
Structural Filtering

A Paradigm for EÆcient and Exact Geometric Programs

Stefan Funke
�

Kurt Mehlhorn
y

Stefan N�aher
z

Abstract

We introduce a new �ltering technique that can be used
in the implementation of geometric algorithms called
"structural �ltering". Using this �ltering techniques we
gain about 20 % when compared to predicate-�ltered
implementations. Of theoretical interest are some re-
sults regarding the robustness of sorting algorithms
against erroneous comparisons.

1 Introduction

Geometric algorithms use geometric predicates in their
conditionals. The common strategy for the exact im-
plementation of geometric algorithms is to evaluate all
geometric predicates exactly and to use oating point
�lters to make the exact evaluation of predicates fast.
Floating-point �lters have proved to be very eÆcient
both in practice [ST99], [BFS98] and in theory [DP98].
The evaluation of a geometric predicate amounts to the
computation of the sign of an arithmetic expression. A
oating point �lter evaluates the expression using oat-
ing point arithmetic and also computes an error bound
to determine whether the oating point computation is
reliable. If the error bound does not suÆce to prove reli-
ability, the expression is re-evaluated using exact arith-
metic. Exact geometric computation incurs an overhead
when compared to a pure oating point implementation.
For \easy inputs" where the oating point computation

�funke@mpi-sb.mpg.de, Graduiertenkolleg, Max-Planck-

Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken,

Germany
ymehlhorn@mpi-sb.mpg.de, Max-Planck-Institut f�ur Infor-

matik, Im Stadtwald, 66123 Saarbr�ucken, Germany, research par-

tially supported by EU-project GALIA
znaeher@informatik.uni-halle.de, Universit�at Halle-

Wittenberg, FB Informatik, 06099 Halle, Germany, research

partially supported by EU-project GALIA

always yields the correct sign, the overhead consists of
the computation of the error bound. This overhead is
about a factor of two for good �lter implementations.
For \diÆcult inputs" where the oating point �lter al-
ways fails, the overhead is much larger.

The challenge is to achieve exact geometric compu-
tation at the cost of oating point arithmetic. Struc-
tural �ltering is a step in this direction. Structural �l-
tering evaluates only \crucial" predicates exactly and
leaves the possibility of error for non-crucial predicates.
The structure of the object to be computed determines
which predicate evaluations are crucial. We give a sim-
ple example. Consider a search for an element x in a
leaf-oriented search tree. If all comparisons are exact,
the standard search algorithm locates x. If comparisons
may err, the standard search algorithm may reach an
incorrect leaf. The correct leaf can then be reached by
a simple walk through the sequence of leaves. The walk,
but only the walk, requires exact comparisons. Observe
how the structure of the search tree is used to trade ex-
pensive exact comparisons for cheap comparisons which
may potentially err.

In this paper we investigate the potential of struc-
tural �ltering theoretically and experimentally. Our
theoretical results are presented in Sections 2 and 3. We
show, for example, that quicksort stays an optimal sort-
ing algorithm when comparisons may err, but mergesort
becomes suboptimal. In Section 4 we report about ex-
periments for sorting and the computation of Delaunay
diagrams. In the latter case we obtain a speed-up of
about 20% compared to predicate-�ltered implementa-
tions.

How does our approach compare to the approach in
[FM91], [Mil88] and [SOI90] ? In this previous work,
the focus was to design algorithms that terminate and
produce some result if only oating-point arithmetic is
used. Not allowing any exact tests implies that we can-
not be sure that the result is the correct one, though
sometimes some guarantee regarding the quality of the
output can be given. The algorithms coming with a
guarantee are considerably more complex than the stan-

dard algorithms for the same task. And even from an
output with a guarantee, it is not always trivial to derive
an exact result.

By allowing exact evaluation for some of the tests, it
is much easier to make algorithms robust and to main-
tain topological consistency, but still gaining in running
time by reducing the number of exact tests performed.
In the examples considered by us only minor modi�-
cations of the standard algorithms are required to use
"structural �ltering"; they have considerable impact on
the running times.

2 Sorting

We consider the problem of sorting a set S = x1; :::; xn
from a linearly ordered universe. We assume that our
comparison function may err in a comparison of xi and
xj , if jrank(xi) � rank(xj)j < k, where rank(x) is the
number of elements in S that are smaller than x. We
also say cheap comparison for a comparison that may
err and expensive comparison for a comparison that is
guaranteed to give the correct result.

As a measure for the quality of the outcome
xs(1); :::xs(n) of a sorting algorithm, we count the num-
ber of inversions, i.e., I = j(i; k) : i < j; xs(i) > xs(j)j.

Lemma 1 In our model, any sorting algorithm us-
ing cheap comparisons may produce a result with I =
k�(k�1)

2 � n
k
= (k�1)�n

2 inversions.

Proof: Let x1; :::xn be the elements to be sorted
(in increasing order). Group them into n

k
groups

G0; G1; :::; Gn
k
�1of adjacent elements, i.e., Gi =

fxk�i+1; ::::; xk�i+kg. Any algorithm cannot distinguish
between the elements in one group and hence may out-
put them in decreasing order even if all comparisons
between elements of distinct groups are correct. Each

group then contributes k�(k�1)
2 inversions.

Note that an (almost) sorted sequence containing I
inversions can be sorted using (2,4)-�nger search trees
with O(n � log (2 + I

n
)) expensive comparisons or using

insertion sort with O(n+ I) expensive comparisons. In
the following we will consider mergesort, quicksort and
heapsort.

2.1 Merge Sort

Lemma 2 In our model, mergesort (with cheap com-
parisons) produces a result with at most k � n � log n in-
versions.

Proof: We show that for a (by mergesort possibly in-
correctly sorted) list x1x2x3:::xn and elements xi; xj ,
j < i, we have rank(xj) � rank(xi) + k � log n. Lemma
follows immediately.
We use induction on the number of merging levels. Level

0 with n = 1 is trivial. Now assume we have two lists
x1x2:::xn

2
and xn

2
+1:::xn which we want to merge. Con-

sider w.l.o.g. an element xi from the �rst list. By in-
duction hypothesis, all elements xj , j < i have rank at
most rank(xi) + k � log n

2 . So the largest element of the
second list that can be moved to the result list before
xi can have at most rank rank(xi) + k � log n

2 + k =
rank(xi) + k � log n.

Lemma 3 For k=1 mergesort (with cheap compar-
isons) may produce
(n � log n) inversions.

Proof: Let x1; x2; :::; xn be the result sequence of
mergesort. The idea of the proof is that we construct an
input for mergesort and the outcome of all comparisons
such that there are l disjoint subsequences of length
d � n

l
, where each of these subsequences of the form

xs1 ; xs2 ; ::: , s1 < s2 < ::: is by construction in reverse
order, i.e., xs1 > xs2 > ::: . Hence we get about d2 � l
inversions in the resulting sequence which for l = n

log n

and d = log n
log n

is
(n � log n). Note, that only com-
parisons of elements may err whose ranks di�er by 1.
We construct the input recursively. Let L be the
set of sequences fL1; L2; :::Llg where each Li =
fxi1 ; xi2 :::; xidg with xij = xij�1

� 1 for j = 2:::d. And
for all i 6= h, Li \Lj = ;. We now look at the complete
binary tree representing the computation of mergesort.
Starting at the root, we distribute the contents of the
sequences to the subtrees. From each sequence Li we
send the �rst element to one subtree and the remaining
sequence to the other subtree.
More formally, each node v with children vleft; vright
is given a set of sequences Sv = fLv1 ; Lv2 ; :::; Lvmg and
a set of \single" elements Ev . For the root we have
Sroot = L and Eroot = ;. Intuitively, Ev are the ele-
ments to be distributed amongst the leaves of the sub-
tree rooted at v.
The procedure for a node v works as follows: �rst
we partition the set Ev into two sets of equal size
Ev = Evleft [Evright . We send the heads of the
�rst m

2 sequences to the left child node, i.e., Evleft :=
Evleft [fhead(Lvi)ji = 1:::m2 g and the tails to the right
child node, i.e., Svright := ftail(Lv1); :::; tail(Lvm

2

)g.

The same the other way around with the second half of
the sequences, i.e., Evright := Evright [fhead(Lvi)ji =
m
2 + 1:::mg and Svleft := ftail(Lvm

2

); :::; tail(Lvm)g.

How long can we go on with that, i.e., which depth d
can we reach ? As we do not want to run out of elements
in the set of sequences, clearly d < log l. On the other
hand we should never have more \single" elements on
one level than n. The number of \single" elements on
level e is e � l. Hence n � d � l) d � n

l
. So, for a given

l, we have d �MIN(n
l
; log l). This holds for our choice

of d and l.

Remark: log l < n
l
means that we cannot \�ll" all leaves

of our binary tree. So if we have to stop at a level< log n
we distribute the elements in the Ev for all v on that
level arbitrarily over the leaves under the corresponding
subtree. Unoccupied leaves get arbitrary values di�er-
ent from the ones already used.
It remains to see that each of these sequences in L ap-
pears in the resulting sequence of mergesort in reverse
(i.e. decreasing) order. This can be easily seen by in-
duction on the merge steps where such a sequence "par-
ticipates" with some of its elements.

Let us consider a sequence Li. When we merge se-
quences s1; s2, some elements S � Li may be present in
s1 or s2. If so, exactly one, the largest element x1 of S
is in one sequence { let's say w.l.o.g. in s1 { and all the
rest of S, i.e. x2; x3; :::; xd0 (xi = xi�1�1 for i = 2:::d0),
is in s2 { by induction hypothesis in reverse order. As
we assume that elements of di�erent sequences Li; Lj

are compared correctly, the elements of S present in s2
are not interleaved with elements of other sequences Lj .
Again, as elements of di�erent sequences are compared
exactly, there will be a point in the merging process of
s1 and s2 where x1 is compared with x2. This compar-
ison may err since x1 = x2 + 1 and hence x1 is moved
to the result sequence before x2, i.e. S ends up in the
resulting sequence of this merging step in reverse order.

These two lemmas show, that mergesort is not op-
timal in our model of computation. The running time
obviously is not a�ected by using an imprecise compar-
ison operation.

2.2 Quicksort

Lemma 4 Quicksort (with cheap comparisons) pro-
duces a list with at most 2kn inversions.

Proof: We show that for a �xed element y, the min-
imum rank of an element x right of y in the result of
quicksort is bounded by rank(x)�2k. This implies that
the number of such pairs (y; x) where x < y is at most
2k.

If x < y, but x ends up to the right of y then there
must be a node z at which y is routed to the left or y = z
and x is routed to the right or x = z. The element z is
either smaller than x, equal to x, lies between x and y,
is equal to y, or is larger than y.

In the �rst case the comparison between z and y is
incorrect and hence the ranks of z and y di�er by at
most k. Since x lies between z and y the ranks z and y
di�er by at most k. The last case is symmetric.

In the second case the comparison between y and x
is incorrect and hence the ranks of x and y di�er by at
most k. The next to last case is symmetric.

In the third case the comparisons between x and z
and between y and z are incorrect and hence the rank
of either element di�ers by at most k from the rank of
z. Thus the rank of x and y di�ers by at most 2k.

This lemma shows that quicksort is optimal up to a
constant factor with respect to robustness against im-
precision of the comparison operation.

It is not obvious that the expected number of com-
parisons of quicksort is still O(n logn). The standard
argument is that the rank of the root is a random in-
teger in [1 :: n] and hence we get balanced subproblems.
This argument does not hold any longer since compar-
isons may be incorrect. The argument is basically cor-
rect as long as the number of elements in a subset is
much larger than k, say larger than 5k. Once a sub-
set is smaller than 5k the depth of the resulting tree
is at most 5k and hence the depth of the entire tree is
O(logn+k). The number of cheap comparison required
by quicksort is therefore O(n logn+nk). Although cor-
rect, the argument is inelegant. Here give an alternative
argument.

Consider the following directed graph on S. We have
an arc from x to y if x is declared smaller than y by
a cheap comparison. Cheap comparisons are assumed
to be symmetric. The indegree of a node is then the
number of elements that are declared smaller and the
outdegree of a node is the number of elements that are
declared larger. The total indegree is equal to the total
outdegree; both are equal to n(n� 1)=2, the number of
arcs.

The hope is that in any such graph the number of
\middle" elements, i.e.,, those elements which have their
indegree as well as their outdegree bounded by 7n=8 is
at least a �xed fraction of the elements. Here is a proof.

Partition S into sets A, B, and C, where A contains
all elements whose outdegree is at least 7n=8, C con-
tains all elements whose indegree is at least 7n=8, and
B contains the remaining elements. For an element in
B the indegree and the outdegree are bounded by 7n=8.

Lemma 5 jB j � n=10.

Proof: Assume that jB j < n=10. Also assume that
jA j � jC j. Then jA j � (n � n=10)=2 = 9n=20
and hence jB j + jC j � 11n=20. Each x 2 A has
an outdegree of at least 7n=8; at most 11n=20 of its
outgoing edges can end in B [C and hence at least
(7=8 � 11=20)n > n=8 edges have to end in A. Since
every node in A has more than n=8 outgoing edges to
nodes in A there must be at least one node in A whose
indegree is larger than n=8, a contradiction to the de�-
nition of A.

The Lemma above shows that at least n=10 ele-
ments are good splitters and hence the expected recur-
sion depth of quicksort is O(log n); the book of Motwani
and Raghavan [MR95] contains a proof. Thus quicksort
uses O(n logn) cheap comparisons.

2.3 Heapsort

Lemma 6 In our model starting with a correct heap,
heapsort (with cheap comparisons) produces a result
with at most 2 � k � n � log n inversions.

Proof: We show that for a node n and its children ci,
rank(key[n]) � rank(key[ci]) � 2 � k. Then it follows
that the maximum rank of an element within the heap
is � rank(key[root])+2 �k � log n. Lemma follows imme-
diately. Let n be a node in the tree, c1; c2 its children
and p its parent.
We show that after a downheap operation on node n,
rank(key[p])�rank(key0[n]) � 2�k and rank(key0[n])�
rank(key0[ci]) � 2 �k and if there was a swap with child
cs, rank(key

0[n]) � rank(key0[cs]) + k .
As the downheap operation before the current one has
kept the above invariant, we know that rank(key[p])�
rank(key[n]) � k. We now compare key[n] with
MIN(key[c1]; key[c2]). If no swap happens, we know
that rank(key[n]) � rank(key[ci])+2 �k and the down-
heap operation stops.
If a swap happens with let's say c1, we have for the
new keys key0[]: rank(key0[n]) � rank(key0[c1]) + k
and rank(key0[n]) � rank(key0[c2]) + 2 � k. Hence also
rank(key[p]) � rank(key0[n]) � 2 � k. The downheap
operation continues with node c1.

A correct heap can be constructed with a linear
number of expensive comparisons. But it would
be also possible to construct this initial heap using
imprecise comparisons, as our construction gives a
heap for which for a node n and its children ci,
rank(key[n])� rank(key[ci]) � 2 � k holds.

Summary: This section showed that quicksort is
optimal in our model up to a constant factor, and that
mergesort is suboptimal. Unfortunately we weren't
able to give a better upper bound or a non-trivial lower
bound for heapsort.

With a repair step { either �nger search trees or
insertion sort {, quicksort allows exact sorting of a se-
quence with O(n � log k) (using �nger search trees) or
O(k � n) (using insertion sort) expensive comparisons.

3 Searching

In a comparison based search structure which is a di-
rected acyclic graph (e.g. a tree), we can use cheap
comparisons during the location of a new point with-
out taking the risk of looping. The only thing we have

to make sure is that there is an easy way to get from
a possibly incorrect result of the search to the correct
result.

In the following we will consider binary search trees
and a search structure for point location during the ran-
domized incremental construction of the Delaunay Tri-
angulation of points in the plane.

3.1 Binary Search on Trees followed by Linear

Search through the leaves

Consider a comparison based search structure for a lin-
early ordered set S of objects x1 < x2 < : : : xn. We
use x0 and xn+1 to denote the �ctitious points �1 and
+1. The search structure divides space into 2n + 1
cells, n cells corresponding to the points in S and n+1
cells for the open intervals between adjacent points in
S. There is a natural linear order on the cells. Each
cell is either a closed or an open interval. In the linear
arrangement of the cells open and closed cells alternate
and the extreme cells are open. The following lemma
bounds the maximal \error" of a search in terms of the
set of points whose comparison with the query point is
erroneous. It assumes that all comparisons are between
the query point and points in S. All comparison-based
realizations of dictionaries have this property.

Lemma 7 Consider a query point q and let i be such
that xi < q < xi+1 or xi = q. If the comparisons be-
tween q and xj are correct for j i� j j � k then the cell
delivered by a search for q has distance at most 2k from
the cell containing q.

Proof: Assume that a search for q produces a cell C 0

di�erent from C. We may assume w.l.o.g. that C 0 is
to the left of C. Then q was compared with the right
endpoint, say xj , of C

0 and the outcome of this com-
parison was erroneous. There are at most the cells xj ,
(xj ; xj+1), . . . , xi between C 0 and C. By our assump-
tion we have i� j < k and hence the distance between
C 0 and C is at most 2k.

Under the assumptions of the preceding Lemma the
cost of a search for q is O(logn) cheap comparisons plus
O(k) expensive comparisons.

3.2 Point Location in a Delaunay Dag

In the randomized incremental algorithm for comput-
ing the Delaunay triangulation of a set of points in the
plane, a search structure is required to locate each new
point to be inserted in the current triangulation. This
is usually implemented as a history graph, which is a di-
rected acyclic graph recording all insertions and ips in
the algorithm so far. Again, we can perform all compar-
isons cheaply and still get to some sink corresponding
to a triangle. Then we have to check whether the query

point in fact lies inside this triangle. If not, we walk
across one side of the current triangle whose inequality
was violated to an adjacent triangle. We continue like
that until we reach the correct triangle.

We remark that even if some comparisons are incor-
rect, the correct triangle may still be reached directly
(see Figure 1).

4 Experimental Results

We performed two experiments to evaluate the bene-
�ts of structural �ltering. In the �rst experiment we
sorted points lexicographically and in the second exper-
iment we computed the Delaunay triangulation of a set
of points. For both experiments we used the rational
geometry kernel of the LEDA system [LED]. In this
kernel points (type rat point) are represented by ho-
mogeneous coordinates of type integer (the arbitrary
precision integer type of LEDA) and also by oating
point approximations of type double. The kernel uses
a oating point �lter (see [MN99, Section 8.7]). An
exact evaluation of a geometric predicate operates in
three steps: (1) Compute the value using oating point
arithmetic, (2) compute an error bound, (3) if neces-
sary, evaluate the predicate using integer arithmetic. A
cheap evaluation performs only step (1).

4.1 Sorting

Sorting a set of points lexicographically is a very com-
mon subroutine in many geometric algorithms. We have
implemented a "structurally �ltered" version of quick-
sort, i.e., after choosing the splitter, all elements are dis-
tributed to the left or right according to a possibly inex-
act oating-point comparison. A call of quicksort is still
guaranteed to return a sorted sequence. This requires
the use of a non-trivial conquer-step. The conquer-step
is essentially insertion sort of the splitter and the "right"
sequence until no swaps take place anymore. In the
worst case, this requires O(k2) comparisons per recur-
sion but in practice it was more eÆcient than a "re-
pair run" over the �nal result. Usually, only 2 (exact)
comparisons are necessary (to check that the splitter is
greater than the rightmost element of the left sequence
and the leftmost element of the right sequence is greater
than the splitter).

We have tested both versions of quicksort on ran-
domly generated rat points. The output was the se-
quence of points in lexicographic order. Our experi-
ments show an advantage of about 20 % compared to
the "normal", exact version of quicksort, which is due
to not having to compute the error bounds for most
comparisons (see Table 1).

4.2 Randomized Incremental Delaunay

Triangulation

We have implemented the randomized incremental al-
gorithm for computing the Delaunay Triangulation of a
point set in the plane using the LEDA rational kernel.
We call this version dt exact in the following. Then
we modi�ed the search structure in our implementa-
tion using the idea shown in section 2.2, i.e., we did the
comparisons in the Delaunay dag using inexact oating-
point comparisons and performed "walking" at the end
to guarantee that we reach the correct triangle. We call
this version dt search.

Finally, a simple observation allowed us to even per-
form all incircle tests (which trigger "ips") inexactly.
If we guarantee that a ip only takes place in a convex
quadrilateral, we always have a valid triangulation. At
the end of the algorithm we start the ipping algorithm
to make sure that the triangulation we have computed
is indeed the Delaunay triangulation. As in the version
dt search, we perform the point location with oating-
point arithmetic only, followed by "walking". This ver-
sion is called dt ip.

Why do we hope for an improvement in running time
compared to the dt exact version ? In the following we
assume that oating-point arithmetic always gives the
exact result and has cost 1 per predicate evaluation.
We also assume that the oating-point �lter always can
decide the predicate but has cost 2 per predicate evalu-
ation. This is a reasonable assumption on the overhead
imposed by current oating-point �lter schemes.

For the query structure, instead of c � log n exact
orientation tests { for some constant c {, we have c�log n
oating-point tests followed by three exact orientation
tests to verify that we are in the correct triangle. Hence
overall we may decrease our cost by n � ((c � log n)� 3).

For the incircle tests, things are not quite that good.
The expected number of incircle tests is about 9 �n dur-
ing the algorithm. Hence the exact algorithm has to
pay a cost of 18 � n. The modi�ed algorithm where the
incircle tests are �rst done in oating-point arithmetic
only, has to pay a cost of 9 �n , but has to perform about
3 � n exact incircle tests at the end, to check that the
local Delaunay property is ful�lled. Hence overall we
can only decrease our cost by 3 � n which probably will
be negligible.

In both cases, though, a considerable gain in perfor-
mance can be achieved if there were tests which required
arbitrary precision when done exactly, but are not im-
portant for the outcome of the algorithm. An example
for this phenomenon was given for the query structure in
Figure 1. For the incircle tests, imagine that in the set
of input points there is a subset of more than 3 points
lying (almost) on a circle. As long as no point inside
this circle is inserted, all tests involving triangles of 4 of
these points are (nearly) degenerate and hence are hard

1 � 105 2 � 105 4 � 105 8 � 105 1:6 � 106

qs exact 2.58 5.61 12.2 26.1 63.4
qs repair 2.02 4.39 9.56 20.4 49.7

Table 1: Quicksort: total running time in secs, 2 � 105 to 1:6 � 106 points

A B

C

P

Q
1 2 3

AP BP

PC

1
3

2

Figure 1: When locating Q, it does not really matter how the orientation test of Q w.r.t
��!
PC is decided.

to decide by the oating-point �lter. Nevertheless the
outcome of any of these tests does not a�ect the �nal
result at all as these edges are "ipped away" later-on
when a point inside the circle is inserted (see Figure 2).

The results of our experiments can be found in
Tables 2, 3, 4 and 5. As input data we used
rat points with homogenous integer coordinates of dif-
ferent bitlengths. As to be expected, for random inputs
(Table 2), the dt search version gains about 10-15 %
in the overall running time against the dt exact ver-
sion, due to not having to compute the error bounds for
most predicates. The dt ip version, though, performs
much worse since the additional check over all edges of
the triangulation is rather expensive in that case, even if
no ips take place. A similar result can be observed for
input data on a grid (see Table 3), but the advantage of
inexact search is even bigger than in the random case.

Looking at the location time only, we have a di�er-
ence in running time of 20-29 % between the exact and
"structurally �ltered" search (see Table 4).

For points near a circle, the picture changes drasti-
cally (see Table 5). Here the dt ip version performs
much better than the two other versions, and since
the dominating cost are the incircle tests (almost all
of them are "diÆcult", i.e., require exact arithmetic)
the dt exact and dt search version do not di�er sig-
ni�cantly in their running times. The dt ip version
performs more than 30 % better than the other two im-
plementations, since there are many diÆcult tests dur-

Figure 2: If later a point inside the circle is inserted,
it does not matter how the the incircle tests involving
points on the circle are decided. After the insertion,
there are no diÆcult instances of the incircle test any-
more.

32 40 52 80 100 128

dt exact 194 195 192 197 194 198
dt search 174 170 169 171 170 175
dt ip 204 204 201 204 206 207

Table 2: Delaunay Triangulation: total running time in
secs; 400000 random points, di�erent bit-lengths

ing the algorithm which are not important for the �nal
result. Note that this di�erence increases substantially
if we place one additional point for example in the center
of the circle.

32 40 52 80 100 128

dt exact 208 216 228 268 351 462
dt search 177 188 197 233 314 402
dt ip 216 232 246 290 591 645

Table 3: Delaunay Triangulation: total running time in
secs; 600 x 600 grid, di�erent bit-lengths

grid random

dt exact 90 86
dt search 64 67

Table 4: Point location time in secs, 40bit, 600x600 grid
and 400000 random points

5 Conclusion

We have presented a simple �ltering scheme which can
be used in addition to (or maybe instead of) the well-
known predicate �ltering when implementing geometric
algorithms. The main idea is to allow predicate deci-
sions to be erroneous but still guarantee a correct �nal
result. Of course, this requires some predicates to be
evaluated exactly. But the number of those predicates
can be kept rather low as we have shown.

As we have seen in our experimental results, run-
ning time can be improved either due to fewer error
bounds computed (as in the example of quicksort), or
due to exact computations saved because the result of
the predicate is not important (Delaunay triangulation
of points near a circle). The gain in performance varies
from 20 % (quicksort and point location in Delaunay tri-
angulation algorithm) to 30 % (inexact ipping during
the insertions).

References

[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact
geometric predicates using cascaded com-
putation. In Proceedings of the 14th An-
nual Symposium on Computational Geome-
try (SCG'98), pages 175{183, 1998.

[DP98] O. Devillers, F. Preparata A probabilis-
tic analysis of the power of arithmetic �l-
ters. Diescrete and Computational Geome-
try, 1998, 20:523-547.

[FM91] S. Fortune and V.J. Milenkovic. Numeri-

32 40 52 80 100 128

dt exact 75.4 74.7 74.8 75.2 75.1 75.8
dt search 73.0 72.8 73.0 73.3 73.1 72.0
dt ip 48.2 48.3 48.4 47.7 48.3 48.5

Table 5: Delaunay Triangulation: total running time in
secs; 100000 points near a circle, di�erent bit-lengths

cal stability of algorithms for line arrange-
ments. In Proceedings of the 7th Annual
ACM Symposium on Computational Geom-
etry (SCG'91), pages 334{341. ACM Press,
1991.

[LED] LEDA (Library of EÆcient Data Types
and Algorithms). www.mpi-sb.mpg.de/LE-

DA/leda.html.
[Mil88] V.J. Milenkovic. Veri�able Implementations

of Geometric Algorithms Using Finite Preci-
sion Arithmetic. PhD thesis, Carnegie Mel-
lon University, 1988.

[MN99] K. Mehlhorn and S. N�aher. The LEDA
Platform for Combinatorial and Geometric
Computing. Cambridge University Press,
1999. Some chapters are available at
www.mpi-sb.mpg.de/~mehlhorn.

[MR95] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press,
1995.

[ST99] S. Schirra A Case Study on the Cost of Geo-
metric Computing Proceedings of Workshop
on Algorithm Engineering and Experimenta-
tion (ALENEX99), 1999

[SOI90] K. Sugihara, Y. Ooishi, and T. Imai.
Topology-oriented approach to robustness
and its applications to several voronoi-
diagram algorithms. In Proceedings of the
2nd Canadian Conference in Computational
Geometry (CCCG'90), pages 36{39, 1990.

