
Shattering a Set of Objects in 2D

Subhas C. Nandy�

Indian Statistical Institute,

Calcutta 700 035, India,

Abstract : In this paper, we propose an al-
gorithm for shattering a set of disjoint line seg-
ments of arbitrary length and orientation placed
arbitrarily on a 2D plane. The time and space
complexities of our algorithm are O(n2) and
O(n) respectively. It is an improvement of the
O(n2logn) time algorithm proposed in [5]. A mi-
nor modi�cation of this algorithm applies when
objects are simple polygons, keeping the time
and space complexities invariant.

Keywords : Duality, topological line sweep,
separator, shattering.

1 Introduction

Given a set S of n non-intersecting line segments
of arbitrary length and orientation in the plane,
we say that a line ` is a separator of S if it does
not intersect any member in S and partitions S
into two non-empty subsets lying in both sides
of `. A set of separators L is said to shatter
S if each line in L is a separator of S and ev-
ery two line segments in S are separated by at
least one line in L. In other words, each cell
of the arrangement of the lines in L contain at
most one member of S (see Figure 1a for illustra-
tion). For a given set S, a set of separators may
not always exist which can shatter S (see Fig-
ure 1b). In [5], it was proved that the problem
of �nding a minimum cardinality shatter for S is
NP-complete. They also proposed an O(n2logn)
time algorithm for getting a feasible solution of
the problem, if it exists at all. The same problem
in higher dimension is studied in [4]. In 2D, for
each member in S, if the ratio of its length and
the diameter of the set S is larger than a prede-
�ned constant �, the set of shattering lines for
S can be obtained in O(nlogn) time [3]. In this
paper, we consider the general case of the prob-
lem as in [5], and propose an algorithm which

�Currently in Japan Advanced Institute of Science
and Technology, Ishikawa 923-1292, Japan.

decides the existence of a set of lines shattering
S. In case of a�rmative answer, it outputs a set
of lines shattering S. Our algorithm is based on
sweeping a topological line through the arrange-
ment of the duals of S. The time complexity
of our algorithm is O(n2), which improves the
O(n2logn) algorithm of [5] in the general case.
The space complexity is O(n). We also show
that our proposed algorithm can easily be ex-
tended if the objects are disjoint polygons keep-
ing the time and space complexities invariant.
Possible applications of the shattering problem
are mentioned in [3, 5].

2 Preliminaries

As an initial step, we �nd whether there exists a
set of vertical separators which can shatter S, by
sweeping a vertical line on the plane in O(nlogn)
time. If such an attempt fails, we need to check
whether a set of non-vertical lines exist which
can shatter S following the method discussed be-
low.

We use geometric duality for solving this prob-
lem. It maps (i) a point p = (a; b) to the line
p� : y = ax � b in the dual plane, and (ii) a
non-vertical line ` : y = mx � c to the point `�

= (m; c) in the dual plane. Needless to say, the
incidence relation of the primal plane remains
preserved in the dual plane also. In other words,
p is below (resp., on, above) ` if and only if p�

is above (resp., on, below) `�. The dual of a line
segment s 2 S is a double wedge s� formed by
the duals of all the points on s. All these lines
pass through the dual (point) of the line contain-
ing s, and s� is bounded by a pair of lines which
are duals of the end points of s. The area inside
the double wedge s� will be referred to as the
active zone of s�. Easy to check, a non-vertical
line ` stabs s, if and only if the corresponding
dual point `� lies in the active zone of s�.

Now, if we consider the arrangement of the duals
of the members in S, and choose a point `� in
the complementary region of the union of active
zones of all the double wedges fs�i j s 2 Sg, its
corresponding line ` in the primal plane will not
stab any of the members in S. Again, if such
a point `� is chosen above the upper envelope
or below the lower envelope of

Sn

i=1
s�i , then all

the members in S will lie in one side of `. Thus
in order to get a separator of S, one needs to
choose a point in the complement of the union
of active zones of these double wedges, but not
above or below all of them. The set of all the
separators can easily be obtained by construct-
ing the arrangement of the duals of the members
in S and then determining for every face of the
arrangement whether it is inside the active zone
of any one of the double wedges. This can easily
be done in O(n2) time by sweeping a topologi-
cal line [1] through the arrangement. It is very
easy to observe that there are sets of line seg-
ments for which the union of active zones of the
double wedges has complexity
(n2). Hence the
complexity of the complement regions in the ar-
rangement, and hence the cardinality of the set
of all possible separators, may also be O(n2).

It is easy to observe that, for a given set S of
line segments, there may not exist any set of
separators which can shatter S (see Figure 1b).
An easiest way to check whether the set of all
possible separators L, obtained above, shatter S
or not, is as follows :

(a) (b)

Figure 1: (a) Demonstration of shattering for a
set of line segments S, (b) An example where a
set of lines shattering S does not exist

Consider the arrangement of the lines in L.
As the members of L are the separators
of S, each member in S completely lies
in one cell of the aforesaid arrangement
(see Figure 1a). So, we consider a set of
points P that contains one end point of
each line segments in S. Now, if any of
the cells in the arrangement contains more
than one point of P , it indicates that shat-
ter does not exist for S. The time re-
quired to locate the cell containing a given
point is O(jLjlog2(jLj)) [7]. A random-
ized algorithm of expected time complexity

O(m2=3
1

m
2=3
2

log(m1) + m1log(m1)log(m2))
exists which outputs the cells of an arrange-
ment of m1 lines that contain a speci�ed set
of m2 points [2]. In our case, m1 = jLj, and
m2 = n. As jLj may be O(n2) in the worst
case, the time complexity of the former al-
gorithm may be O(n3log2n) and that of the
later may be O(n2logn).

In the following section we propose a simple al-
gorithm using topological plane sweep through

the arrangement of the lines de�ning the wedges
corresponding to the line segments in S in the
dual plane.

3 Outline of the algorithm

Let G be a n vertex graph whose nodes corre-
spond to the members in S. Initially, the graph
is complete, i.e., among each pair of vertices,
there is an edge. The edges of the graph will be
deleted during the execution of the algorithm.
At any instant of time, an edge between a pair
of nodes implies that the corresponding line seg-
ments are not yet separated by any separator.
During the execution of the algorithm, as soon as
a separator ` is detected which separates S into
two disjoint sets S1 and S2 in its two sides, we
remove all the edges among the members in S1
and S2. We refer S1 and S2 as two clusters sepa-
rated by `. Subsequently, if another separator `0

is located which partitions S into S3 and S4 such
that the subsets S1

T
S3, S1

T
S4, S2

T
S3 and

S2
T
S4 are not all equal to �, then we don't elim-

inate edges in G among S1
T
S3 and S2

T
S4, and

S1
T
S4 and S2

T
S3 as they are already deleted

in an earlier step. Here, S1 will split into two
disjoint clusters S1

T
S3 and S1

T
S4 by eliminat-

ing the edges among them in G. Similarly, S2
will also split into two disjoint clusters S2

T
S3

and S2
T
S4. During the entire swap, if all the

edges are eliminated from G, the output set of
separators shatter S. Next, we need to prove a
very important lemma.

Lemma 1 [5] If S is shatter-able by an arrange-
ment of lines, then S is shatter-able by an ar-
rangement of n� 1 or fewer lines.

Proof : If each member of the separators L,
when it is detected, separates at least one ex-
isting subset of S which is not yet separated,
then by the introduction of that separator, the
number of (disjoint) clusters will be increased
by one. If S is shatter-able, at the end of sweep
the number of clusters will be n, and they are
formed with at most n � 1 separator lines. 2

We consider the set S� of double wedges in the
dual plane corresponding to the set S of line seg-
ments in the primal plane. From now on, the
set of lines in S� will also be referred to as S�.
The members of S� partition the dual plane into
O(n2) disjoint cells.

De�nition 1 A cell is said to have degree k if
and only if the active zone of k double wedges
of S� overlap on it. A cell of degree zero will be
referred to as zero-degree cell.

As mentioned earlier, a point `� inside a zero-
degree cell corresponds to a line ` in the primal
plane which does not stab any member of S. In
addition, if that cell does not lie above the up-
per envelope or below the lower envelope of S�,

it corresponds to a separator of S. We use topo-
logical plane sweep to identify the zero-degree
cells in the arrangement of S�. Needless to men-
tion, as a topological sweep line L is y-monotone,
when such a line encounters the leftmost vertex
v of a zero-degree cell C, any point `� inside that
cell separates two subsets S�

1 and S�

2 of double
wedges which cross over L above and below v

respectively. In other words, the line ` in the
primal plane corresponding to `� separates the
sticks corresponding to S�

1 and S�

2 . In such a
situation, we shall say that the point `� (or the
cell C) separates the set of double wedges S�

into two disjoint clusters S�

1 and S�

2 .

3.1 Data structure

In addition to the standard data structures of
sweeping a topological line through the arrange-
ments of a set of lines, as is used in [1], we need
to maintain the following data structures during
the execution of our algorithm.

list 1 : It is a linear link list whose elements al-
ternately contain the lines in S� and the
cells in the arrangement, intersected by the
sweep line L in its current position, and or-
dered from top to bottom. As we like to
ignore the cells above the upper and below
the lower envelopes of S�, the �rst and the
last element of this list are the two members
in S� that has intersected L at maximum
and minimum y-coordinates.

An element representing a line contains (i)
an identi�er indicating the correspond-
ing member in S, and (ii) a pointer
to the corresponding line in the clus-
ter data structure, described below.

An element representing a cell contains its
degree.

cluster : It is a list of subsets of S� partitioned
by the zero-degree cells obtained so far.
Needless to mention, initially, it contains
only one cluster having the entire set S�,
and its identi�er is 1. Finally, after consid-
ering all the vertices in the arrangement, it
contains n�1 clusters. Each element of this
list contains a member list and a header as
described below.

member list : A bidirectional link list con-
taining a cluster, say S�

i . This in-
dicates that the line segments in the
primal plane, corresponding to S�

i ,
are not yet separated by any sepa-
rator, and hence the corresponding
nodes in G are still connected to each
other. This list is also maintained in
a top to bottom order with respect
to their appearance on the topological
line L. Note that, the upward (resp.
downward) link of the top-most (resp.
bottom-most) element is set to NULL.
In order to reach the cluster header

from any element in the cluster in O(1)
time, each node is attached with a
head ptr which points to the header of
the corresponding cluster.

header : This contains the following infor-
mation regarding the cluster.

id : A cluster identi�er which is a nat-
ural number from 1 . . . k, if k clus-
ters are generated up to the cur-
rent instant of time.

t; b : The top-most and bottom-most
members in member list.

tptr; bptr : A pair of pointers indicat-
ing the lines t and b in the list 2
data structure as described below.

separator list : A list of points in the dual plane.
Each point corresponds to a separator of S
in the primal plane.

We also maintain the following data structure
during the execution of the algorithm. We de-
fer to state its usefulness up to the next section.
But its management will be discussed in this sec-
tion along with the management of other data
structures.

list 2 : It is also a linear link list similar to list 1,
but the lines stored in this list are only the
top-most and bottom-most lines (indicated
by t and b �elds) of all the clusters which are
recognized till the current instant of time.
As the top-most and/or the bottom-most
line of a cluster may change after encounter-
ing a vertex of the arrangement, the mem-
bers in this list sometimes change during
the execution. When a new cluster is gen-
erated, two new lines are added in this list.

3.2 Algorithm

We shall follow the algorithm of sweeping a topo-
logical line L through the arrangement of lines
in S� as described in [1]. During the execution,
let v be the new vertex encountered by L, which
is generated due to the intersection of two con-
secutive lines, say `1 and `2, in list 1. We now
need to take the following actions :

Step 1 : `1 and `2 need to be swapped in list 1.
A cell will die out and a new cell will be gen-
erated. Note that, the vertex v may be of
two types depending on whether it is gen-
erated due to the intersection of two lines
corresponding to the end points of the same
line segment in S or of two di�erent line seg-
ments. In the former case, the degree of the
new cell will remain same as that of the dy-
ing cell (see Figure 2a). In the later case,
the degree of the new cell needs to be de-
termined observing the sides of `1 and `2
containing the active zones (see Figure 2b,
2c and 2d).

(a) (b)

(c) (d)

l
1

l
2

l
1

l
2

l
1

l
2

l
1

l
2

Figure 2: Degree computation for a new cell

Step 2 : If `1 and `2 belong to the same cluster,
they must be consecutive in the member list
of that cluster. Here, the following actions
need to be taken :

2.1 They need to be swapped in the mem-
ber list of cluster data structure.

2.2 If one of `1 or `2 is either the top line
or the bottom line of that cluster, t or
b �eld (along with the pointers tptr or
bptr, as the case may be) of that cluster
need to be changed. It can easily be
checked by comparing `1 and `2 with
the existing t and b �elds of the cluster.

2.3 Easy to understand, if the t or b �eld
of a cluster changes, the corresponding
change in list 2 is also necessary.

Step 3 : If `1 and `2 belong to di�erent clus-
ters, then apart from the line swap no other
change in the cluster data structure is neces-
sary. But if any one of them is either the top
or the bottom line of the respective cluster,
then a line swap may be required in list 2
also. This can be checked consulting the t
and b of the corresponding clusters. The
corresponding lines in list 2 can be reached
in O(1) time using the pointers tptr and bptr.

Step 4 : If the degree of the new cell, observed
in Step 1, is zero, any point inside this cell is
a separator for S. In order to check whether
this separator separates at least one of the
existing clusters, we need to execute the fol-
lowing sub-steps.

4.1 We traverse the cluster list to inspect
all the clusters so far obtained. If the
generated cell is within the lines indi-
cated by the t and b �elds of a cluster,
it needs to be partitioned by that sep-
arator.

4.2 If a cluster is observed to be split, we
visit the member list from top to bot-
tom to �nd a pair of lines `i and `j
within which the currently generated
zero-degree cell lies. The former clus-
ter is shortened by deleting the link
between `i and `j . A new cluster is

formed with the lines below and in-
cluding `j . The t and b �elds of both
the clusters are appropriately set.

4.3 Both the lists of the newly formed pair
of clusters are visited to remove edges
in the graph G.

4.4 The top line (represented by t �eld) of
one of the newly generated clusters and
the bottom line (represented by b �eld)
of the other one are inserted in list 2.

Step 5 : If at least one of the existing clusters
split, we introduce a separator by adding
a representative point of the current cell in
the separator list. Otherwise, we do not in-
troduce any separator for the current cell.

Lemma 2 Each edge of the graph G will either
be accessed exactly four times or never during
the entire execution of the algorithm.

Proof : While processing a cell, if its degree is
greater than zero, the question of accessing the
graph G does not arise. If the degree of a cell is
zero, we investigate each cluster separately. So,
an already deleted edge between a pair of ver-
tices which lie in di�erent clusters, will not be
checked. Let a cluster S�

i splits into S�

i1 and
S�

i2. Note that each pair of nodes of S�

i are still
attached in G. During its split, only the edges
whose one vertex lies in S�

i1 and the other vertex
is in S�

i2, will be accessed. So, an edge which is
not a candidate for deletion while processing a
cell, will not be accessed during the processing
of that cell. This proves the second part of the
lemma.

Now, if a pair of wedges, say s�� and s�� 2 S�

i

appear in di�erent sides of the zero-degree cell,
both the edges of s�� will be checked with both
the edges of s�� . So, the edge between s� and s�
will be accessed exactly four times. Hence the
proof of the �rst part. 2

Theorem 1 The algorithm stated above decides
the decision problem � whether S is shatter-able
or not.

Proof : Suppose there exists a shatter, but our
algorithm could not remove all the edges of the
graph G. In other words, at least one cluster
of size greater than or equal to 2 remains. As
all the separators in that shatter must corre-
spond to some zero-degree cell of the arrange-
ment, and our algorithm visits all the cells of the
arrangement, the aforesaid clusters must split
when our algorithm encountered those cells dur-
ing the sweep. Hence a contradiction. 2

Lemma 3 The time complexity of the above al-
gorithm is O(n3) in the worst case.

Proof : The topological line sweep requires
O(n2) time [1], and it gives birth to O(n2) cells.

Now, we need to consider the time complexity
of processing each cell. As soon as a new cell
is reached after encountering a vertex by the
topological sweep line, the algorithm consumes
a constant amount of time for updating a con-
stant number of links in list 1, cluster, and list 2,
and for adjusting the degree of the newly gen-
erated cell. If the newly encountered cell is of
non-zero degree, no additional task needs to be
performed. However for a zero-degree cell, it
needs to check all the existing clusters to ex-
plore the possibility of their split. If there exists
some favorable cluster(s), the total time required
to split all of them is proportional to the total
size of the split-able clusters, which may be O(n)
in the worst case. Again, as the splitting takes
place at most n�1 times (by Lemma 1), the total
time required for the splitting of clusters during
the entire execution is O(n2) in the worst case.
But, we need to spend O(k) time for visiting all
the k clusters present in cluster data structure
in order to �nd the split-able clusters as soon
as we encounter a zero-degree cell. The lemma
follows from the fact that k may be O(n), and
the number of zero-degree cells may be O(n2) in
the worst case. 2

Lemma 4 The space complexity of our algo-
rithm is O(n).

Proof : The space required for maintaining the
required data structure for topological sweep is
O(n) in the worst case [1]. It is also easy to un-
derstand, list 1, list 2 and separator list require
O(n) space. As the clusters are disjoint, the
space required to store the link lists of all the
clusters is also O(n). Only O(n2) space is re-
quired to store the graph G. But, by Lemma 2,
an edge ofG is accessed four times if it is deleted,
otherwise, it is not accessed at all. So, in place of
G, we may keep a counter edge count, initially
set to 0; as soon as an edge of G needs to be
accessed, we increment edge count by 1. At the
end of the execution if the value of edge count
is equal to 2n(n � 1), it implies all the edges of
G is deleted, and the set S of line segments is
shatter-able. 2

4 A further re�nement

In the earlier section we observed that, during
the processing of a zero-degree cell, an O(n) time
may be required in the worst case to locate the
split-able clusters, irrespective of whether it de-
tects such a cluster or not. We may hope a bet-
ter time complexity if we can avoid the checking
when no split-able cluster exists for a zero-degree
cell.

Now, we explain the use of list 2 in order avoid
the above mentioned checking. It is already
mentioned that list 2 maintains the overlapping
information among the clusters. The lines stored
in it correspond to the upper and lower lines of
all the clusters, explored so far, and degree of

an cell on list 2 implies the number of clusters
overlapped on that cell. We use � to refer the
degree of an cell generated on list 2.

Lemma 5 If the topological sweep line enters
in a zero-degree cell after encountering a vertex
generated by

(a) the intersection of a pair of lines of the same
cluster, then at least one cluster is sure to
split.

(b) the intersection of a pair of lines of dif-
ferent clusters, then there may or may not
exist cluster(s) which split. It depends on
whether the � parameter of the correspond-
ing cell on list 2 is non-zero or zero.

Proof : The proof of the part (a) is obvious.
The proof of part (b) follows from that fact that,
as the vertex is obtained by the intersection of a
pair of lines of di�erent clusters, those two clus-
ters may not split if the participating lines are
top most or the bottom most line of the corre-
sponding clusters. In that case, the � parameter
of the current cell will be 1 less than its neigh-
boring cells as shown in Figure 3a. Otherwise
these clusters must split, and the � parameter
of the current cell will be same as that of its
neighboring cells (see Figure 3b). In the former
case also, if � of the current cell is non-zero,
some other cluster must overlap on the current
cell, and that gets split by a representative point
inside that cell. But if � of the newly generated
cell becomes zero due to the current swap, no
cluster splits. 2

(a) (b)

Topological line

top & bottom
line for Si

*

top & bottom
line for Sj

*

top & bottom
line for Si

*

top & bottom
line for Sj

*

 data structure - Lines in the two clusters are differently shadedlist_2

current cell

Figure 3: Proof of the (b) part of Lemma 5

Lemma 5 tells that, while processing a zero-
degree cell, we can understand whether any of
the clusters splits or not, by observing the �
parameter of that cell in list 2. It needs to men-
tion that, the cells stored on the list 2 are not the
same as that of the list 1, as the former list stores
only 2k lines if k clusters are formed till now.
But, if a cell with � = 0 is reached, the cor-
responding intersecting lines are top-most and
bottom-most lines of two clusters. So they are
present in the list 2. These two lines need to be
swapped and the � parameter of the new cell on
list 2 is to be appropriately adjusted. So, it only

remains to explain how we can reach the lines
corresponding to the list 2, (if they are at all
present) when a pair of lines on the list 1 swap.

When a pair of lines in list 1 swaps, the cor-
responding lines in cluster data structure are
reached by using the pointer maintained with it
in list 1. It can be checked very easily whether
those lines are the top most line or the bottom
most line of the corresponding clusters by ob-
serving the t and b �elds stored in the cluster
headers, and which is reachable using head ptr.
Now, if any of them is an extreme line of a clus-
ter, it is also present in list 2. In order to update
list 2 we reach those lines in list 2 using tptr or
bptr, stored in the cluster header.

Lemma 6 If the search in the cluster data
structure is performed only when there exists at
least one split-able cluster, the total time com-
plexity reduces to O(n2).

Proof : The proof follows from the following
three points :

� The search for a split-table cluster requires
O(k) time when there are k clusters in the
cluster data structure.

� Introduction of a new separator increments
the number of clusters by at least one.

� At most n � 1 separators may exist in a
shatter (by Lemma 1). 2

We are now in a position to state the complexity
results of our algorithm.

Theorem 2 The time and space complexities of
our proposed algorithm are O(n2) and O(n) re-
spectively.

Proof : Follows from Lemma 4 and 6. 2

5 Shattering of arbitrary polygons

In this section, we describe how our algorithm
can be tailored if the set S of objects are arbi-
trary simple polygons. A pair of polygons can
be separated by a line if and only if their con-
vex hulls are non-overlapping. So, as a �rst step
of this problem, we need to compute the con-
vex hulls of all the polygons, which need O(n)
time [6] if n be the total number of vertices on
all the m polygons placed on the
oor. Now our
problem boils down to deciding whether shat-
ter exists for the convex hulls of those polygons.
From now onwards, S will denote the set of con-
vex polygons obtained above. In O(nlogn) time
we can check whether any pair of S overlaps or
not by sweeping a vertical line from left to right.
This also �nds whether a set of vertical lines ex-
ists which can shatter S. Below we explain the
method of checking the existence of a set of non-
vertical lines shattering S. This method will be

invoked if and only if the members in S are non-
intersecting and a set of vertical lines shattering
S do not exist.

Here also we shall work with the duals of the
convex polygons in S. The dual of a convex
polygon si 2 S is a set of points whose corre-
sponding lines in the primal plane stabs si. As
in the case of line segments, here also we denote
the dual region of si as its active region, and it is
bounded by a piecewise linear curve obtained by
the lower and upper envelopes of the dual lines
corresponding to the vertices of si. In Figure 4,
we demonstrate the dual of a convex polygon.
The duals of all the m convex polygons can be
obtained in O(nlogn) time [7].

Figure 4: A convex polygon and its dual

Except for the degenerate cases for a convex
polygon with empty interior, i.e., for a line seg-
ment, the boundaries of the active region of a
member in si do not intersect. The boundary of
the dual of two di�erent objects si and sj may
intersect in at most two points. So, the com-
plexity of the arrangement of the boundaries of
the duals of all the members in S is also O(n2)
in the worst case [7].

As in the earlier problem, here also we sweep a
topological line in the arrangement of the duals
of the members in S. But after processing a ver-
tex of the arrangement, when we generate the
next vertex, we may need to follow the chain of
line segments along that curve. Moreover, we
may have to consider the end points of the line
segments on the boundaries of the active regions
as the event points in addition to the vertices
of the arrangement. If an event point of the
former type is reached, we need to change the
corresponding line description in each of list 1,
cluster and list 2 data structures, where the line
preceding to that point appears. The other steps
of the algorithm remain same. As the topologi-
cal sweep can be executed in O(m2+n) step, the
time complexity of the algorithm for polygonal
objects is O(m2 + nlogn) in the worst case.

References

[1] H. Edelsbrunner and L. Guibas, Topological
sweeping an arrangement, Journal of Com-
puter and Systems Sciences, 38 (1989), 165-
194.

[2] H. Edelsbrunner, L. Guibas and M. Sharir,
The complexity and construction of many
faces in arrangements of lines and of seg-
ments, Discrete Computational Geometry,
5 (1990), 161-196.

[3] A. Efrat and O. Schwarzkopf, Separating
and shattering long line segments, Informa-
tion Processing Letters, 64 (1997), 309-314.

[4] R. Freimer, Shattering con�gurations of
points with hyper-plane, Canadian Confer-
ence on Computational Geometry, 1991,
pp. 220-223.

[5] R. Freimer, J. S. B. Mitchell and C. D. Pi-
atko, On the complexity of shattering us-
ing arrangements, Canadian Conference on
Computational Geometry, 1990, pp. 218-
222.

[6] D. T. Lee, On �nding the convex hull of
a simple polygon,
, vol. 12(2), pp. 87-

98, 1983.

[7] M. Sharir and P. K. Agarwal, Davenport-
Schinzel Sequence and Their Geometric
Applications, Cambridge University Press,
1995.

