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Abstract

We investigate the structure of the bisector of point sites under arbitrary
convex distance functions in three dimensions. Our results show that it is advan-
tageous for analyzing bisectors to consider their central projection on the unit
sphere, thereby reducing by one the dimension of the problem. From the con-
cept of “silhouettes” and their intersections we obtain simple characterizations
of important structural properties like the number of connected components of
the bisector of three sites. Furthermore, we prove that two related bisectors of
three sites may intersect in permuted order.

Key words: Bisector, convex distance function, Voronoi diagram, 3D.

1 Introduction

Voronoi diagrams for general distance functions in 3-dimensional space are interesting
and have important applications, but not much is really known about their structure
and how to compute them. Most of the few known results focus on their complexity.
Boissonat et al. [5] show an upper bound of O(n2) for the complexity of a Voronoi
diagram of n point sites under L1 and L∞, as well as for a tetrahedral distance, and
generalizations of this for higher dimensions. Tagansky [23] obtains a more general
bound of O(k3α(k)n2 log n) for polyhedral distances with k facets in 3-space. Lê [16]
shows that the complexity of Voronoi diagrams under Lp distances is bounded in any
dimension, independent of p. Chew et al. [7] prove an upper bound of O(n2α(n) log n)
for the complexity of a Voronoi diagram of lines under a polyhedral distance.
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Two-dimensional Voronoi diagrams based on convex distance functions were first
studied by Shamos and Hoey [22] for L2, by Lee [19] for the other Lp-metrics, by Wid-
mayer et al. [24] for distance functions defined by convex polygons, and, at the same
time, by Chew and Drysdale [6] in the general case. Since convex distance functions
are a natural generalization of the Euclidean distance, investigating their Voronoi dia-
grams is a natural and necessary step towards a unifying theory on Voronoi diagrams,
as offered in dimension 2 by the concept of abstract Voronoi diagrams; see Mehlhorn
et al. [20] and Klein et al. [12, 13, 14]. For a survey on Voronoi diagrams we refer
to Aurenhammer [2] or Aurenhammer and Klein [3], for applications see Chew and
Drysdale [6] or the survey paper by Schwartz and Sharir [21]. A further generalization
of distances is proposed by Icking et al. [10]; here, every site is associated its own,
different distance function.

One of the reasons for the lack of results on Voronoi diagrams for higher dimen-
sions under arbitrary convex distance functions is the surprising, really abnormal,
structure of the bisectors which behave totally different from what is known for the
Euclidean distance. An example has been presented in [9], where Icking et al. show
that the bisector of four sites may consist of arbitrarily many single points, even for
a strictly convex and smooth distance and for sites in general position. Their struc-
tural results on bisectors for strictly convex distances in two and three dimensions are
generalized to smooth distances in arbitrary dimensions by Lê [15]. In [17] he proves
that for non-smooth distances in 3-space the bisector of three sites may consist of
many disconnected pieces, and in [18] he describes an algorithm which is suitable for
ellipsoid distances.

There is an astonishing result by Goodey [8] concerning ellipsoids in any dimension
greater or equal to three. Applied to our 3-dimensional case it says that for any
convex, non-ellipsoidal body K in R3 there are two homothetic copies of K such
that the intersection of their boundaries is not planar. So we can always find four
non-coplanar points in the intersection of their boundaries, and therefore the bisector
of these four sites under distance K contains at least two points, compare [9] or our
construction in Section 4. This means that it is extremely hard, or impossible, to find
convex distance functions in 3-space which can guarantee to have only one point in
the bisector of four sites in general position. In other words, the “surprising” behavior
of the 4-bisectors described in [9] is not an exception, but the rule: it strikes nearly
any convex distance, except for simplex distances and the affine transforms of the
Euclidean distance.

In this paper we prove new results on the behavior of the bisector of three sites. In
Section 2 we review some definitions. In Section 3 we investigate the structure of the
bisector. The central projection on the unit sphere turns out as a useful means, the
behavior of the bisector can be read from the intersection behavior of the silhouettes
on the unit sphere. From these results it should be not difficult to derive a sweep-
line algorithm for computing the bisector of three sites for e. g. polyhedral distances.
In Section 4 we show a surprising result on the intersection behavior of two or more
related bisectors of three sites: they may intersect in permuted order. All these results
are important steps towards the construction of such Voronoi diagrams.
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2 Definitions, assumptions, and simple results

Let C be a compact, convex body in 3-space (not necessarily symmetric, smooth, or
strictly convex) which contains the origin O in its interior. For two points a, q, we
translate C by vector a and consider the ray

−→
a q from a through q. Let v denote the

unique point on the boundary of C hit by this ray; see Figure 1. Then by

d(a, q) =
||q − a||
||v − a||

a convex distance function d is defined. Here ||q − a|| denotes the Euclidean distance
between q and a. Clearly, C is the unit ball of all points q satisfying d(0, q) ≤ 1,
equality holding only for the points on the boundary of C, the unit sphere ∂C. Well-
known examples of convex distance functions are the Lp-metrics, 1 ≤ p ≤ ∞, defined

by ||x||p =
p
√
|x1|p + |x2|p + |x3|p, among them the Euclidean distance, L2.

v

O

a

q

C

Figure 1: A convex distance function.

The bisector B(a1, a2) of two sites, a1 and a2, is the set {q ; d(a1, q) = d(a2, q)}
of all points whose distance from a1 equals the distance from a2. For brevity, we
write B(a1, a2, a3) instead of B(a1, a2) ∩ B(a1, a3) and B(a1, a2, a3, a4) instead of
B(a1, a2, a3) ∩ B(a1, a4) for the bisector of three resp. four points. We also speak
of 2-bisectors, 3-bisectors, and 4-bisectors, if only the number of participating sites is
meant.

In some degenerate cases a 2-bisector can contain 3-dimensional pieces, branchings,
or self-intersections. To avoid this, see Lemma 2, we make the following assumption
on general position: no line through two sites is parallel to a line segment which is
contained in ∂C. This assumption is appropriate because a non-general position does
not persist after a small perturbation of the sites.
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Given n point sites, a1, . . . , an, the Voronoi diagram based on a convex distance
function d can be defined in the usual way. With each site ai, the Voronoi region
containing all points q satisfying d(ai, q) = min

1≤j≤n
d(aj, q) is associated. The boundary

of the region of ai consists of pieces of bisectors B(ai, aj) where i 6= j.

Let Γij be the set of all points on the surface of C that admit a tangent parallel
to ai aj. We call Γij the silhouette for direction ai aj . For example, the silhouette on
a polytope consists only of edges of the polytope, due to general position.

Under the assumption of general position we obtain a number of useful properties.

Lemma 1 The silhouette Γ12 for direction a1 a2 is a simple closed curve.

Proof. The silhouette is (doubly) connected due to the convexity of C. It is a simple
curve due to the assumption of general position. 2

By Lemma 1, a silhouette cuts the surface of C into two open “half-spheres” which
are homeomorphic to a plane. Let Hij be the relatively open half-sphere of C bounded

by the silhouette Γij that intersects the ray
−−−−−−→
O (aj−ai). The two half-spheres Hij and

Hji share the same boundary Γij , and they represent a disjoint partition of ∂C, i. e.,
Hij

.∪ Γij

.∪ Hji = ∂C.

Any point p ∈ R3 \ {ai} can be mapped to the intersection point of the ray
−→
ai p

and ∂C + ai, this is called the central projection centered at ai.

Lemma 2 The bisector B(a1, a2) of two sites is homeomorphic to a plane.

Proof. The central projection centered at a1 is a homeomorphism of B(a1, a2) onto
H12 + a1, which is homeomorphic to a plane. More details of the proof can be found
in [9] where the claim is proven under the assumption of strict convexity of C, but the
proof still holds, without any modification, under our weaker assumption of general
position. 2

Remark that the assumption on general position is crucial, since the converse of
Lemma 2 is also true: in non-general position, i. e., if the line a1 a2 is parallel to a
line segment of ∂C, the bisector B(a1, a2) is definitely not homeomorphic to a plane.
As examples one may look at the bisector for a cylindric unit ball, which contains an
unbounded 3-dimensional component, or the bisector for a cone, which consists of an
infinite triangle glued to a 2-dimensional surface, in such a special position of the two
sites.

3 The structure of the bisector of three sites

There is a close relationship between the bisector of three sites in 2-space and in
3-space, as described in [9] and [17]. Let p be a point of B(a1, a2, a3) in 3-space, and
let vi be its central projection centered at ai, for i = 1, 2, 3, see Figure 2. The plane π
through v1, v2, v3 is parallel to the plane through a1, a2, a3. Let K be the intersection
of π and C + a1. We choose an interior point w1 in K, and let wi = w1 − a1 + ai, for
i = 2, 3. The lines wi vi, i = 1, 2, 3, intersect in a common point r that is the bisector
of w1, w2, w3 with respect to the unit circle K in the plane π.
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Figure 2: The construction of a bisector point p by central projection shows the close
relationship between the 3-bisectors in two and three dimensions.

Conversely, for each plane π parallel to a1, a2, a3 that intersects C+a1 we consider
a 2-dimensional bisector problem using (C + a1) ∩ π as the unit circle. It is not hard
to see that we can construct the corresponding bisector point r on π, if it exists, and
obtain the points vi on (C +ai)∩π. From this, we finally get a point p ∈ B(a1, a2, a3)
as the intersection of the lines ai vi.

The mapping from p to the plane through the points vi, i. e. the construction by
central projection, is continuous in both directions, see [11] and [9, 17].

For the intersection of half-spheres we introduce an abbreviation, let Hijk =
Hij ∩ Hik. This notation is, of course, commutative in the second and third index,
i. e. Hijk = Hikj.

Lemma 3 The intersected half-spheres H123, H213, and H312 are disjoint and parti-
tion the unit sphere, i. e., for their closures we have H123 ∪ H213 ∪ H312 = ∂C.

Proof. We have H123 ∩ H213 = ∅ by definition, due to H12 ∩ H21 = ∅.
The silhouettes Γ12, Γ13, and Γ23 have at least two points in common, namely the

points of ∂C touched by the supporting planes parallel to a1, a2, a3 from above and
below. At these points, each silhouette separates into two branches. The boundary
of H123 consists of one branch of Γ12 and one branch of Γ13. The “unused” branches
are contained in H312 and H213, respectively. Therefore, they must partition the unit
sphere. 2
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In some cases, the intersected half-spheres Hijk can be empty or disonnected. The
3-bisectors copy their behavior, as the next two lemmas show.

Lemma 4 The bisector B(a1, a2, a3) is not empty iff all three intersected half-spheres
H123, H213, and H312 are not empty.

Proof. Let p be a point of B(a1, a2, a3). Its central projection centered at a1 lies
in (H12 ∩ H13) + a1 = H123 + a1, compare the proof of Lemma 2. So H123 6= ∅, and
analogously for the other intersected half-spheres.

Conversely, assume that H123, H213, and H312 are all not empty. We consider a
plane π parallel to a1, a2, a3 which intersects the unit sphere in more than just one
point. For brevity, we write H ′

12 = H12∩π, etc., for the intersection of the half-spheres
with the plane. It is clear that not all three of H ′

123, H ′
213, and H ′

312 can be empty, by
Lemma 3.

We even show that at most one of them is empty. So assume the contrary, say
H ′

123 = H ′
213 = ∅. Then H ′

12 ∩ H ′
13 = ∅, thus H ′

12 = H ′
31, and analogously H ′

21 = H ′
32.

Therefore, H ′
312 = H ′

31 ∩ H ′
32 = H ′

12 ∩ H ′
21 = ∅, a contradiction.

Now we consider all possible positions of the plane π. Due to the relative openness
of H123, H213, and H312 and the fact just proven, there must be a position of π such
that all three of H ′

123, H ′
213, and H ′

312 are non-empty. More precisely, there must be
such a position in any connected component of H123.

For this particular position of π, we consider a 2-dimensional bisector problem
using the unit circle C ∩ π. It is easy to see that the we obtain a point of the
bisector B(a1, a2, a3) by using the construction by central projection presented at the
beginning of this section. 2

The bisector of three sites can be disconnected and each component is homeomor-
phic to a line, as already observed in [17]. The reasons for this become clear in the
next lemma.

Lemma 5 The bisector B(a1, a2, a3) is connected iff all three intersected half-spheres
H123, H213, and H312 are connected. The number of connected components of B(a1, a2, a3)
plus 2 equals the number of connected components of the three sets.

Proof. Assume that B(a1, a2, a3) is not empty and connected. From Lemma 4 we
know that the three sets H123, H213, and H312 are not empty, and in its proof we have
even seen that we can find, using the construction by central projection, the image
of a bisector point in each connected component of H123 + a1, etc. But the central
projection is continuous and therefore maps connected sets to connected sets, so H123

etc. must be connected. For an empty B(a1, a2, a3), which is connected by definition,
one of the three sets must be empty by Lemma 4, and therefore the other two must
be connected.

Conversely, if H123, H213, and H312 are all connected, then the construction by
central projection delivers one bisector point for every plane parallel to a1, a2, a3 that
intersects H123 + a1, H213 + a2, and H312 + a3. Since this construction is a continuous
mapping of a connected set of planes to the bisector, B(a1, a2, a3) must be connected,
too.
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For the number of connected components we consider a moving plane parallel to a1,
a2, a3, sweeping the whole unit sphere, and we observe the bisector points constructed
by central projection. For the first part of B(a1, a2, a3) that is constructed, we “use
up” one connected component of each of H123, H213, and H312. Whenever a new
piece of B(a1, a2, a3) begins, this is caused by a new connected component of one of
the three sets, because any connected component of one of them makes a non-empty
contribution to the bisector, see the proof of Lemma 4. 2

We give a simple example for constructing a disconnected 3-bisector. Figure 3
shows three sites a1, a2, a3 as well as the intersections of the unit spheres centered
at these sites with a plane parallel to a1, a2, a3, at three levels, see Figure 4 for
an impression of the unit sphere in 3-space. At the three levels considered, the
intersection is a triangle, but the triangle in the middle is rotated against the triangles
above and below. Considering the three situations as planar bisector problems, there
is a 3-bisector in the upper and lower case, but no 3-bisector point in the middle.
This corresponds to the fact that there is an empty set H ′

213 in the middle position,
while all three sets exist in the other situations. Therefore, the 3-bisector in 3-space
is interrupted, by Lemma 5.

H123

a2

a3

a1 H312

H312

H213

H123

H312

H213

H123

Figure 3: To the left, three planar intersections through three unit spheres as the one
shown in Figure 4. To the right, the corresponding sets H123, H213, and H312.

7



            

Figure 4: The unit sphere of the example in Figure 3, together with its bounding box.

4 The intersection of two related bisectors of three

sites

Now let us consider the bisector B(a1, a2, a3, a4) of four sites. In the Euclidean case,
the bisector of four non-coplanar points is always one point, but for general distances
this is much more complicated, see [9]. It may contain curves in R3 and can consist
of arbitrarily many discrete points or connected components, even for sites in general
position, and even if we additionally assume the unit sphere C to be smooth and
strictly convex. Here, we reveal another, also deterrent property of B(a1, a2, a3, a4).

The Voronoi region of a site is bounded by pieces of bisectors, and for computing
the structure of such a region one must look closely at the intersection of all bisectors
related to this site. From the construction by central projection, see Figure 2, the
bisector of three sites, which is always one-dimensional due to general position, is nat-
urally ordered. One might hope that two such bisectors, which appear in the common
boundary of two Voronoi regions, intersect nicely, i. e. the intersections appear in the
same order (or reverse) on both bisectors. This will be disproved in the following.

The intersection of two related 3-bisectors, say B(a1, a2, a3) and B(a1, a2, a4), is
the 4-bisector B(a1, a2, a3, a4). We consider a point, p, of the 4-bisector and its central
projections, vi, centered at ai, for i = 1, 2, 3, 4; compare Figure 2. The tetrahedron
T (v1, v2, v3, v4) is homothetic to the tetrahedron T (a1, a2, a3, a4) and also homothetic
to T (v1 − a1, v2 − a2, v3 − a3, v4 − a4). In this way, for each point of the 4-bisector we
have one tetrahedron homothetic to T (a1, a2, a3, a4) whose vertices lie on ∂C.

Now we imagine several of such homothetic tetrahedra whose vertices lie on ∂C,
and we consider a sweep plane parallel to a1, a2, a3, passing through C. It is also
parallel to one of the faces of the tetrahedra. The plane visits these faces in the
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same, natural order as the corresponding points of the 4-bisector lie on B(a1, a2, a3).
This holds because the central projection of the 3-bisector B(a1, a2, a3) on ∂C + a1 is
strictly monotonic in the direction orthogonal to the plane through a1, a2, a3.

But this order in which the tetrahedra are visited is not necessarily the same for
all four faces. We can indeed construct an example of a 4-bisector containing at least
seven points such that the corresponding tetrahedra are visited in totally different
order, depending on the face.

To this end, we define seven tetrahedra as shown in the left picture of Figure 5.
Their coordinates are shown in Table 1, remark that all 28 vertices are in convex
position.

                        

Figure 5: The left picture shows seven homothetic tetrahedra whose parallel faces
appear in permuted order. The right picture shows their convex hull, we observe that
all vertices of the tetrahedra are in convex position, i. e. they appear as vertices of the
convex hull. The convex hulls here and in Figure 4 were computed by Quickhull [4],
the pictures were rendered using Geomview [1].

The four families of parallel faces of the seven tetrahedra are visited in the orders
given by the following four rows.

1 2 3 4 5 6 7
5 6 7 4 3 2 1
7 6 5 4 1 2 3
3 2 1 4 7 6 5

So, if we now choose the convex hull of the seven tetrahedra, see the right picture
in Figure 5, or any other convex body C containing the 28 vertices in ∂C as our
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T1:

−14.0 18.0 2.0
−2.0 18.0 2.0
−8.0 10.0 8.0
−8.0 10.0 −4.0

T2:

−9.0 19.0 0.0
9.0 19.0 0.0
0.0 7.0 9.0
0.0 7.0 −9.0

T3:

2.0 18.0 −2.0
14.0 18.0 −2.0
8.0 10.0 4.0
8.0 10.0 −8.0

T4:

−13.5 9.0 0.0
13.5 9.0 0.0
0.0 −9.0 13.5
0.0 −9.0 −13.5

T5:

2.0 −18.0 14.0
2.0 −18.0 2.0
8.0 −10.0 8.0

−4.0 −10.0 8.0

T6:

−9.0 −7.0 0.0
9.0 −7.0 0.0
0.0 −19.0 9.0
0.0 −19.0 −9.0

T7:

−2.0 −18.0 −2.0
−2.0 −18.0 −14.0

4.0 −10.0 −8.0
−8.0 −10.0 −8.0

Table 1: The coordinates of the seven homothetic tetrahedra of Figure 5.

unit sphere, and if we choose four sites that lie on the vertices of a tetrahedron
which is homothetic to the other seven, then the given permutations also apply to
the order in which the pieces of the 4-bisector appear on the four 3-bisectors. This
strange behavior is illustrated in Figure 6, which schematically shows how the central
projections centered at a1 of the three 3-bisectors B(a1, a2, a3), B(a1, a2, a4), and
B(a1, a3, a4) and their intersections look like.

1 2 3 4 5 6 7

Figure 6: Schematic view on the intersections of the three related 3-bisectors under
the polyhedral distance of Figure 5.

The described phenomenon does, of course, does not depend on the fact that the
unit sphere is a polyhedron. We can easily construct a strictly convex and smooth
body whose surface also passes through the 28 vertices of the seven tetrahedra.
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5 Conclusions

The nice relationships between the behavior of the 3-bisectors and the intersections
of the silhouettes shows that there should be a rather simple sweep-line algorithm
to compute 3-bisectors under arbitrary convex distance functions. For computing
whole Voronoi regions, however, one has to be prepared to meet strange situations
like the one described in Section 4, which can not be “defined away” by assumptions
on general position of the sites or on smoothness or strict convexity of the unit sphere.
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