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ABSTRACT
In this paper, we consider the problem of generating a minimum
spanning tree (MST) of a set of sites lying on the surface of an
open polyhedron.  The distance between any two sites is the
length of a shortest path between them that is constrained to lie
strictly upon the polyhedral surface.  We present two algorithms,
the first of which, when given m points on an n-faced polyhedron,
produces an MST in O(n2logm+m2logm) time and O(n+m) space.
In our second algorithm the running time is
O(n2logm+mn(m/n)1/2log(m/n)logm).  Along with this
improvement in the time bound, space requirements increase
slightly, to O(n+mlogm).

1. INTRODUCTION
In this paper, we consider the computation of a minimum
spanning tree (MST) of a set of point sites lying on the
surface of an open polyhedron.  The distance between any
two sites is defined as the length of a shortest path between
the sites, which itself lies entirely upon the polyhedral
surface.  We call an MST generated in this distance metric a
polyhedral minimum spanning tree (PMST).

One potential application of this work is to the area of
network design.  A PMST might better model the problem of
designing a low-cost spanning network over mountainous
terrain than its planar counterpart, where the terrain is
approximated by a polyhedral surface.

The paper is organized as follows.  In Section 2, we give a
background to the problem, including the motivations for this
research, and an introduction to the subject of shortest-paths
on polyhedral surfaces.  In Section 3 we introduce our PMST
algorithm.  In Section 4 we present modifications to our
algorithm that reduce our time bound, with a slight increase
in the space bound.  Conclusions are stated in Section 5.

2. BACKGROUND

2.1 Motivation
The distance metric used in this paper constrains paths to lie
entirely upon the polyhedral surface.  This metric has a nice
property: shortest paths can be computed in polynomial time.
 If paths were allowed to stray from the polyhedral surface,
the problem of discovering a shortest path becomes NP-hard
[2].  Thus, over the years there has been considerable interest
in this distance metric (e.g. [1,3,5,7,8,9,10]).

One approach to generating a geometric MST is to first
compute some (small) superset of MST edges, such that
edges of this superset which define an MST can be selected
quickly.  For example, given m sites in the plane and using an
L2 distance metric, an algorithm might first compute a
Delaunay triangulation (DT) of the sites.  We know that
MST ⊂ DT in this metric.  The DT is of size O(m) and can
be computed in O(mlogm) time.  A MST can be derived from
the DT in O(m) time. 

When on a polyhedron, we might compute the DT as the dual
of the Voronoi diagram of the sites.  However, the
complexity of storing each straight (or hyperbolic) line
segment of the Voronoi diagram of m sites on an n-faced
polyhedron (where n > m) is Θ(n2) [8].  (For an arbitrary m
and n, the complexity is Θ(n2+mn).)  The Voronoi diagram is
computable in time O(n2logn+m2logm) [7]. 

Thus, a PMST algorithm that first computes the DT via the
Voronoi diagram could require quadratic space.  Our
algorithms significantly improve upon this space bound,
using linear (and nearly linear space) in the generation of a
PMST.

Our PMST algorithms improve slightly upon the time bounds
for polyhedral Voronoi diagram generation.  In the case
where we assume n > m, our algorithms reduce the bound of
[7] from O(n2logn) to O(n2logm).  When m > n, the time
bound stated in [7] is O(m2logm).  The running time of our
first PMST algorithm is of the same complexity.  Our second
PMST algorithm reduces this to O(mn(m/n)1/2log(m/n)logm).

Aside from the papers dealing with the problem of generating
the Voronoi diagram of sites on a polyhedral surface (e.g.
[7,8]), we do not know of any previous work which addresses
the problem of generating a PMST.

2.2 Shortest Paths on Polyhedrons
The shortest-path algorithm by Chen and Han [3]
preprocesses the surface of an n-faced polyhedron relative to
a source site, such a shortest path between the source site, and
any other site on the surface can be computed in logarithmic
time.  The preprocessing step requires O(n2) time and O(n)
space.  Algorithms presented in this paper rely heavily upon
techniques developed in [3].



Until recently, this was the smallest known bound for
computing a shortest path on a polyhedral surface.  Kapoor
[5] has now announced an improvement upon this result.  He
claims that his algorithm can compute a shortest path between
two sites on a polyhedron within O(nlogn) time.

Many polyhedral shortest-path algorithms employ a
technique called unfolding (e.g. - [3,5,7,8,10]).  An unfolding
is performed with respect to a polyhedral surface and an
edge-sequence (edges of the polyhedron).  Two edges,
adjacent in the edge-sequence, must reside on the boundary
of a common face of the polyhedron.

To perform an unfolding, take the first edge of the edge
sequence.  Consider the two faces of the polyhedron that are
adjacent at this edge.  Rotate these faces about the edge until
they are coplanar.  Do likewise for the remaining edges of the
edge-sequence.  In the end, what is left is a set of faces
embedded in the plane, called a planar map (see Figure 2.1).
Note that this figure may be self-overlapping.
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Figure 2.1: The planar map of a polyhedral surface with respect to
edge-sequence (A, B, C, ..., F).  The dots, p and q, represent sites on
the polyhedral surface.  The dashed line is a shortest path between p

and q embedded in the planar map.

Assume for now that we are dealing with an open, convex
polyhedron.  A shortest path between two sites on the
polyhedral surface will pass through some edge-sequence. 
Note that the path will not pass through any of the corners
(vertices) of the polyhedron [10].  When the surface is
unfolded with respect to some shortest path’s edge-sequence,
the embedded shortest path unfolds to a straight-line segment
[10] (as shown in Figure 2.1).  Thus, finding a shortest path
on a convex polyhedron entails merely finding the edge
sequence through which a shortest path passes.  

A shortest path will intersect with each face of the polyhedron
at most once.  Therefore, any valid shortest-path edge-
sequence on an n-faced polyhedron will be a list of edges of
length < n [10].

Chen and Han [3] give an algorithm for constructing an edge-
sequence tree with respect to a single site on a polyhedral
surface (the source site).  For a convex polyhedron, an edge-
sequence tree is a rooted tree that encodes all possible
shortest-path edge sequences between the source site and
every other point on the polyhedral surface.  Each node of the
edge-sequence tree corresponds to an edge of the polyhedron.
 Shortest-path edge-sequences are encoded as paths through
the edge-sequence tree starting at the root node.

As mentioned earlier, in [3] we are shown how such an edge-
sequence tree can be computed in time O(n2) and space O(n)
for a single site on an open, convex, n-faced polyhedron.

Shortest paths on general polyhedra (possibly non-convex)
behave similarly to those on convex polyhedra.  The main
difference is that shortest paths may pass through vertices of
the polyhedron [7].  Thus, on a non-convex polyhedron, edge
and vertex sequence information needs to be stored.  Notice
that when two faces are unfolded about a vertex there is no
unique planar map, in the sense that the faces are free to
rotate about their common vertex (see Figure 2.2).
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Figure 2.2: The planar map of an edge/vertex sequence on a non-
convex polyhedron.  The dashed line is an embedded shortest path
between sites p and q.  Notice that this shortest path passes through

vertex v.

The edge-sequence tree algorithm of [3] can be modified to
generate an edge/vertex-sequence tree for a given source
point on a general (possibly non-convex) polyhedron.   This
modified version runs within the same complexity bounds as
the original.

Note that our algorithms, as with other algorithms that
employ polyhedral unfolding, assume that the model of
computation used is a real-RAM machine that performs each
infinitely precise arithmetic operation in unit time.  An
unfolding is essentially a rotation in 3-space.  Unfolding does
not work when using fixed-precision, floating-point
arithmetic, as numerical errors are compounded.



3. AN ALGORITHM FOR THE PMST

3.1 The Basic MST Algorithm
Consider the following MST algorithm.  Initially, the MST
consists of the set of sites, which can be thought of as a forest
with no edges.  In each iteration, find a minimum-length edge
between every disjoint tree (partial-MST) and a site not in the
tree (a nearest neighbor of the partial-MST).  For each edge
found, add the edge to the MST edge-set so long no cycle is
formed in the resultant graph.  Iterate until a single partial-
MST remains.  This final partial-MST is a valid MST of the
sites.

Notice that in each iteration of this algorithm, each partial-
MST is connected to at least one other partial-MST.  Thus,
the number of remaining partial-MSTs is reduced by at least
half with every iteration.  In the worst case, the number of
partial-MSTs decreases by exactly half in every iteration. 
Thus, given m sites, the bound on the number of iterations is
Θ(logm).

This is the underlying MST algorithm used in this paper. 
What is needed is an algorithm that can, at each iteration,
efficiently compute a nearest neighbor for each partial-MST.

3.2 Computing the Nearest-Neighbors
For the sake of simplicity assume, as in [3], that the
polyhedron consists solely of triangular faces.  Note that this
does not limit the generality of the algorithm.  The surface of
an n-faced polyhedron can be triangulated in linear time,
resulting in an O(n)-faced polyhedron.

Also for the sake of simplicity, we make assumptions about
the location of the sites.  Sites in the general position obey
the following.

n No site lies on an edge or vertex of the polyhedron.

n The distance between any two sites is not equal to the
distance between any other two sites.  This implies that
there will be exactly one nearest neighbor for each
partial-MST, and thus only one PMST is possible.

n Exactly one shortest path exists between any two sites. 
Note that, in general there may be multiple shortest-paths
between any two sites.

The following lemma deals with sites in the general position
on the surface of an open, convex polyhedron.  In Section 3.3
this result is generalized to non-convex polyhedra and sets of
sites which do not conform to the general position
assumption.

Lemma 3.1 Given an open, convex, n-faced polyhedron, m
sites on the surface of the polyhedron in the general position,
and an edge set (PMST edges) which connects sites into a set
of partial-MSTs.  In O(n2+mn) time and O(n+m) space, a set
of edge-sequence trees can be computed such that:

(1)  Each edge-sequence tree of the set corresponds to a
particular source site (i.e. the paths through a tree
from the root node correspond to shortest-path
edge-sequences from the associated source site).

(2)  A shortest-path edge-sequence between each
partial-MST and its nearest neighbor is encoded in
the set of edge-sequence trees.

Proof:  Our algorithm works in a manner similar to the edge-
sequence tree algorithm of [3], except that instead of
generating a single edge-sequence tree relative to one source
site, multiple sources are considered.  A set of edge-sequence
trees is generated such that each edge-sequence tree
corresponds to a particular source site.

In our algorithm, each node of an edge-sequence tree is a 4-
tuple, (e,I,Proj(I,e),p), where e is an edge of the polyhedron, I
is an image of the source site through some edge-sequence,
and Proj(I,e) is the projection of I onto edge e.  The
projection of I on e is defined as the closed subsegment of e
visible to the source image, I, through the interior of the
planar map constructed with respect to some edge-sequence
(see Figure 3.1).  Likewise, the shadow of a source site is the
region of a face visible to a site through the interior of the
planar map constructed with respect to some edge-sequence. 
Finally, p stores the source site itself.  This element of the 4-
tuple is included so, given a node of an edge-sequence tree,
the corresponding source site can be identified in unit time.
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Figure 3.1: The planar map of an edge-sequence from site p.  With
respect to the edge-sequence, the segment DE is the projection of p

on edge BC, and the polygon ∆DEFG is the shadowed region of
face ∆ABC.

Our algorithm begins by initializing an edge-sequence tree for
each site, s.  Initialization consists of generating a dummy
root for s.  Then, for each edge of the polyhedron bounding
the face upon which s lies, e, insert node (e,s,e,s) as a child of
the dummy root.  We say that this edge-sequence tree
corresponds to site s.



Let dummy-root nodes lie at level zero of their respective
edge-sequence trees.  The general step is as follows.  At the
ith iteration, for all nodes at level i in the set of edge-sequence
trees, v = (BC,I,Proj(I,BC),p), compute the potential children
of v as follows.

Suppose that face ∆ABC is the face shadowed by node v (see
Figure 3.2). 
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Figure 3.2: The dashed lines denote the boundaries of the
projection of source image I onto edge BC, and across shadowed

face ∆ABC.

Unfold I about BC until coplanar with ∆ABC.  Call this new
source image, I′.  Compute the projections of I′ upon edges
AB and AC.  These projections are denoted Proj(I′,AB) and
Proj(I′,AC) respectively.  The potential children of v are the
4-tuples (AB,I′,Proj(I′,AB),p) and (AC,I′,Proj(I′,AC),p). 

If one of Proj(I′,AB) and Proj(I′,AC) is an empty line
segment, then the corresponding child node need not be
inserted into the tree, since the subtree rooted at this child
cannot possibly encode any shortest-path edge-sequence (i.e.
the corresponding edge sequences, when unfolded, will not
contain any straight-line segments from the source site).

If both projections are non-empty, append both children to
node v.  We know that each shortest path passes through each
face of the polyhedron at most once [10].  Therefore, growth
of the edge-sequence trees may be halted upon reaching
height n without fear of pruning any valid edge-sequences
from the set of edge-sequence trees.

This algorithm generates a set of edge-sequence trees that
encodes all possible valid shortest-path edge-sequences from
every site.  However, in the worst case, the resulting data
structure is of exponential size.  A little more sophistication is
required.

In the case of the single-source edge-sequence tree, Chen and
Han [3] notice that, for each angle interior to a face of the
polyhedron, we need allow only one of the nodes in the edge-
sequence tree to fork to two children.  A node which contains
an angle φ in the shadow of its source image, and whose
source image lies nearest the apex of the angle is said to
occupy φ (see Figure 3.3).
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Figure 3.3: Source image I1 is closer to point A than is source
image I2.  I1 will be closer than I2 to every point past edge AB.  The

edge-sequence tree node containing I1 (and corresponding
projection on BC) is said to occupy angle ∠BAC over the node

containing I2 (with its corresponding projection on BC).

Notice that the lying closest to the apex of the angle may
contain shortest-path edge-sequence information in both
subtrees, while any other node whose source image lies
opposite the angle can only contain potential shortest-path
information in one of its subtrees.

Throughout the construction of the edge-sequence tree of [3],
the property “one-angle, one-split” is maintained, where only
the node which occupies an angle is allowed to fork to two
children.  Since there are O(n) angles on the polyhedron,
there are O(n) splits in the edge-sequence tree.  A node whose
shadow covers an angle, but cannot split to two children
because of another occupying node is said to have one of its
subtrees blocked by the occupying node.

We modify this idea slightly in our algorithm.  Instead of
allowing only one split per angle in a single edge-sequence
tree, we allow two splits per angle throughout the entire set of
edge-sequence trees. 

Define the primary occupant of an angle as a node of an
edge-sequence tree which occupies the angle by the definition
from [3] (i.e. the primary occupant of an angle is the node
whose shadow covers the angle, and whose source image lies
closest the apex of the angle).  Define the secondary
occupant of an angle as a node such that:

(1) The node’s shadow covers the angle; AND



(2) The corresponding source-site of the node is not in the
same partial-MST as that of the primary occupant; AND

(3) The source image is closer to the apex of the angle than
that of any other node whose source-site is not in the
same partial-MST as the primary occupant’s source-site.

The concept of “blocking” is likewise extended for our
definitions of angle occupancy.  A child node can be blocked
by either one, or both occupants of an angle.  The blocking
rules are slightly more complex than those of the single-
source algorithm and are discussed below.

For a node of one of the edge-sequence trees, v, let site(v)
denote the unique site corresponding to the edge-sequence
tree containing v.

In our algorithm, both the primary and secondary occupants
of an angle are allowed fork to two children at that angle. 
Other nodes whose shadow contains the angle are allowed at
most one child each.

A set of edge-sequence trees generated in this manner
encodes the shortest-path edge-sequence between every
partial-MST, t, and its nearest-neighbor as a path through the
edge-sequence tree of the nearest-neighbor.  To set up a proof
by contradiction, suppose that no such path exists in the
nearest-neighbor’s edge-sequence tree.  This means that the
path encoding the shortest-path edge-sequence is blocked at
some angle, φ.

At an angle of blockage, φ, there must be two blocking nodes:
the primary and the secondary occupant of φ.  Suppose that
the primary occupant is a node, u, and the secondary
occupant is a node, v.  Further, suppose that the blocked node
of the shortest-path edge-sequence is node w, and thus,
site(w) is the nearest-neighbor of t. 

If site(u) is in t, then by the definition of secondary occupant,
site(v) is not in t.  Obviously, site(w) is not in t, by the
definition of a nearest-neighbor of a partial-MST.  If site(v) =
site(w), then w is not on the shortest-path edge-sequence,
since a shorter route to t passes through v.  If site(v) ≠ site(w),
then site(v) is closer to t then is site(w), contradicting the fact
that site(w) is the nearest-neighbor of t.

Similarly, if site(u) is not in t, then a path from t’s nearest-
neighbor to t cannot pass through the edge-sequence
corresponding to blocked node w.  It would be shorter to go
from site(u) to t (passing through u) than from site(w) to t
(passing through w). 

By pruning only those paths that are blocked by both the
primary and secondary occupants of each angle, we are
guaranteed that the resulting set of edge-sequence trees
encodes all shortest-path edge-sequences between each
partial-MST and its nearest-neighbor.  The edge-sequences
are encoded as a path through the edge-sequence tree of each
nearest-neighbor.

In our algorithm, the current primary and secondary
occupants of each angle are stored in an array, and can thus
be determined for a given angle in O(1) time.

As in the exponential-time edge-sequence tree algorithm
described above, the processing of each node, v, at the ith

level of an edge-sequence tree involves first computing the
potential children of the node.  If v has a non-empty
projection in only one of the child nodes, then only the child
with the non-empty projection is inserted.

If v has more than one potential child, then there are two
cases: (1) site(v) is in the same partial-MST as either the
current primary or secondary occupant of shadowed angle, φ,
or (2) site(v) does not share a common partial-MST with
either the primary or secondary occupant of φ.

In Case (1), let v′ denote the node which is either the primary
or secondary occupant of φ, such that site(v′) resides in the
same partial-MST as site(v).  (It might be the case that site(v)
= site(v′).)  If v can block a subtree of v′, then the subtree of
v′ that is blocked by v is removed and deleted.  If, on the
other hand, v′ is able to block one of v’s children, then only
the child of v that is not blocked by v′ need be added. 

Since site(v) and site(v′) are both in the same partial-MST,
only one of them is allowed to occupy the angle, by the
definitions of primary and secondary occupants.  If v blocks
one of v′’s children, then put v in v′’s former occupancy
position (primary or secondary occupant of φ).  Since each
angle stores only one primary and one secondary occupant, v′
is no longer stored as an occupant of φ. 

Following this procedure, the secondary occupant of φ might
be set to node v.  However, it might be the case that v’s
source image is closer to the apex of φ than the source image
of the current primary occupant of φ.  If this is the case, then
this inconsistency can be remedied by simply swapping the
primary and secondary occupants of φ.

In Case (2), site(v) shares a partial-MST with neither of the
sites corresponding to the occupants of φ.  Let v′ denote the
primary occupant of φ, and let v′′ denote the secondary
occupant of φ.  There are three subcases.

(1)  Nodes v′ and v′′ can both occupy φ over v.  In this case,
add only the child of v not blocked by either v′ or v′′. 
This may mean that v has no children if both subtrees of
v are blocked. 

(2)  Node v can occupy φ over v′′, but v′ can occupy φ over
v.  Node v′′ loses one of its subtrees, and the new
secondary occupant of φ is v, which forks to both
children. 

(3)  Node v can occupy φ over v′ (and therefore, v can also
occupy φ over v′′).  Since v′ is the primary occupant of φ,
it can block v′′.  Node v must now be the primary
occupant, implying v′ is secondary occupant.  Node v′′
loses the subtree blocked by v′.



These three subcases are complete.  Notice that the situation
in which v can occupy φ over v′′, and v cannot occupy φ over
v′ can never arise.

Once a node has been processed, the current primary and
secondary occupants of the shadowed angle φ are correctly
set (given all nodes currently in the set of edge-sequence
trees, whose shadow covers φ).  Also, the occupants of φ split
to two children, while all others have at most one child.  Our
algorithm is summarized in Figure 3.4.

The time bound of our algorithm can be proven in manner
similar to the time bound of the edge-sequence tree algorithm
of [3].  At first, m edge-sequence trees are initialized,
requiring O(m) time.  Consider now the time taken to insert
nodes over the course of the entire run (time for the removal
of nodes will be considered shortly). Since we allow (at most)
two splits per angle of the polyhedron, after the ith level has
been added to the set of edge-sequence trees, the set contains
O(n+m) leaf nodes at the ith level. 

Computing the children of each node can be accomplished in
O(1) time, since each node is of constant complexity and
spawns at most two children.  Since there are O(n+m) nodes
at the previous level, the time required to add an additional
level to the set of trees is O(n+m).  Trees are grown to height
n.  Therefore, the time required for inserting nodes into the
edge-sequence trees over the course of the entire execution is
O(n2+mn).

As for the removal of subtrees, the same counting trick as in
[3] is applied.  It is clear that if each node of the tree is given
two time units, one for addition and one for removal, then
overall, the time for the addition and removal of each node
generated is O(n2+mn).  Some of the generated nodes will not
be removed, and in this case, their second allocated time unit
remains unused upon completion of the algorithm.

The space bound of the algorithm described in Figure 3.4 is
also O(n2+mn).  However, by using another trick from [2],
the paths through the edge-sequence trees can be compressed
by storing only those nodes which are interior to the tree, and
which split to two children.  Since there are O(n) splits in the
entire set of edge-sequence trees and O(m) edge-sequence
trees, the space is bounded by O(n+m).  It is not difficult to
implement the entire algorithm so as to run within this linear
space bound.

With this, Lemma 3.1 is proven.  q

Recall that once the set of edge-sequence trees is computed,
the edge-sequence of a shortest path between each partial-
MST and its nearest-neighbor (site) is encoded as a path
through the edge-sequence tree corresponding to the nearest-
neighbor.  

Algorithm: Edge-Sequence Tree Generator.
Input:  A convex, n-faced polyhedron, P, m sites in the
general position and lying on the surface of P, S, and an
edge set which partitions S into a set of partial-MSTs.

Output:  A set of edge-sequence trees, such that a shortest
path between each partial-MST and its nearest neighbor
(site) is encoded as a path through the edge-sequence tree
corresponding to the nearest-neighbor.

For all s ∈ S.
  Initialize an edge sequence tree for s.
For i := 1 to n.
    For every edge-sequence tree node, v, distance i from a root.
        Compute the potential children of node v.
        (Let φ denote the angle opposite the source image of v.)
        If v has only one potential child, then
            Insert v’s child node.
        Else
            If site(v) resides in the same partial-MST as site(v′),
              such that v′ is currently the primary (or secondary)
              occupant of φ, then:
                If v can occupy φ over v′, then
                    Remove the subtree of v′ blocked by v.
                    Mark v as occupant of φ in v′’s old position.
                    Insert both children of v.
                    Update the labels of primary and secondary occupants
                      of φ.  (i.e. swap φ’s occupants if necessary.)
                Else
                    Insert the child of v not blocked by v′.
            Else
                (let v′ denote the primary, and v′′ the secondary
                  occupant of angle φ.)
                Case #1: v′ and v′′ can occupy φ over v.
                    Insert child of v blocked by neither v′ nor v′′                 
                  (note that, as a result, v might have no children).

                Case #2: v can occupy φ over  v′′, and v′ can occupy
                  φ over v.
                    Remove the subtree of v′′ which is blocked by v.
                    Mark v as secondary occupant of φ.
                    Insert both children of v.
                Case #3: v can occupy φ over both v′ and v′′.
                    Remove the subtree(s) of v′′ blocked by v and v′. 
                    Mark v as the primary occupant of φ.
                    Mark v′ as the secondary occupant of φ.

Figure 3.4: A description of an algorithm for the generation of a set
of edge-sequence trees.

All of the shortest-path edge-sequences required for one
iteration of the MST algorithm of Section 3.1 are encoded in
the set of edge-sequence trees.  However, further processing
is needed in order to determine the nearest-neighbor of each
partial-MST.  The following theorem shows how this can be
done in a brute-force manner.



Theorem 3.1  A PMST of m sites in the general position on
an open, convex n-faced polyhedron can be computed in time
O(n2logm+m2logm) and space O(n+m).

Proof:  Consider the basic MST algorithm described in
Section 3.1.  In each iteration, generate a set of edge-
sequence trees as described in the proof of Lemma 3.1.  Since
there are O(m) roots, and O(n) splits in the entire set of edge-
sequence trees, there are a total of O(n+m) paths running
through the entire set of rooted trees.

Suppose that for each site, q, the following variables are
stored: nearest_neighbor(q), and distance(q).  The variable
nearest_neighbor(q) is initialized to NULL, and distance(q)
is initialized to +∞. 

For an edge-sequence tree, let p denote corresponding source
site.  For every path through the tree, unfold the polyhedral
surface along the edge-sequence defined by the path, and
compute the straight-line (L2) distance between p and every
site, q, embedded on a face of the planar map, such that:

n Site q is visible to site p through the interior of the
resulting planar map (see Figure 3.5). 

n Sites p and q are not members of the same partial-MST.

source

Figure 3.5: A planar map of a portion of a polyhedral surface with
embedded sites.  The sites visible to the source through a planar map

are drawn as solid circles, and sites not visible to the source are
drawn as hollow circles.

If distance(q) is greater than the distance between q and p,
then assign nearest_neighbor(q) the site p, and assign
distance(q) the distance between p and q.

Note, by the edge-sequence tree algorithm of Lemma 3.1,
paths are grown to length n.  However, in doing so, a single
path may cross through same face of the polyhedron multiple
times.  Such edge-sequence tree paths cannot contain any
polyhedral shortest-paths, since a polyhedral shortest-path on
a convex polyhedron intersects each face at most once [10]. 
To avoid examining sites on a face more than once per path,
simply mark each face as “visited” as the path is unfolded. 
Stop searching along the path as soon as a face is met for the
second time.

Repeat this process for all O(m+n) paths through the set of
edge-sequence trees.  By Lemma 3.1, the edge-sequence
between each partial-MST and its nearest-neighbor is stored
as a path through the edge-sequence of the nearest-neighbor. 
In the above procedure, all paths through all edge-sequence
trees are examined.  Therefore, upon completing this
procedure, each partial-MST’s nearest-neighbor, will be
stored as the nearest-neighbor of one of its component sites. 

It takes O(1) time to compute the distance from the source
site to each site, and to determine whether or not it is visible
to the source.  In the processing of each path, O(n) faces are
unfolded, and O(m) sites examined.  Thus, each path requires
O(n+m) processing time.  The time required to process all
O(n+m) paths of the set of edge-sequence trees is:

( ) ( )O n m O n m+ +*    (3.1)

= +O n m( )2 2      (3.2)

This bound supercedes the O(n2+mn) time bound on the
generation of the set of edge-sequence trees.  Since each path
is “decompressed” and processed individually, the algorithm
can be run in O(n+m) space.

In the preceding discussion, we have shown how every
partial-MST can be attached to its nearest-neighbor in a
single iteration of the MST algorithm of Section 3.1.  Since
the MST algorithm iterates O(logm) times, the overall time
bound on our PMST generation algorithm is:

O m O n m(log ) * ( )2 2+      (3.3)

= +O n m m m( log log )2 2      (3.4)

The only information stored from iteration to iteration is the
set of edges of partial-MSTs.  Each edge of these partial-
MSTs is stored as a pair: the two sites denoting the endpoints
of the edge.  Thus, each edge requires constant space and the
storage of all m edges requires O(m) space.  Note that, unlike
many geometric graphs, the edges of our PMST have no
spatial component. This is discussed briefly in Section 3.3.

From the space bounds of the component algorithms, and the
space bound of PMST storage, the overall bound on space is
O(n+m).  q

As a corollary of Theorem 3.1, a polyhedral nearest neighbor
graph (PNNG) in which each site is connected to (one of) its
nearest neighbor(s) by an edge, is computable in O(n2+m2)
time and O(n+m) space.

3.3 Generalizations and Discussion
It is not difficult to extend the PMST algorithm of Section 3.2
to accommodate general (possibly non-convex) polyhedra by
adopting techniques similar to those found in [3].



Recall that on a non-convex polyhedron, a shortest path may
pass through a vertex of the polyhedron.  This behavior can
be dealt with by allowing two varieties of nodes into the
edge-sequence trees: edge nodes and vertex nodes. 
Edge/vertex-sequence trees may be generated as before,
however, when one of the paths passes through a vertex of the
polyhedron, the vertex is considered a pseudosource.  In the
subtree of a vertex node, the corresponding vertex becomes
the source image stored.

Edge nodes are now 5-tuples, (e,I,Proj(I,e),p,δ), such that e is
an edge, I is the image of a source site (or pseudosource
vertex).  Proj(I,e) and p are defined as before.  The last
element of the 5-tuple, δ, is the smallest known distance
between site p, and the point (either the source site, or a
vertex of the polyhedron) to which I corresponds.  Vertex
nodes are triples, (v,p,δ), where v is the vertex of the
polyhedron to which the node corresponds, p is a site, and δ
is the shortest-path distance between v and p.

Each edge-node may fork (up to) three children; two edge-
nodes and one vertex node.  The vertex node corresponds to
the vertex across the shadowed face of the edge node.  Each
vertex node may have up to twice the number of children as is
the degree of the corresponding polyhedral vertex; half of the
children correspond to vertices adjacent to the vertex on an
edge of the polyhedron, and half correspond to edges
opposite the vertex.

The algorithm of Section 3.2 can be modified so that the new
splitting rules are observed in the construction of the set of
edge/vertex-sequence trees.  Particularly, for each angle of
the polyhedron, allow the primary and secondary occupants
to split to two edge nodes.  Similarly, for each vertex of the
polyhedron, allow two nodes to occupy the vertex; a primary
node, and a secondary node.  A similar proof to that in
Lemma 3.1 can be applied to show that the resulting set of
edge/vertex-sequence trees will encode all shortest-path edge
sequences between partial-MSTs and their nearest-neighbors.

As in [3], the PMST algorithm can be adapted to non-convex
polyhedra without an increase to the complexity bounds of
the algorithm.

The PMST algorithm of Section 3.2 requires that sites
conform to general position assumptions.  These assumptions
imply that, during the construction of the PMST, each partial-
MST has exactly one nearest-neighbor, and one shortest-path
to that nearest-neighbor.  Further, by these assumptions, sites
do not lie on edges or vertices of the polyhedron.  We will
now show that the general position assumptions can be
discarded.

If we remove the assumption that the distance between any
two sites is not equal to the distance between any other two,
then it may be the case that a partial-MST has more than one
nearest-neighbor.  However, all of the paths from all nearest-
neighbors of a partial-MST cannot be blocked. 

Lemma 3.1 can be altered slightly to state that for each
partial-MST, the set of edge-sequence trees encodes the edge-
sequence of the shortest-path between the partial-MST and
(at least) one of its nearest neighbors.  Likewise if we drop
the assumption that there is only one shortest path between
any two sites, the set of edge-sequence trees is guaranteed to
encode at least one such shortest path.

For each iteration of the basic MST algorithm of Section 3.1,
only one nearest neighbor of each partial-MST is required. 
Thus, our PMST algorithm needs no changes to
accommodate the loss of these assumptions.

We also discard the assumption that no site lies upon a vertex
or an edge of the polyhedron.  When a site lies upon a vertex,
its root is not a dummy node, but a vertex node.  If a site lies
upon an edge of the polyhedron, e, then the children of the
dummy root are the edge-nodes corresponding to the four
remaining edges bounding the two faces adjacent about e.

Note that in this paper, unlike many treatments of geometric
graphs, the edges of the PMST do not have a spatial
component (i.e. an edge is specified entirely by its two
endpoints; how to get from one endpoint to the other is not
stored).  This is due to the fact that storing spatial information
might require greater-than-linear space, depending upon the
method of storage.  For some applications, it may be
desirable to store the shortest-path information with the
edges.  Below, we discuss two techniques by which this can
be achieved.

First, recall that on an open, convex polyhedron, all shortest
paths become straight-line segments upon unfolding.  One
possibility is that PMST edges are stored as triples, (p, D, q),
such that p is the starting point of the edge (a site), D is an
initial direction of travel across the surface, and the edge ends
at site q.  Thus, by specifying starting and ending points, and
an initial direction of travel, a single embedded edge can be
reconstructed in O(n) time by simply following the straight-
line path across the surface of the convex polyhedron. 
Storing a PMST using this approach requires O(m) space. 
Note that this approach works only with convex polyhedra.

Another approach is to store individual line segments of each
edge of the PMST.  Since each edge is a shortest-path
between two sites, each PMST edge may cross up to n faces
of the polyhedron.  In this manner storing a single PMST
edge requires O(n) space, and  so O(mn) space is sufficient
for the storage of all m paths.



4.  MODIFICATIONS
The linear space bound of the PMST algorithm of Section 3
significantly improves upon the quadratic complexity needed
if a Voronoi diagram is computed prior to the generation of a
PMST.  There is also a small reduction in the time bound
when n>m, from O(n2logn) (as stated in [7]) to O(n2logm). 
However, while an iteration of the PMST algorithm of
Section 3 requires O(n2+m2) time, the set of edge-sequence
trees can generated within only O(n2+mn) time.  This fact
motivated us to seek a more efficient method of extracting
nearest-neighbor information from the set of edge-sequence
trees.

In this section, we show that by preprocessing the sites upon
each face, the time bound can be reduced significantly (for
m>n) while suffering a slight increase in the space bound.

Given a set of sites in the plane, divide the space about a site,
p, into a set of wedges, such that the angle on each wedge
<60°.  Yao [11] tells us that the set of sites nearest p in each
of the wedges is a superset of the sites to which p can be
adjacent in a planar MST.  Notice that the number of wedges
about p is of size O(1).

We can make use of this knowledge in finding potential
PMST edges between sites that lie on a single face.  For each
face of the polyhedron, consider the set of sites lying upon
this face, S.  For each p ∈ S, find an O(1) sized superset of
potential edges between  p and the other sites in S.  The edges
discovered in this manner are a superset of PMST edges
between sites lying on a single face of the polyhedron.  For m
sites, this can be accomplished in O(mlogm) time and linear
space [11].

We can deal with PMST edges between sites on different
faces in a similar manner.  As in Section 3, first generate a set
of edge-sequence trees of all sites. 

Recall, when “decompressing” and examining a path through
the edge-sequence trees, we are interested in computing
distances between source site of the path and all sites on the
planar map defined by the path, such that the other sites are:

(1) not in the same partial-MST as the source, and

(2) visible through the interior of the planar map

Notice that when searching the paths through the set of edge-
sequence trees, the portion of a face visible to a source site
through a planar map is defined by a wedge with angle <180°
at the apex (see Figure 4.1).  This region can be divided into
three (or fewer) wedges of angle <60° each.  The set of
nearest-neighbors within the set of smaller wedges forms a
O(1)-sized superset of PMST edges between the query point
and sites on the face.

source image

<60<60

Figure 4.1: The heavy dashed lines denote the boundary of the
region visible to the source through some edge sequence.  This

region is divided into two wedges, each less than 60°.

This approach allows for a quick determination of a superset
of PMST edges between two sites that lie on different faces. 
We require a means of quickly computing the nearest-
neighbor within each wedge.

The modifications to our PMST algorithm involve the use of
a linear-space, simplex range-search structure.  Such range-
search structures are basically trees in which each node
corresponds to a simplical partition of the space.  Each
partition contains a subset of the sites.  The set of sites in a
node’s simplical partition is known as the canonical subset of
the node.  The canonical subsets of the children of a node are
disjoint.

Lemma 4.1 Given k sites in the plane, the sites can be
preprocessed in O(k1+ε) time and O(klogk) space (for some
arbitrary ε>0), such that, when queried with a wedge, in
O(k1/2logk) time the site can be found which both:

(1) lies within the wedge

(2) lies closer to the apex of the wedge than any other site
within the wedge

Proof: Matousek [6] shows how a simplex range-search
structure can be computed in time O(k1+ε), for some arbitrary
ε > 0.  The resulting data structure requires linear space, and
when queried with a particular range of constant complexity
(i.e. the query wedge) returns a set of O(k1/2) nodes.  The
canonical subsets of these returned nodes are disjoint and
contain all sites within the query range.

Often, each node of a range-search structure stores an integer
corresponding to the size the node’s canonical subset.   This
is useful in answering range-counting queries, in which the
number of sites within an arbitrary polygonal region is
computed. 



In contrast, in our modified PMST algorithm, each node of
the range-search structure stores a point-location data
structure of the Voronoi diagram of the sites in the
corresponding canonical subset.  The point-location data
structure is used to compute the Voronoi cell containing a
query point (i.e. the nearest-neighbor of the query point). 

A point-location structure can be implemented to use linear
space, and return answers to queries in logarithmic time. 
Given k′ sites, such a structure can be generated in O(k′logk′)
time (see [4], for example).

In summary, our data structure is a range-search data
structure, with point-location data structures at each node. 
When queried with a wedge, the O(k1/2) nodes whose
canonical subsets contain all sites in the range are found.  For
the canonical subset of each of these nodes, the site nearest
the apex of the query wedge can be found in logarithmic time,
with respect to the number of sites in the subset.  Thus, given
k sites in the plane, the time required to find the site nearest
the apex in a query wedge is O(k1/2logk).

Preprocessing the sites involves first generating the range-
search tree (requiring O(k1+ε) time, for some arbitrary ε > 0). 
The simplex range-search data structure of [6] is essentially a
set of trees of height O(logk).  Since the sites are disjoint at
each level, and there are O(logk) levels overall in the range-
search trees, the required preprocessing time is:

O k O k O k k( ) (log ) * ( log )1+ +ε      (4.1)

= +O k( )1 ε     (4.2)

The space required for storing the data structure is the
number of levels of the structure, multiplied by the size of the
point-location structure per level (linear).  Thus, space is:

)log( kkO   (4.3)

With this, Lemma 4.1 is proven.  q

From the discussion preceding Lemma 4.1, it should be clear
how the data structure described in Lemma 4.1 is used in
reducing the time bound of our PMST algorithm.  The sites
on each face, f, are preprocessed so that an O(1)-sized
superset of potential PMST edges between sites on f, and a
site not on f can be determined without examining every site
on f.

We now prove the complexity bounds of our modified PMST
algorithm.

Theorem 4.1 A PMST of m points on an n-faced polyhedron
can be computed in O(n2logm+mn(m/n)1/2log(m/n)logm) time
and O(n+mlogm) space.

Proof: Recall that the potential PMST edges between sites
sharing a single face can be accomplished using nearly linear
time.  This bound is superceded by the complexity of
computing potential PMST edges between different faces. 
Thus, we ignore this part of the algorithm in the following
proof, and concentrate solely upon the complexity of
computing PMST edges between sites lying on different
faces.

Our modified PMST algorithm commences by preprocessing
the sites on each face into the data structure described in
Lemma 4.1.  For each face, fi, let mi denote the number of
sites upon fi, where 1 ≤ i ≤ n.  The space required of the data
structure is, for all n faces:

( ) ( )( )O O m mi i
i

n

1
1

+
=
∑ log      (4.4)

The O(1) term in Equation 4.4 refers to the constant amount
of storage required per face.  An upper bound on Equation
4.4 is:

( )O n m m+ log     (4.5)

Recall that in every iteration of the basic MST algorithm
(Section 3.1), a set of edge-sequence trees is generated, and
then each path through each edge-sequence tree is
“decompressed” and processed.  In processing, we find
potential PMST edges between the source-site of the path,
and sites on faces crossed by the path.  The time required for
processing a single path though an edge-sequence tree is (by
Lemma 4.1):

( ) ( )( )O O m mi i
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=
∑ log      (4.6)

Equation 4.6 is largest when the sites are evenly distributed
among the faces. This is because the complexity bound is less
than linear for sites on each face.

The time required to unfold a single path through an edge-
sequence tree, when sites are equally distributed over all faces
is (from Equation 4.6):
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Multiplying the bound for each path unfolding (Equation 4.7)
by the number of paths, O(n+m), gives the time bound for
one iteration of the basic MST algorithm (Section 3.1). 
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Finally, multiplying this value by O(logm) iterations of the
MST algorithm leads to the overall time bound on our
modified PMST algorithm:
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Thus, the theorem is proven.  q

The above result implies that a polyhedral nearest-neighbor
graph (PNNG) can be computed in
O(n2+mn(m/n)1/2log(m/n)) time and O(n+mlogm) space.

5.  CONCLUSIONS
In this paper we have considered the problem of generating a
minimum spanning tree of a set of sites lying on the surface
of an open polyhedron.  This problem may have applications
in the area of network planning over real terrain, modeled as
a polyhedral surface. 

The results obtained improve upon the bounds that might be
required if a Voronoi diagram of the sites was generated
before the PMST.  The major improvement is in terms of the
storage requirements.  A Voronoi diagram may require
quadratic storage space, while our algorithms use
approximately linear space.

It would be interesting to discover whether the Kapoor’s
approach to computing polyhedral shortest-paths [5] can be
applied to generating a PMST within a lower time bound than
our algorithm.  An approximation algorithm for generating a
PMST would also be an interesting extension of this work.

6.  REFERENCES
[1] Aronov, B., van Kreveld, M., van Oostrum, R., and

Kasturirangan, V. Facility location on terrains. In
Proceedings of 9th Annual International Symposium on
Algorithms and Computation (ISAAC ’98), 1998.

[2] Canny, J., and Reif, J. New lower bound techniques for
robot motion planning problems. Proc. 28th IEEE Symp.
Foundations of Computer Science, 1987, 49-60.

[3] Chen, J., and Han, Y. Shortest paths on a polyhedron.
Internat. J. Comput. Geom. Appl. 6, 1996, 127-144.

[4] Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel,
R., Snoeyink, J., and Welzl, E. Implicitly representing
arrangements of lines or segments. Discrete and Comput.
Geom. 4, 1989, 433-466.

[5] Kapoor, S. Efficient computation of geodesic shortest
paths. In proceedings of STOC ’99, 1999, 770-779.

[6] Matousek, J. Range searching with efficient hierarchical
cuttings. Discrete and Comput. Geom. 10, 1993, 157-
182.

[7] Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C.
H. The discrete geodesic problem. SIAM J. Comput. 16,
1987, 647-668.

[8] Mount, D. M. Voronoi diagrams on the surface of a
polyhedron. Technical Report 1496, Department of
Computer Science, University of Maryland, 1985.

[9] Pankaj, K., Aronov, B., O’Rourke, J., and Schevon, C.
A. Star unfolding of a polytope with applications. SIAM
J. Comput. 26, 1997, 1689-1713.  

[10] Sharir, M., and Schorr, A. On shortest paths in
polyhedral spaces. SIAM J. Comput. 15, 1986, 259-263.

[11] Yao, A. C. On constructing minimum spanning trees in
k-dimensional space and related problems. SIAM J.
Comput. 11, 1982, 721-736.


