¢) is independent oft andd, (t @q) < pd (V) <di(c) — o as
H— oo (Claim 5.5),

IA>0: VI=0,...,.Lel: citeq+C, digiiea) <dteg)
LettingP = {t,co,...,cL_1}, noc will therefore have an arc toin G(G,@; P). O

Proof of Theorem 3.9: Suppose = {Cy,...,Cc_1}, D = {do,...,dc_1} for k <
D+ 2. Consider the cade — 3. SinceCy_1 is convex, we can find at boundary point 0
some tangent hyperplattnot touchingCy_; other than in 0. The intersections with
and restrictions to thigD «<1)-dimensional subspace

Cy=ConH Ci =CinH Ci_o=C«k_2NH
dp =dol,, dy =di|,, .. di_p =02/,

therefore form a partitio®’ of H = IR? into k<1 < 4 convex cones and a fami@’
of extended norms thereon. Now, take the counter exafpldR? from Theorem 3.8
and place it ont® c IR®: The resulting PNGs are disconnectgd.
In cased > 3, employ the same argument as induction step.

+cC;
Attentive readers might have remarked that in some degenerate .
casesCyx_1 may include angles as large as 1&hdbe closed. ~
Here, we cannot guarantee the tangent hyperplane to be even £4l-\"
most’ disjoint toCyx_;. Fortunately, the subsequent Claim per- 7\
mits a characterization of these particularities! Siwith the AR
required property does not exist, take Cy_1, v € Cc_1. Sup-
pose first that=v ¢ Cc_1. Then, toe = |v|/2 > 0 we can find
w € Cx_1 such thatw<(«<v)| < € and in particulamw not col-
inear toxv,v. PlaneV, := spar{<v,v,w} has the property that
Co1:=VoNCiisa halfopen wedge of 180
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The partitionC = {CNV, : C € €} induced onV, by € will therefore look like to the
right: SinceCy_; is closed av, the adjacent weddg € € must form a nonzero angle
(whereas the one containirgv could perhaps be nothing more than a ray). Once
again refer to the Claim below to understand the existence of &lineough 0 which
does not touchs, \ (d Uék_l). Pointsc # 0 and<«c on this line then form a cycle
(+¢,<¢, +c) of

@'={CnS:CeCveCl={CnS:Ceevel).

Application of Proposition 5.2 completes this case. In case C(_1, S:= sparfVv}
and(+v, <v, +v) similarly forms a cycle. O

5.4 Claim: BeC C Vp = IRP convex,p € aC. Then, there exists
e either a(D <1)-dimensional hyperplandp_1 > p such thaHpNC C {p}

e orve Vpsuchthap+4ve CbutpevgC.

Proof: W.l.o.g. p=0and presumey ¢ C Vv ¢ C. The claim that

H with the required properties exists is trivial for= 1 and obvious

in dimension 2 (see sketch to the right). Proceed now by induction t
D+ 1. Beq < C arbitrary. Consider somB-dimensional subspace
Vp C Vp,1 containingg. And consider the plang going throughg 0
and 0 perpendicular t@p, i.e. VoNVp is one-dimensional.

0¢ CnV, =:C; is a convex set iV, with 0 at is boundary fulfill-
ing <v ¢ C, Yv € C,. For this reduction t® = 2, a 1-dimensional _\}
disjoint hyperplandd; (simply a line) through 0 is already known to |

\
exist. Now consider the projection Gfparallel to this line ontd/p, }

H
M(H1,Vp;C) = {LNVp : L line throughc parallel toHs,c € C}..

0¢ Cp :=M(H1,Vp;C) C Vp too is convex (since projectidi (Hy, Vp; -) linear map-
ping) and O a boundary point &p (asl1 is continuous). FurthermorexV ¢ Cp
W e Cpl

Indeed, bev=(v), ve Cand<¥ = M(w) € Cp, w € C. Be definition off1, linesA
andB throughv, V andw, <%, respectively, are parallel td;. A, B andH; therefore lie
on a common twodimensional subspabe Line C C V, throughv,w however is not
parallel toH; ( otherwisel1(v) = M(w) ) and so intersectd; in some point which,
by convexity, contains t€ as well. Butu € H; N C contradicts the choice &1, to be
disjointtoC.

Induction hypothesis is thus applicableGg and supplies &D «<1)-dimensional hy-
perplaneHp_1 through O disjoint to it.

Hp := Hp_1+ Hs then will do the job: Supposec CnHp. Then its projectioril(c)
will be onT1(C) NHp_1 contradiction thaHp_1 is disjoint toCp. O

5.5 Claim: (Topological Equivalence)Be d, andd, nondegenerate convex distance
functions on IR. Then there exist real numbers <O\ < A < « such that
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WERP:  Ady(v) < dp(V) < A-da(V).

Proof: Denoteel!) thei-th canonical unit vector of IR i.e.,eﬂi) =§jforl<i,j<D.
We start with the casély = | -|1:v= Zvie(‘) — > |vi|. DefineA == maxdp( +€e).
|
| |

Then do(v) = do(Jue") = do( Y WI(+DeV+ T |il(=nel)
[ ivi>0 ivi<0
(6) . .
<Y do(vl(+DEN) + Y do(ul(<1)e?)
ivi>0 ivi<0
= 3 Mlds(+€")+ 5 |mldp( =€)
ivi>0 ivi<0
< S NIAE Y A = |V A
ivi>0 ivi<0

This in turn implies thatl, is continuous: Let'" a sequence in Rconverging tov.

*

Then dy(VV) odp(v) < dp(VV v)

—
o

IN

AV ey, —0

—

*

and dy(v) edy(VV) < do(vevV) < AlvevV] =0,

inequalities (*) coming from

(6)
dp(a) ©dp(b) = dy(asb+b) =dy(b) < dy(asb) +dy(b) <dy(b) = dy(a<b).
Now consider the unit sphere 8° = {u€ IR : |u =1} ¢ R®,  well known to
be compact. Continuou!s,\SD therefore attains its minimal value:= instdb(u) on
someu'® ¢ 8P. dy(u®) = A = 0 contradicts the nondegeneracydsf thusA > 0.
This means that for arbitrasye IRP, u:= v/|v|2:

do(V) = dp(|V2-u) = |V2-dp(u) > |V2-A > |V1-AVD

and thus) := +/D - A will do the job.

In the general case, the above considerations show that wafid andAp, Ap to
boundd, andd, against - |1 in the sense thaty| - |1 < da < Ag|-|1andAp|- |1 < dp <
Np|-|1. \ := Np/Aq andA := Ap /A4 have the required property:

Bh < Mlho< o< Al o< N4 O

a a

5.6 Remark: If C is not closed,8° N C is not compact.

Claim 5.5 therefore does not hold if the distance functio
is defined only on a convex co@C IR2. The figure to the § —_— c
right depicts the unit sphere of sucldaC — IR which can- T

not be bounded from above by|». Tl

13



But even in cas€ is closed, there exist counter examples as
illustrated to the right: B& C IR® with circular cross sec-

tion. Forv € é letd(v) = |v|2. For boundary points € dC,
denoted(v) € [0,2m) the angle according to the drawing.
Then define

21

AV =AO) Mz AG) = 5

It is important to observe that indeed fulfills triangle in-
equality (6) on wholeC: This is due to the fact that points
on the boundary of sphef®(the cross section @) cannot
be represented as sum of two other pointS.in
As a consequence, convex C — IR possesses in general
no convex extension to the whole spacB!IR

0

Concerning Claim 5.3, the prerequisite COZ is crucial, too:
Forac C andb € C, a+ b in general does not lie i€ any
more!

To this end, consideZ ¢ IR® with triangular cross section as
sketched to the right. Poingsandb are on the same face of
C, butalies in the open part of it. And so doas-b. O

6 Constructing PNGs

Proof of Theorem 3.5, first part: Fix j. We will describe an algorithm to compute
those arcqu,v) of G(C,D;P) with v € P;(u). According to Equation (5), it then
suffices to repeat this process for egch 0,1, ... k<1,

For notational convenience, be the coordinate system such
that the symmetry axis @; coincides with thex-axis. Then
dj(u) = uy for u € C;, as a look to the unit sphere of o=
depected in Theorem 3.1 reveals. Sort the point® af

ascending order with respect to thgicoordinate — time
O(nlogn) — and let the vertical sweep lineproceed from
left to right. We maintain a data structusdor storing all thosei € P lying on the left
of L which have not yet got a neighboe u+C;. Whenevet. hits a vertexp € P, we
willinsert pto S, query the data structure aboutqi Ssuch thatp € g+ C;, create

14



according edgesq, p), and removeq from S p

indeed is closest tg. For, suppose;(p<q) = e
Px =0x < Px=0x = dj(p<q). Then the line which -
sweepsP in increasir)g order_ (0) 4 wquld have hitp™ 4 /14#@%***— My(q )
beforep, thereby having provideglwith an edge and ~_ ' @)

removed it fromS, a contradiction. S
Qe ><\ L Jo]

Take asS some realization of a dynamic sorted ar- PR LI (D)
ray of melements (e.g., a balanced binary tree) sup- - )
porting operations bCATE, INSERT, and DELETE G e a.+C
in (amortized) time9 (logm). N
Each of then points p € P is inserted exactly DR
once, hencem < n, adding to a total time for o N
insertions of O(nlogn). After any of then in- e ~d
sertion, the above algorithm performs a query of )
O(logm) 4+ O(#elements reportgd summing up to

anotherO(nlogn) 4+ O(n). And finally, q € P gets s
deleted at most oncé€l(nlogn).
Verticesu which still are inS after the sweeping haw (u) = 0 and remain without
outgoing edge.

Let us now explain how to answer the two-dimensional cone stabbing qGes=

{q €S:pe q—|—Cj} required above by means of the one-dimensionally ordered data
structureS. To this end, be the elements®$orted with respect to thejrcoordinates,

i.e., the projectiorflp(q) of p parallel to thex axis onto the sweep lindlg has the
advantage that is does not change while the sweep line moves and thus can be main-
tained by data structui® The latter two, on the other hand, do change but they permit

to solve the query

Qp)={geS:N_(q <N_(p)} N {aeS:Ny(a) >Ny (p)}

as follows:

M«(a)

M)

e Find the biggest (w.r.fl1_ ) g€ Swhich is still smaller thamp. Call thisq, .
e Find the smallest (w.r.f1, ) q¢ Swhich is still bigger tharp. Call thisq._.
e Report all verticeg) € Sbetweery, andqg_ (w.r.t.Mgp).

Performing a binary search with respect to one order within items sorted with respect
to another usually fails badly. Here, on the contrary, Claim 6.1 guarantees that it does
work. The first two steps can therefore be performed {togm) and the last one
indeed returns the elements@fp) in output sensitive time. O

6.1 Claim: With notions as aboveZ C {0}, the orders induced by _ andll, are
weaker than the one induced By in the sense that fay, § € S

Mo(q) <Mo(§) = N-(q)
Mo(@) >Mo(§) = N-(q)

n(@ A

.
Mn_(4) A M

(AVARVAN
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|
Proof: We consider< and supposdlo(q) < Mo(§) but //
M, (q) > M, (6). From the definition oflg andl, as center // ol
and upper boundary @, this impliesq’e g+ C. But then, /~¢i/,,
g € Swould have received the neighlmparid been removed ﬂi/,,q,,,,:
from S at that very moment when sweep lihehit § — a
contradiction. O L

creasingd; process all vertices in one pass.
This time,twolines are needed to cover that boundary. Therefore, divide the quadrant
along its diagonal axis: Within each p&f2, d; now has only one segment boundary

and can be treated as before. The resulting graph temporarily has outdegree 8, but a
subsequen®(n) processing will compare for eachits two neighbors corresponding

to the two parts o€ and keep only that arc to the closer one.

The other problem to obey is the boundary of quad@and whether it is belongs the
the cone or not. This can be taken care of by choogingiggest but smalleor equal
in the above algorithm angl correspondingly.

And third, the tie-breaking-rule (total order) must be applied in case two points are
equally close. The latter comes into play when the sweep line simultaneously hits two
(or more) verticegp; and pp: Eachq € Q(p1) N Q(pz) requires to decide which of
|p1<40|o and|p2 <q|o is smaller and create either afp1,q) or (p2,q) accordingly.
Luckily, the quadratic time for comparing eaph L to eachg € Q(p) can be reduced:
W.l.o.g. consider the loweE/2, the upper one being similar. Now, if the quer@p)

for differentp € L are processed in increasing ordeipgfthis will automatically obey

the| - |o condition!

Indeed, the shape @f/2 implies thatgy, < py for eachq € Q(p). Furthermore|v|o =
min{|w].|w|} = |w| = v, for ve C/2. Together, this yields

|p20|y = PLy =ty < P2y 0y = [P2<d|,  for pi,p2€L,pry<pzy. O

Proof of Theorem 3.7: Like in the two dimensional case, our algorithm will work
in phases, one for each co@ec C of the covering to compute those afeg p) with

p € C+q. Instead of a sweep lirle we will employ a planéd, sweeping the elements
of P in order of increasing-coordinate.

Again, we have to subdivide each cabén such a way that
within each part, the distance function’s unit sphere has a
planar boundary, i.ecj\C is a projection. To this end, cut
octantC = C, , 4 into three congruent subcon€g3 =
{veC : vy <w AV, < v} sketched to the right.

And again, too, the rulé- |1 for breaking ties in caskl simultaneously hits several
verticespy, p2 will automatically be fulfilled if these are processed in order of increas-
ing py+ p.. Put differently, letH sweepP sorted lexicographically with respect to

(xy+2).
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It now remains to find a dynamic data struct&r efficiently answering the dimen-
sional cone stabbing queri€¥ p) = {q €S:pe q—|-C/3}. Unfortunately, there is

no three dimensional analogon to Claim 6.1: Derfotgq) the projection ofg par-
allel to the upper boundary plane Gf 3 onto sweep planHé, i.e. the horizontal line
Hn (g+0*C/3) and correspondingli _(q) for the lower boundary.

Then there exist pointsg, § such thatl, (q) < M (d), M_(q) > MN_(§) but neither

g€ §+Cnorge g+ C: Take the two-dimensional example sketched in Claim 6.1 and
choose the third coordinates gfandd'so very different that they do not lie in each
other’s cone any more!

We will give it another try and analyze the applicabilityrahge treeq1]: These dy-
namic data structures can efficiently answedimensional orthogonal range queries
parallel to the axises

D
{geS:a<g<b,i=1....0} = Sn X[a,b) = Sn[ab)

i=1

in time O (log® m) + O (#elements report¢dNow consider the four faces @f/3 and
the planes they lie in. Be'l), u@, u®, ul¥ their normal vectors, oriented in direction
of C/3, that is

u = (0, 0, 1) lower boundary plane a&/3
u® = (1, 0,<1) /2 upper boundary plane 6f/3
u® = (0, 1, 0) front boundary plane of /3
u® = (1,41, 0)/v2 back boundary plane 6f/3

Assign to each vertep € P the 4-tuplep* of its distances to these planes

p'= (Y put Y P, Y pu®. Y pu?)
| | | |
and observe thatc C/3 if and only ifv* € [(O, 0,0,0), (oo,oo,oo,oo)). Thus,
qeQ(p) & qeSN(peC/3) & g eSN|[ep, (amw, o, om0, ).

So, a four dimensional range tr8ecan be employed to answer the qué&tp). This
gives a sweep plane algorithm of time comple>(i):§/nlog4 n) — two magnitudes of
logn slower than claimed.

One factor can be removed with the well knaofrarctional cascadingechnique [5, 19].
For the other one, once again subdivide the cGj8 by triangulating its quadratic
cross section: The two resulti@y 6 will have only three boundary planes. Henge,
andS* are three dimensional instead of four. O

6.2 Scholium® Be C a partition of IR into k convex cones an) a family of norms
dj, j =0,...,ke1. Suppose that eaah) equals the maximum of finitely many pro-
jections or, equivalently, its unit sphere is polyhedral.

ThenC;j can be subdivided intd; < « subcone€;/d; such that for each one,

3A scholium is a corollary not to a theorem but to a proof
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e its cross section forms @ «<1) dimensional simplex
e and d; ‘cj/aj is a projection.

Furthermore, grapls(C,D;P) can be computed from inp@& C IRP of sizen = #P
k-1

from performing 5 d; sweep hyperplane passes, each of lfm(ua- IogD‘ln). O
j=0

7 Proof of Theorem 3.6
We begin with a

7.1 Remark: concerning the mapping : {+,0,<}3 — {+,<)2 and its higher di-
mensional generalizations: This represents a convinient way of specifying for points
that are common to the boundary of several octéhrtsgeneral: hyperquadranG,

i€ {—|—,<:>}D) to which one it belongs, thereby turing the covering into a partition.
Each possible argumekte {+,0, <P assigns to a whole face or subface

Fe = {uc RP:sgru= E}, sgnuy, ... ,Uq) i= (Sgnuy, ..., Sgnug),

one hyperguadramf—(g). Denote #k = Card{i=1,...D: k = 0}, thenF has dimen-
siond <#pk.
Alas, not everyf is admissible for this purpose: Thiedimensional (improper) face

F.= Ci; k € {+,<}P must of course be mapped@.

And for example in two dimensions, faég, o) — the positivex-axis — may not be
assigned to the upper left quadrait ,, since it does not belong to its boundary:
f(+,0) must be eithe(+,+) or (+,<). This indicates that only zero components of
arguments are to be modified. The non-zero ofhesust leave unchaned:

ki#£0 = fi(k) =k (13)

As a generalization to this we require that, if a f&gés mapped to one hyperquadrant
Cithen all facesq lying w.r.t. inclusion betweef; andCiare so, too:

s:= fi(k) = f(ki=s)="f(k) (14)
with notation(k,i =s) = (ki,...,ki_1,S,ki41,...,kg). Condition (14) for example
says that if the positive-axis F, o o) belongs taC, | ) it is not allowed to assign
thexzplaneF, o ) (the relative topological closure of whi¢h, o0 belongs to) to,
lets say,C(4 _ 4. In our proof of Theorem 8, this kind of sub-/face compatibility
condition will ensure the monotony of potential functid to hold not only on a
(D «1)-dimensional fac& but also on its boundary, confer Lemma 7.3.

Now eachf fulfilling the above conditions (13) and (14) induces a permissible partition
C of space into hyperquadrants and vice versa.(Buust also be such that it produces
(weak) spanners. A necessary condition to thissording to Propatson 5.2, that

not ¢’ contains a cycle of length 2. We claim that the latter is equivaleritibeing
antisymmetric:

f(ek) = of (k) vke {+,0,&)P, k#0. (15)
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You will easily verify that thef we proposed fob = 3 indeed complies with all the
above conditions. This can also be seen from its formula representation (17) on page
24. On the other hand, absence of 2-cycles is only necessary: Our pro@fdoat

yield weak spanners begins with Lemma 7.3.

7.2 Claim: The following are equivalent:

a) For eachi =1,...D, s¢ {+,<} doesC’ as induced by, v= (di =9),S=
{u:u; = 0} according to Equation (12) in Progtien 5.2, contain no 2-cycle
(a,b,a).

b) Foreachi=1,...,D,se {+,<}, ke {+,0,&1P,

f(+ki=0) # f(+ki=s) v  f(eki=0) # f(<ki=5)

C) fis antisymmetric in the sense of (15).
Proof:

"c =a”: Takei, sand suppose thas, b,a) is a cycle ofC’, that is there eX|sA Be
{—I— <}P such that veCs,Cs, abes

0Oca+(Can9) " CCx bea+tCzy  0,acb+Cs.

The first impliesA) = s= Bj. The latter, by definition o€ in Equation (10),

requiresA = 1‘_(sgr(b<:>a)) andB = 1‘_(sgr(b<:>a)). Due to prerequisite (15),
A= <Band in particulas= A; = <B;j = s, a contradiction.

”

a=b": Giveni, s, andk. Without loss of generalityk; = 0. Letv:= (0 i=s),
S={ucR®:k=0=u =0}, a:=(cki=0) €S> (+ki=0)=b A=
f(+ki=s),B=f(<ki=s). Note thalve Ca CgasA = s= B;. Suppose
b) does not hold. Then
- —— ¥ —— — — ——
A=f(ki=9) 2 f(ki=0) = f(sgr=a)) = f(sgb=a))
and hencd <a,<a € C;. SinceSis of dimensiord &k, it even even follows
thatea e (CRNS)°. Similarly,acb e Cg, b e (C3NS)°. So,(a,b,a) forms a
2-cycle ofC in contradiction to a).

"b =c”: Suppose that componefitis not antisymmetric. From ak with fi (@E) =
fi(+ k) take one of minimal & i.e., the least number of zeros. Since

13)

k#£0 = +k 2 f(+k) Y ek P ek,

necessarilk = 0. Sets:= fi(—|-I?)) and verify



This contradicts b) unless there exigtg i such that

fi(+ki=0) # fi(+ki=s) v fj(eki=0) # fj(eki=s).
Again necessarilik; = 0. This time, ses = fj( + I?)
In casef; is not antisymmetric for thik either, we will find a third component
j different fromi and j such thatk; = 0, and so on. This process obviously
terminates after at mosl steps, simply because then there are not components
left: k = 0 in contrast to the prerequisite of Equation (15). So without loss of
generality befj antisymmetric:

fj(ok,i=0,j=0) = fj(wk) = ofj(+k) = =f| (+ki=0,j=0) = <&

(%

=s= fi(ek) = fi(ek j=0,i=0) @

fi(ek j=«8i=0).

fi is therefore not antisymmetric at arggma@ﬁ,tj = §), neither. But H(Ej
§) = #ok <1 contradicts the minimality of.

O

7.3 Lemma: Given€, D as in the prerequisites of Theorem 3sG; P and w.l.0.g.
t =0€ P, || = 1. The greedy path iG(G,@; P) from stot has nonincreasing |c.

And, while staying on one fade of this cubeQ .= {p | Pleo < 1}, it is even strictly
decreasing with respect to some potential functign More precisely, ba~-+ b one
greedy step anffi|., = 1= |b|.. Then

ax=+1l=by = (+by,+b;) < (+ay,+az) > (0,0)
ay=+4+1=by = (+b,,+by) < (+az,+ayx) > (0,0)
a;=+1=Db, = (+bx,+by) < (+ax,+ay) > (0,0)
ax=el=by = (&by,&b,) < (=ay,<a,) > (0,0)
ay=<l=hby = (&b, <hy) < (a8 > (0,0)
aa=«l=b, = (&b <hy) < (eay,<a) > (0,00 O

7.4 Lemma: The greedy path will at most once chafige a different face

F={ac R |gle=1s0nq)=s}, 1=(i,9€{xy,z} x{+ <}

of Q. More formally, supposa~~+ b~ c~+ d are subsequent steps of this path with
a,b,ce0Q,a¢ F,be F. Then|d|. < 1.

Proof of Theorem 3.6: Denotes addition modulo 3. Withireach facer; g, the
potential function

Pig(V) = (|V]w,S Vie1,5-Vig2)  lexicographically

4Observe thaF; is relatively closed. Therefore, changing can mean “"entering new, then leaving old
one” in two steps, or "already lying in two faces; leave one, then enter another”, or in one step "leave old
and enter new”.
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strictly decreases. The only ‘escape’ — changing to another face — can occur at most
once. The greedy path thus finally does reaahd remains Q. This implies a weak
stretch factor of 2 w.r.t} - |, and the Euclidean weak stretch facter is at most

i = {lasbl/[a2: |ao=1= b}, (16)

Equivalence of norms (c.f. Claim 5.%|. < |al» < v/D|al» implies f* < 2y/3, but

this bound is not tight. For a better one, square both sides of (16) and note that, for
symmetry reasons (simultaneously permuting or inverting componeatarafb), the
maximum is w.l.o.g. attained ia; = +1, 0< ay,ay < 1. The extremal location of

bis thusb = (<1,<1,<1) anday, = a,. It therefore remains to maximize the one
parameter function

lasb|3 4\ +5

0,12 A - 1'%

0154 = a3 |a=0\ +2)\2—|-1
b=(—1,-1,-1)

via highschool calculus, obtaining = (<5++/33)/4 and f* = {/(7+/33)/2 ~
2.524. O

7.5 Scholium: Suppose thaf : {+,0,<}P — {4,<1P is admissible in the sense of
Equations (13), (14),(15) and a family of 2© total orders extending the norpa|e
such that inG(C, D; P), greedy paths visit no vertex more than once.

Then this graph has Euclidean weak stretch

acbl
max 5
0<A<i |alj

f*

IN

a=(\,... A1)

b=(-1,..,—1,~1)

L, 2deDA+d+2
1+ (d=1)A2

A=(/d(d+8)-d-2)/2(d-1)

/d(d+8) <4+d - Va
\/d(d+8) =24d B

7.6 Claim: Let a,b € IR®\ {0}, a# b andC as in (10). There exist€ € € with
0 c a+Candb e a+Ciff for eachi = 0,1, 2 one if the following holds:

(bi <:>al) . (Sgraivsgrai@bsgrai@Z) < (07 07 0)
(bi=a) - (sgnay, sgrais1, Sgnaig2) < (0,0,0)

a) a-(sgnaig1,SgMaig2) >(0,0)

A
b) a - (sgnaig1,Sgnaiz2) <(0,0) A

where inequalities are to be understood with respect to lexicographical order and mul-
tiplication performed componentwise.

7.7 Claim: Leta~- b be a greedy stepa|. = 1.
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a) laeble. <1. |aebl. =1, thenjasb|s < a1

b) a;#1, b,=1. Thena,=0, |axob+|aychy| <|ax|+|ay| <1,
c)a,=1, «l<ax<0, 0O#£ay#+1. Thenbl. < 1.

d) a;=1, €1<ax<0, O<ay<1l. Thenlbl, < 1.

The same holds for coordinatésy, z) exchanged witly, z, x), (z,X,Y), (<X, <Y, <2),
(&, 62, 4X), ($Z, X, <),

Proof of Lemma 7.4: Since Claim 7.6 and Claim 7.7 are invariant under cyclic
permutation and inversion of coordinates, we may assume without loss of generality
thatt = (z+), b, = 1. According to Claim 7.7b)a, = 0. Consider the 25 cases
ay,ay € {1}, (<1,0),{0}, (0,+1),{+1}:

a) «l<ax<0, O<ay<1l contradictac Q.

b) &l<ax<0, ay=0; &l<aw<0, l<a <0 a=0, O<ay<1;
ax=0,ay=0; a=0,e1l<a<0; O<ax<l O<ay<l; O<ax<l,
ay=0; O<a<l <1< <0 similarly.

c) ax=1,ay =<1
a~- b greedy, so by definitioBC < C: b,0 € a+C. Sincea,- (sgnay, sgnay) =
(0,0), case a) of Claim 7.6 fdr= 2 implies lexicographically:

(0,0,0) > (b,<4a,) - (sgnaz, sgnay, sgnay) = (0, b, <a,, a, <b;)
Thereforeb, < a,, a contradiction: this case does not occur.

dax=1,<1<ay <0, a=1a=0 ax=10<a <1, a=1a =1,
O<ax<l,ay=1;, O<axu<lay=«1, =0a=1 don't either.
e) ax=«l,ay=+1:
This time, case b) of Claim 7.6 for= 1 holds, ensuringy < a, = 1. Further-

more, by Claim 7.7a), &by < |ay<by| < |asb|, < 1. Similar application of
Claim 7.6 fori = 0 yields 0> by > <. Thus

(Lelby) + (Lelbyl) = laceby] + |ayby| < lad +a| <1 =1,

the inequality coming from Claim 7.7b). Hen{g| + |by| > 1. As we already
know |by|, |by| < 1, this mean$y # 0 +# by, thereby proving

b,=1, <l < by <O, 0<by <1
Put this into Claim 7.7c) to see: 2 (¢le > |d|e Vv

f) el<ax<0,ay=+1:
Again, Claims 7.6 and 7.7b) sey=1, <1 < by < 0,0< by < 1, s0|C|» < 1.
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g) ax=«<1,a,=0:
By (bx+1) + |by| < 0 (Claim 7.7b), necessarilg, = <1, by = 0. Which in
turn requires (Claim 7.6, < 1, ¢x > <1, ¢y < 1. So|Cl < 1 unlessc, =
<1. Analogously to case e}, = <1 means=l < ¢, < 0, 0< ¢, < 1 and
therefore|d|. < 1 due to Claim 7.7c) for coordinat¢s,y,z) exchanged with

(=Y, <z, eX). v

h) ax=0,ay = <1:
Then necessarilp= (0,<1,+1),cc=1,<1< ¢y < 0,0< ¢, < 1,|d|e < 1.

) <l<ax<0,ay= <l
Apply Claim 7.7b) to see=1 < by <0, <1 < by < 0. If by was# 0, then Claim
7.7c) would mearc|, < 1. Thusby = 0 and (Claim 7.7bp, = <1. As above,
cx=1el<c <0,0<c, <1, and|d|, < 1.

j) ax= <1, <1 < ay < 0similarly:
<1 <by<0, <1< by <0. Forby # 0, we havelclo < 1. And forby =0,
we haveb, = <1, implying (like in g)c, =<1, <1 <6, < 0,0< ¢, < 1 and
|d|e < 1.

K) ax=<1,0<ay< 1:
Claim 7.6 prohibitd, = <1. Claim 7.7b) then infers>1 < by < 0, 0< by < 1.
And |c|. < 1 by Claim 7.7c).

) ax=«<1,a =<1t
Then<1 < by <0, 1 < by <0. Consider sub-cases

i) by#0, 0#£bx# <1 = |cle < 1byapplying Claim 7.7d).

i) by#£0,by=<1 = <1< <0,0<c;<1using Claim7.6 and Claim
7.7a).|clo = 1 requiresy = <1. Butthen, neither db norc leave the face
Fix—) Whicha started in, preserving strict decrease of the same._ all

the time due to Lemma 7.3.

i) by=0 Al by = <1. Refer to case h) to sef|., < 1.

iv) by=0 AL bx = <1 which transforms to case h) under change of co-

ordinates(x,y,z) — (<z,<x,<y), and therefore ¢, =<1, 0< ¢, < 1,
<l<ck<0, |de<1aswell O

Proof of Lemma 7.3: Consideray, = 1 = by, the other cases being similar. Since
(bx<ay) - (--+) = (0,0,0), we have case a) rather than b) of Claim 7.6. Therefore,
ax- (sgnay,sgna;) > (0,0) which means(ay,a,) > (0,0). Now, apply Claim 7.6 to
i —yand get
(by=ay) - (sgnay, sgna,, sgnay ) < (0,0,0),
>(0,0) =1
henceby < ay. If by < a,, we are done.
So, beby = a,. This requiresa, - (sgnaz,sgnax) > (0,0). Combining that with
(ay,az) > (0,0) impliesa, > 0 for ay # 0 anday = 0. One more time, look at Claim
7.6 to see (b,=a,) - (sgnaz, sgnay, sgnay) < (0,0,0) andb, < a.
—— ——

>0 =1
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Let’s finally exclude the possibility d§, = a, by remarking that this mears-- b — a,
a self loop. Such, on the other hand, cannot occur in PNGs, asieaghhas 0¢ C
and thusu ¢ P;(u) in Equation (7). O

Proof of Claim 7.7:  Since, as a prerequisite to Theorem 8i6c Disan extension
of (| “Jooy | - |1) w.r.t. lexicographical ordegveryarc — greedy or not — ilG(C, D; P)
trivially obeys a).

For b),|ale = 1 anda; # 1 and require=l < a; < 1. 1<a; = |b,<a,] < |bwa|o ag) 1
further restrict to 0< a; < 1. Suppose; > 0, then application of Claim 7.6 to= 3
yields

(1=, any, any) = (b, <a,) - (Sgnez, sgnay, sgnay) < (0,0,0)

independent of which of the two cases actually holds. Hesce,1: a contradiction.
The rest of b) is obtained by insertiag— 0, b, = 1 into a).

<1 < ag < 0 implies<l 7<6 by a<) 1, thereforgby| < 1. Similarly, cases=1 < a, < 0
and O< ay < 1 yield |by| < 1. Analogous arguments in casg= <1 only gives
<1 < by <0, butby = <1 is ruled out by part b) of Claim 7.6. Finally, from =1
follows 0< b, < 1, and agairb, — o < 1, the
claim of c).

Finally, part d): O< ay < 1,so<l < by < 1. 1 < ay < 0, so<l < by < 1. Even
for ay = <1, by = <1 is impossible due to Claim 7.6b). The same holdsfoer 1, so
0<b; < 1andble < 1. O

Proof of Claim 7.6:  The reader will easily verify that : {+,0,2)° = {+,<)3,
fitk= (ko,ku,ka) = K i, 10 j(K) :=i+min{j=012:ks; #0} (17)
is exactly the one used in Equation (10) and has the following property:
fi(kj=se{+,¢} & s (kkonke2>0 = s (kkg)>0  (18)
Remember, that w.r.t. lexicographical order and{gre IR, uc IR", ve IR™
(xY)Z(0,0) & (sgnxy) Z(0,00 < (sgnxsgmy) = (0,0)  (19)
0, V>0 — ®v_ E 0 (20)
0, 1% 0 >0 (21)

>
>

UQV:= (u9vo, UgV1, ... ,UgVm, U1Vo,U1V1, ..., U1V, .. ... UnVo, UnV1, -« - . , UnVim).
Thus, forse {+,<)}3,

0,bca+Cs LU 0,1,2: fi(sgnb«ea)) =s = fi(sgr(c)a))
% (bi =i, big1 <81, Dig2 Saig2) -5 =: U > (0,0,0) (22)
A <(sgrai, sgmaig1, SgrBigz) -s =V > (0,0,0)
which by (20) yields, considering only the first 3 components' of V'

<&t (bj<=a;) - (Sgnay, sgrdie1,SgMBis2) > (0,0,0) (23)
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and in particularg = 1) part a) of the claim. For b), k#- ( sgmais1, sgnaiz2) < (0,0).
Hence, G£ <sgna; = fi(<sgma) = s = <sg1 by definition of fi and fig1. It suffices
to showb; # & since the rest follows from (23).

To this end, suppose on contragy— b;. First component of Equation (22) vanishes:

(0,0) <5 (big1 Sqe1, bie2 Sa2) = SSe1- (bie1S8e1, bie2 Saiz2)
Application of (22) toi ¢ 1 instead of requires the reversed inequality to hold, too:
= Sg1- (Dig18ie1, bis2 Sais2) = (0,0), bi = a; by assumption

implying (S¢1 # 0) a= b in contradiction to the prerequisites.

Be now valid, for each = 0,1, 2, one of cases a) and by;:= f; (sgr(<:>a)) and we
will prove <a, b<a € Csby verifying Equation (22). Suppose

(bi &) - (sgnay, sgnais 1, SgMBie2) < (0,0,0).
Multiply by % = 1 > 0 according to (20) to find out

S - (bl <:>al) S (Sgrﬂ,sgrﬂ@bsgrﬂ@z) < (07 07 0)7

=u

u being< (0,0,0) by definition ofs and (18). Asu # (0,0,0), we have evem <
(0,0,0) and may concluds - (bj <a;) > 0, yielding Equation (22).
If (bi<a)- (sgnai,sgnai@l,sgnai@z) = (0,0,0), necessarily; = & and (case a)

a - (sgnais1,aie2) > (0,0). (24)
If 0 # sgnay = <5, this means=s; - (sgnajz1,Sgnaie2) > (0,0), and if 0= sgna;,

ki = <sgna; = 0 reduces Equation (18) tes; - (sgnais1, Sgnaie2) > (0,0), too. So,
take prerequisite w.r.i 1

(bis1 ©8is1) - (SgMie1, SgMRais2) < (0,0)

and multiply Withs2 =1to end up as - (big1<aig1) > (0,0). Forajg # bigi, this
proves (22), so suppose equality. Similar to above, this means (case a)

az1- (sgmaz2,sgng;) > (0,0)  and  (big2©ais2) - (Sgnaig2,sgnay) < (0,0),

the latter from prerequisite fart 2. Thereforesg - (bis2 <aig2) > (0,0). Equation
(24) finally requiress = s41 for botha; = 0 anda; # O. O
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