Structural Filtering

A Paradigm for Efficient and Exact Geometric Programs

Stefan Funke*

Abstract

We introduce a new filtering technique that can be used
in the implementation of geometric algorithms called
”structural filtering” . Using this filtering techniques we
gain about 20 % when compared to predicate-filtered
implementations. Of theoretical interest are some re-
sults regarding the robustness of sorting algorithms
against erroneous comparisons.

1 Introduction

Geometric algorithms use geometric predicates in their
conditionals. The common strategy for the exact im-
plementation of geometric algorithms is to evaluate all
geometric predicates exactly and to use floating point
filters to make the exact evaluation of predicates fast.
Floating-point filters have proved to be very efficient
both in practice [ST99], [BFS98] and in theory [DP98].
The evaluation of a geometric predicate amounts to the
computation of the sign of an arithmetic expression. A
floating point filter evaluates the expression using float-
ing point arithmetic and also computes an error bound
to determine whether the floating point computation is
reliable. If the error bound does not suffice to prove reli-
ability, the expression is re-evaluated using exact arith-
metic. Exact geometric computation incurs an overhead
when compared to a pure floating point implementation.
For “easy inputs” where the floating point computation

*funke@mpi-sb.mpg.de, Graduiertenkolleg, = Max-Planck-
Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken,
Germany

Tmehlhorn@mpi-sb.mpg.de, Max-Planck-Institut fiir Infor-
matik, Im Stadtwald, 66123 Saarbriicken, Germany, research par-
tially supported by EU-project GALIA

fnaeher@informatik.uni-halle.de, Universitét Halle-
Wittenberg, FB Informatik, 06099 Halle, Germany, research
partially supported by EU-project GALIA

Kurt Mehlhorn'

Stefan Nahert

always yields the correct sign, the overhead consists of
the computation of the error bound. This overhead is
about a factor of two for good filter implementations.
For “difficult inputs” where the floating point filter al-
ways fails, the overhead is much larger.

The challenge is to achieve exact geometric compu-
tation at the cost of floating point arithmetic. Struc-
tural filtering is a step in this direction. Structural fil-
tering evaluates only “crucial” predicates exactly and
leaves the possibility of error for non-crucial predicates.
The structure of the object to be computed determines
which predicate evaluations are crucial. We give a sim-
ple example. Consider a search for an element z in a
leaf-oriented search tree. If all comparisons are exact,
the standard search algorithm locates z. If comparisons
may err, the standard search algorithm may reach an
incorrect leaf. The correct leaf can then be reached by
a simple walk through the sequence of leaves. The walk,
but only the walk, requires exact comparisons. Observe
how the structure of the search tree is used to trade ex-
pensive exact comparisons for cheap comparisons which
may potentially err.

In this paper we investigate the potential of struc-
tural filtering theoretically and experimentally. Our
theoretical results are presented in Sections 2 and 3. We
show, for example, that quicksort stays an optimal sort-
ing algorithm when comparisons may err, but mergesort
becomes suboptimal. In Section 4 we report about ex-
periments for sorting and the computation of Delaunay
diagrams. In the latter case we obtain a speed-up of
about 20% compared to predicate-filtered implementa-
tions.

How does our approach compare to the approach in
[FM91], [Mil88] and [SOI9] ? In this previous work,
the focus was to design algorithms that terminate and
produce some result if only floating-point arithmetic is
used. Not allowing any exact tests implies that we can-
not be sure that the result is the correct one, though
sometimes some guarantee regarding the quality of the
output can be given. The algorithms coming with a
guarantee are considerably more complex than the stan-

dard algorithms for the same task. And even from an
output with a guarantee, it is not always trivial to derive
an exact result.

By allowing exact evaluation for some of the tests, it
is much easier to make algorithms robust and to main-
tain topological consistency, but still gaining in running
time by reducing the number of exact tests performed.
In the examples considered by us only minor modifi-
cations of the standard algorithms are required to use
”structural filtering”; they have considerable impact on
the running times.

2 Sorting

We consider the problem of sorting a set S = zy, ..., z,
from a linearly ordered universe. We assume that our
comparison function may err in a comparison of z; and
xj, it |rank(z;) — rank(z;)| < k, where rank(z) is the
number of elements in S that are smaller than z. We
also say cheap comparison for a comparison that may
err and expensive comparison for a comparison that is
guaranteed to give the correct result.

As a measure for the quality of the outcome
Ty(1),---Ty(n) Of a sorting algorithm, we count the num-
ber of inversions, i.e., I = |(i,k) : i < J, Z5(5) > Ty(j) |-

Lemma 1 In our model, any sorting algorithm wus-

ing cheap comparisons may produce a result with I =

k(k=1) n _ (k-1)mn . .
> E = > mnversions.

Proof: Let zi,..x, be the elements to be sorted
(in increasing order). Group them into 7 groups
Go,G1,...,Gz_j0f adjacent elements, ie., G; =
{Zg it1, oo Thoitr }- Any algorithm cannot distinguish
between the elements in one group and hence may out-
put them in decreasing order even if all comparisons
between elements of disti(nct)groups are correct. Each
k- (k—1

group then contributes =5— inversions.]

Note that an (almost) sorted sequence containing I
inversions can be sorted using (2,4)-finger search trees
with O(n - log (2 + %)) expensive comparisons or using
insertion sort with O(n + I) expensive comparisons. In
the following we will consider mergesort, quicksort and
heapsort.

2.1 Merge Sort

Lemma 2 In our model, mergesort (with cheap com-
parisons) produces a result with at most k- n -logn in-
Versions.

Proof: We show that for a (by mergesort possibly in-
correctly sorted) list zix223...2,, and elements x;, x;,
j <, we have rank(z;) < rank(z;) + k - logn. Lemma
follows immediately.

We use induction on the number of merging levels. Level

0 with n = 1 is trivial. Now assume we have two lists
T1T2...T2 and Tii1..Ty which we want to merge. Con-
sider w.l.o.g. an element z; from the first list. By in-
duction hypothesis, all elements z;, j < ¢ have rank at
most rank(x;) + k- logy. So the largest element of the
second list that can be moved to the result list before
z; can have at most rank rank(z;) + k- logy +k =
rank(z;) + k- logn. 1

Lemma 3 For k=1 mergesort (with cheap compar-
isons) may produce Q(n - logn) inversions.

Proof: Let zi,zs,...,z, be the result sequence of
mergesort. The idea of the proof is that we construct an
input for mergesort and the outcome of all comparisons
such that there are [disjoint subsequences of length
d ~ 7, where each of these subsequences of the form
Tsy,Tsgy-.. , 51 < S2 < ... is by construction in reverse
order, i.e., s, > T5, > Hence we get about d” - [
inversions in the resulting sequence which for [= ﬁ
and d = logﬁ is Q(n - logn). Note, that only com-
parisons of elements may err whose ranks differ by 1.
We construct the input recursively. Let L be the
set of sequences {Li,Lo,..L;} where each L; =
{Zi), Tiyoony i, } with z;; = 4, — 1 for j = 2...d. And
for all i # h, L; N L; = (. We now look at the complete
binary tree representing the computation of mergesort.
Starting at the root, we distribute the contents of the
sequences to the subtrees. From each sequence L; we
send the first element to one subtree and the remaining
sequence to the other subtree.

More formally, each node v with children viegs, vVright
is given a set of sequences S, = {Ly,, Lyy, .., Ly, } and
a set of “single” elements F,. For the root we have
Sroot = L and E,,,; = 0. Intuitively, E, are the ele-
ments to be distributed amongst the leaves of the sub-
tree rooted at v.

The procedure for a node v works as follows: first
we partition the set E, into two sets of equal size
E, = Ey., UE,,,,,- We send the heads of the
first % sequences to the left child node, i.e., £, ,, =
E,,.,, U{head(L,,)|i = 1...7¢ } and the tails to the right
child node, ie., S = {tail(L,,), ...,tail(Lv%)}.
The same the other way around with the second half of
the sequences, ie., B, ., = E,.,, U{head(L,,)|i =
F+1..m}and Sy, = {tail(Lv%), oy tail(Ly,,)}
How long can we go on with that, i.e., which depth d
can we reach 7 As we do not want to run out of elements
in the set of sequences, clearly d < logl. On the other
hand we should never have more “single” elements on
one level than n. The number of “single” elements on
level eis e- 1. Hence n > d-1 = d < 7. So, for a given
I, we have d < MIN(%,logl). This holds for our choice
of d and [.

Uright

left

Remark: logl < 7 means that we cannot “fill” all leaves
of our binary tree. So if we have to stop at a level < logn
we distribute the elements in the FE, for all v on that
level arbitrarily over the leaves under the corresponding
subtree. Unoccupied leaves get arbitrary values differ-
ent from the ones already used.

It remains to see that each of these sequences in L ap-
pears in the resulting sequence of mergesort in reverse
(i.e. decreasing) order. This can be easily seen by in-
duction on the merge steps where such a sequence ”par-
ticipates” with some of its elements.

Let us consider a sequence L;. When we merge se-
quences s1, S, some elements S C L; may be present in
s1 or sy. If s0, exactly one, the largest element z; of S
is in one sequence — let’s say w.l.o.g. in s; — and all the
rest of S, ie. T2, L3, .-y L’ (a:l =x;—1—1 fori = 2...d,),
is in so — by induction hypothesis in reverse order. As
we assume that elements of different sequences L;, L;
are compared correctly, the elements of S present in s
are not interleaved with elements of other sequences L;.
Again, as elements of different sequences are compared
exactly, there will be a point in the merging process of
s1 and s» where x; is compared with x5. This compar-
ison may err since r; = x2 + 1 and hence z; is moved
to the result sequence before z», i.e. S ends up in the
resulting sequence of this merging step in reverse order.

1

These two lemmas show, that mergesort is not op-
timal in our model of computation. The running time
obviously is not affected by using an imprecise compar-
ison operation.

2.2 Quicksort

Lemma 4 Quicksort (with cheap comparisons) pro-
duces a list with at most 2kn inversions.

Proof: We show that for a fixed element y, the min-
imum rank of an element z right of y in the result of
quicksort is bounded by rank(z)—2k. This implies that
the number of such pairs (y,z) where z < y is at most
2k.

If x < y, but z ends up to the right of y then there
must be a node z at which y is routed to the left or y = 2
and z is routed to the right or x = 2. The element z is
either smaller than x, equal to z, lies between z and y,
is equal to y, or is larger than y.

In the first case the comparison between z and y is
incorrect and hence the ranks of z and y differ by at
most k. Since z lies between z and y the ranks z and y
differ by at most k. The last case is symmetric.

In the second case the comparison between y and x
is incorrect and hence the ranks of z and y differ by at
most k. The next to last case is symmetric.

In the third case the comparisons between x and z
and between y and z are incorrect and hence the rank
of either element differs by at most k£ from the rank of
z. Thus the rank of x and y differs by at most 2k.]

This lemma shows that quicksort is optimal up to a
constant factor with respect to robustness against im-
precision of the comparison operation.

It is not obvious that the expected number of com-
parisons of quicksort is still O(nlogn). The standard
argument is that the rank of the root is a random in-
teger in [1..n] and hence we get balanced subproblems.
This argument does not hold any longer since compar-
isons may be incorrect. The argument is basically cor-
rect as long as the number of elements in a subset is
much larger than k, say larger than 5k. Once a sub-
set is smaller than 5k the depth of the resulting tree
is at most 5k and hence the depth of the entire tree is
O(logn+ k). The number of cheap comparison required
by quicksort is therefore O(nlogn +nk). Although cor-
rect, the argument is inelegant. Here give an alternative
argument.

Consider the following directed graph on S. We have
an arc from z to y if z is declared smaller than y by
a cheap comparison. Cheap comparisons are assumed
to be symmetric. The indegree of a node is then the
number of elements that are declared smaller and the
outdegree of a node is the number of elements that are
declared larger. The total indegree is equal to the total
outdegree; both are equal to n(n — 1)/2, the number of
arcs.

The hope is that in any such graph the number of
“middle” elements, i.e.,, those elements which have their
indegree as well as their outdegree bounded by 7n/8 is
at least a fixed fraction of the elements. Here is a proof.

Partition S into sets A, B, and C, where A contains
all elements whose outdegree is at least 7n/8, C' con-
tains all elements whose indegree is at least 7n/8, and
B contains the remaining elements. For an element in
B the indegree and the outdegree are bounded by 7n /8.

Lemma 5 | B| > n/10.

Proof: Assume that | B| < n/10. Also assume that
|A] > |C|. Then |A| > (n —n/10)/2 = 9n/20
and hence |B| + |C| < 11n/20. Each z € A has
an outdegree of at least 7n/8; at most 11n/20 of its
outgoing edges can end in B U C and hence at least
(7/8 — 11/20)n > n/8 edges have to end in A. Since
every node in A has more than n/8 outgoing edges to
nodes in A there must be at least one node in A whose
indegree is larger than n/8, a contradiction to the defi-
nition of A.]

The Lemma above shows that at least n/10 ele-
ments are good splitters and hence the expected recur-
sion depth of quicksort is O(log n); the book of Motwani
and Raghavan [MR95] contains a proof. Thus quicksort
uses O(nlogn) cheap comparisons.

2.3 Heapsort

Lemma 6 In our model starting with a correct heap,
heapsort (with cheap comparisons) produces a result
with at most 2 -k - n -logn inversions.

Proof: We show that for a node n and its children ¢;,
rank(key[n]) — rank(key[c;]) < 2-k. Then it follows
that the maximum rank of an element within the heap
is < rank(key[root]) +2-k-logn. Lemma follows imme-
diately. Let n be a node in the tree, c;,co its children
and p its parent.

We show that after a downheap operation on node n,
rank(key[p]) —rank(key'[n]) < 2-k and rank(key'[n]) —
rank(key'[c;]) < 2-k and if there was a swap with child
¢cs, rank(key'[n]) < rank(key'[cs]) + k .

As the downheap operation before the current one has
kept the above invariant, we know that rank(key[p]) —
rank(key[n]) < k. We now compare key[n] with
MIN (key[c1], key[ez]). If no swap happens, we know
that rank(key[n]) < rank(key|c;]) +2-k and the down-
heap operation stops.

If a swap happens with let’s say c¢;, we have for the
new keys key'[]: rank(key'[n]) < rank(key'[ci]) + k
and rank(key'[n]) < rank(key'[c2]) + 2 - k. Hence also
rank(key[p]) — rank(key'[n]) < 2-k. The downheap
operation continues with node ¢;.]

A correct heap can be constructed with a linear
number of expensive comparisons. But it would
be also possible to construct this initial heap using
imprecise comparisons, as our construction gives a
heap for which for a node n and its children c;,
rank(key[n]) — rank(key|c;]) < 2 -k holds.

Summary: This section showed that quicksort is
optimal in our model up to a constant factor, and that
mergesort is suboptimal. Unfortunately we weren’t
able to give a better upper bound or a non-trivial lower
bound for heapsort.

With a repair step — either finger search trees or
insertion sort —, quicksort allows exact sorting of a se-
quence with O(n - log k) (using finger search trees) or
O(k - n) (using insertion sort) expensive comparisons.

3 Searching

In a comparison based search structure which is a di-
rected acyclic graph (e.g. a tree), we can use cheap
comparisons during the location of a new point with-
out taking the risk of looping. The only thing we have

to make sure is that there is an easy way to get from
a possibly incorrect result of the search to the correct
result.

In the following we will consider binary search trees
and a search structure for point location during the ran-
domized incremental construction of the Delaunay Tri-
angulation of points in the plane.

3.1 Binary Search on Trees followed by Linear
Search through the leaves

Consider a comparison based search structure for a lin-
early ordered set S of objects 1 < z2 < ...z,. We
use xg and xp4+1 to denote the fictitious points —oo and
+00. The search structure divides space into 2n + 1
cells, n cells corresponding to the points in S and n + 1
cells for the open intervals between adjacent points in
S. There is a natural linear order on the cells. Each
cell is either a closed or an open interval. In the linear
arrangement of the cells open and closed cells alternate
and the extreme cells are open. The following lemma
bounds the maximal “error” of a search in terms of the
set of points whose comparison with the query point is
erroneous. It assumes that all comparisons are between
the query point and points in S. All comparison-based
realizations of dictionaries have this property.

Lemma 7 Consider a query point q and let i be such
that x; < q < x;41 or x; = q. If the comparisons be-
tween q and x; are correct for |i — j| > k then the cell
delivered by a search for q has distance at most 2k from
the cell containing q.

Proof: Assume that a search for ¢ produces a cell C'
different from C. We may assume w.l.o.g. that C' is
to the left of C'. Then ¢ was compared with the right
endpoint, say x;, of C’ and the outcome of this com-
parison was erroneous. There are at most the cells z;,
(j,2j41), ..., x; between C' and C. By our assump-
tion we have ¢+ — j < k and hence the distance between
C' and C is at most 2k.]

Under the assumptions of the preceding Lemma the
cost of a search for ¢ is O(logn) cheap comparisons plus
O(k) expensive comparisons.

3.2 Point Location in a Delaunay Dag

In the randomized incremental algorithm for comput-
ing the Delaunay triangulation of a set of points in the
plane, a search structure is required to locate each new
point to be inserted in the current triangulation. This
is usually implemented as a history graph, which is a di-
rected acyclic graph recording all insertions and flips in
the algorithm so far. Again, we can perform all compar-
isons cheaply and still get to some sink corresponding
to a triangle. Then we have to check whether the query

point in fact lies inside this triangle. If not, we walk
across one side of the current triangle whose inequality
was violated to an adjacent triangle. We continue like
that until we reach the correct triangle.

We remark that even if some comparisons are incor-
rect, the correct triangle may still be reached directly
(see Figure 1).

4 Experimental Results

We performed two experiments to evaluate the bene-
fits of structural filtering. In the first experiment we
sorted points lexicographically and in the second exper-
iment we computed the Delaunay triangulation of a set
of points. For both experiments we used the rational
geometry kernel of the LEDA system [LED]. In this
kernel points (type rat_point) are represented by ho-
mogeneous coordinates of type integer (the arbitrary
precision integer type of LEDA) and also by floating
point approximations of type double. The kernel uses
a floating point filter (see [MN99, Section 8.7]). An
exact evaluation of a geometric predicate operates in
three steps: (1) Compute the value using floating point
arithmetic, (2) compute an error bound, (3) if neces-
sary, evaluate the predicate using integer arithmetic. A
cheap evaluation performs only step (1).

4.1 Sorting

Sorting a set of points lexicographically is a very com-
mon subroutine in many geometric algorithms. We have
implemented a ”structurally filtered” version of quick-
sort, i.e., after choosing the splitter, all elements are dis-
tributed to the left or right according to a possibly inex-
act floating-point comparison. A call of quicksort is still
guaranteed to return a sorted sequence. This requires
the use of a non-trivial conquer-step. The conquer-step
is essentially insertion sort of the splitter and the ”right”
sequence until no swaps take place anymore. In the
worst case, this requires O(k?) comparisons per recur-
sion but in practice it was more efficient than a ”"re-
pair run” over the final result. Usually, only 2 (exact)
comparisons are necessary (to check that the splitter is
greater than the rightmost element of the left sequence
and the leftmost element of the right sequence is greater
than the splitter).

We have tested both versions of quicksort on ran-
domly generated rat_points. The output was the se-
quence of points in lexicographic order. Our experi-
ments show an advantage of about 20 % compared to
the "normal”, exact version of quicksort, which is due
to not having to compute the error bounds for most
comparisons (see Table 1).

4.2 Randomized Incremental Delaunay
Triangulation

We have implemented the randomized incremental al-
gorithm for computing the Delaunay Triangulation of a
point set in the plane using the LEDA rational kernel.
We call this version dt_exact in the following. Then
we modified the search structure in our implementa-
tion using the idea shown in section 2.2, i.e., we did the
comparisons in the Delaunay dag using inexact floating-
point comparisons and performed ”walking” at the end
to guarantee that we reach the correct triangle. We call
this version dt_search.

Finally, a simple observation allowed us to even per-
form all incircle tests (which trigger "flips”) inexactly.
If we guarantee that a flip only takes place in a convex
quadrilateral, we always have a valid triangulation. At
the end of the algorithm we start the flipping algorithm
to make sure that the triangulation we have computed
is indeed the Delaunay triangulation. As in the version
dt_search, we perform the point location with floating-
point, arithmetic only, followed by ”walking”. This ver-
sion is called dt_flip.

Why do we hope for an improvement in running time
compared to the dt_exact version ? In the following we
assume that floating-point arithmetic always gives the
exact result and has cost 1 per predicate evaluation.
We also assume that the floating-point filter always can
decide the predicate but has cost 2 per predicate evalu-
ation. This is a reasonable assumption on the overhead
imposed by current floating-point filter schemes.

For the query structure, instead of c¢ - logn exact
orientation tests — for some constant ¢ —, we have c-logn
floating-point tests followed by three exact orientation
tests to verify that we are in the correct triangle. Hence
overall we may decrease our cost by n - ((¢-logn) — 3).

For the incircle tests, things are not quite that good.
The expected number of incircle tests is about 9-n dur-
ing the algorithm. Hence the exact algorithm has to
pay a cost of 18 - n. The modified algorithm where the
incircle tests are first done in floating-point arithmetic
only, has to pay a cost of 9-n , but has to perform about
3 - n exact incircle tests at the end, to check that the
local Delaunay property is fulfilled. Hence overall we
can only decrease our cost by 3 -n which probably will
be negligible.

In both cases, though, a considerable gain in perfor-
mance can be achieved if there were tests which required
arbitrary precision when done exactly, but are not im-
portant for the outcome of the algorithm. An example
for this phenomenon was given for the query structure in
Figure 1. For the incircle tests, imagine that in the set
of input points there is a subset of more than 3 points
lying (almost) on a circle. As long as no point inside
this circle is inserted, all tests involving triangles of 4 of
these points are (nearly) degenerate and hence are hard

[1-10° [2-10° | 4-10° | 8-10° [1.6-10° |

gs-exact 2.58 5.61

12.2 26.1 63.4

gs-repair 2.02 4.39

9.56 20.4 49.7

Table 1: Quicksort: total running time in secs, 2 - 10° to 1.6 - 10® points

C

B

Figure 1: When locating @, it does not really matter how the orientation test of @) w.r.t ﬁ is decided.

to decide by the floating-point filter. Nevertheless the
outcome of any of these tests does not affect the final
result at all as these edges are ”flipped away” later-on
when a point inside the circle is inserted (see Figure 2).

The results of our experiments can be found in
Tables 2, 3, 4 and 5. As input data we used
rat_points with homogenous integer coordinates of dif-
ferent bitlengths. As to be expected, for random inputs
(Table 2), the dt_search version gains about 10-15 %
in the overall running time against the dt_exact ver-
sion, due to not having to compute the error bounds for
most predicates. The dt_flip version, though, performs
much worse since the additional check over all edges of
the triangulation is rather expensive in that case, even if
no flips take place. A similar result can be observed for
input data on a grid (see Table 3), but the advantage of
inexact search is even bigger than in the random case.

Looking at the location time only, we have a differ-
ence in running time of 20-29 % between the exact and
"structurally filtered” search (see Table 4).

For points near a circle, the picture changes drasti-
cally (see Table 5). Here the dt_flip version performs
much better than the two other versions, and since
the dominating cost are the incircle tests (almost all
of them are "difficult”, i.e., require exact arithmetic)
the dt_exact and dt_search version do not differ sig-
nificantly in their running times. The dt_flip version
performs more than 30 % better than the other two im-
plementations, since there are many difficult tests dur-

Figure 2: If later a point inside the circle is inserted,
it does not matter how the the incircle tests involving
points on the circle are decided. After the insertion,
there are no difficult instances of the incircle test any-
more.

| | 32] 40 | 52 | 80 | 100 [128 |

dt_exact | 194 | 195 | 192 | 197 | 194 | 198

dt_search || 174 | 170 | 169 | 171 | 170 | 175

dt_flip 204 | 204 | 201 | 204 | 206 | 207

Table 2: Delaunay Triangulation: total running time in
secs; 400000 random points, different bit-lengths

ing the algorithm which are not important for the final
result. Note that this difference increases substantially
if we place one additional point for example in the center
of the circle.

| [32] 40 [52 [80 [100 [128]
dt_exact || 208 | 216 | 228 | 268 | 351 | 462
dt_search || 177 | 188 | 197 | 233 | 314 | 402
dtflip || 216 | 232 | 246 | 290 | 591 | 645

Table 3: Delaunay Triangulation: total running time in
secs; 600 x 600 grid, different bit-lengths

| || grid | random |

dt_exact 90 86
dt_search 64 67

Table 4: Point location time in secs, 40bit, 600x600 grid
and 400000 random points

5 Conclusion

We have presented a simple filtering scheme which can
be used in addition to (or maybe instead of) the well-
known predicate filtering when implementing geometric
algorithms. The main idea is to allow predicate deci-
sions to be erroneous but still guarantee a correct final
result. Of course, this requires some predicates to be
evaluated exactly. But the number of those predicates
can be kept rather low as we have shown.

As we have seen in our experimental results, run-
ning time can be improved either due to fewer error
bounds computed (as in the example of quicksort), or
due to exact computations saved because the result of
the predicate is not important (Delaunay triangulation
of points near a circle). The gain in performance varies
from 20 % (quicksort and point location in Delaunay tri-
angulation algorithm) to 30 % (inexact flipping during
the insertions).

References

[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact
geometric predicates using cascaded com-
putation. In Proceedings of the 14th An-
nual Symposium on Computational Geome-

try (SCG98), pages 175-183, 1998.

[DP98] O. Devillers, F. Preparata A probabilis-
tic analysis of the power of arithmetic fil-
ters. Diescrete and Computational Geome-
try, 1998, 20:523-547.

[FM91] S. Fortune and V.J. Milenkovic. Numeri-

| || 32 | 40 | 52 | 80 | 100 | 128 |
dt_exact || 75.4 | 74.7 | 74.8 | 75.2 | 75.1 | 75.8
dt_search || 73.0 | 72.8 | 73.0 | 73.3 | 73.1 | 72.0
dt_Alip 48.2 | 48.3 | 48.4 | 47.7 | 48.3 | 48.5

Table 5: Delaunay Triangulation: total running time in
secs; 100000 points near a circle, different bit-lengths

[LED]

[Mil8g]

[MN99]

[MRO5]

[ST99]

[SOI90]

cal stability of algorithms for line arrange-
ments. In Proceedings of the 7th Annual
ACM Symposium on Computational Geom-
etry (SCG’91), pages 334-341. ACM Press,
1991.

LEDA (Library of Efficient Data Types
and Algorithms).
DA/leda.html.

V.J. Milenkovic. Verifiable Implementations
of Geometric Algorithms Using Finite Preci-
sion Arithmetic. PhD thesis, Carnegie Mel-
lon University, 1988.

K. Mehlhorn and S. N#her. The LEDA
Platform for Combinatorial and Geometric
Computing. Cambridge University Press,
1999. Some chapters are available at
www.mpi-sb.mpg.de/“mehlhorn.

R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press,
1995.

S. Schirra A Case Study on the Cost of Geo-
metric Computing Proceedings of Workshop
on Algorithm Engineering and Experimenta-
tion (ALENEX99), 1999

K. Sugihara, Y. Ooishi, and T. Imai.
Topology-oriented approach to robustness
and its applications to several voronoi-
diagram algorithms. In Proceedings of the
2nd Canadian Conference in Computational
Geometry (CCCG’90), pages 36-39, 1990.

www.mpi-sb.mpg.de/LE-

