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1 Introduction

The problem of detecting all possible digital line components contained in a given binary edge

image is one of the most fundamental problems in pattern recognition and a great number of

algorithms have been proposed under the name of Hough Transform [3, 4]. Most of them are

based on the voting technique on a subdivided parameter space.

Our basic idea is as follows: When we parameterize a line passing through an edge point

by the angle � and the distance � to the line from the origin, the edge point is mapped to

a sinusoidal curve in the (�; �) parameter space. The intersection between two such curves

corresponds to the line passing through the edge points. Thus, what we have to do is to

compute intersections where a number of curves intersect. However, Since edge points are

located on integer grids, it rarely happens that many edge points lie exactly on a line. We

want to detect a set of edge points which lie roughly on a line. For this purpose we partition

the parameter plane into small regions called buckets by axis-parallel lines, and for each such

bucket we count the number of lines which pass through the bucket region. If the number of

such lines exceeds a predetermined threshold, we report a digital line component corresponding

to the bucket region.

In computational geometry the dual transform between points and lines is more common

than the above-described transform. It transforms a point (a; b) into a line y = ax + b and

a line y = �cx + d into a point (c; d). Again, an intersection between two lines for two edge

points corresponds to a line which passes through these two edge points. Thus, if we enumerate

all intersections at which many lines intersect, we can detect all digital line components.

This voting technique is easy to be programmed and also easy to be tuned for practical

use. This is why the Hough transform is commonly used. However, there are many problems

to be resolved. For example, an optimal way of partitioning the parameter plane is somewhat

strange and not good for e�cient computation.

In this paper we analyze the voting technique based on the Hough transform from a stand-

point of computational complexity following a mathematical de�nition of a digital line com-

ponent to be detected. We also present a new algorithm for detecting line segments with two

endpoints considering their point density.
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2 Standard Hough Transform

We �rst describe a standard algorithm based on the Hough transform [3, 4]. For an edge point

(xi; yi), let � be the distance from the point to a line of angle � passing through it. Then, the

equation for the line is given by

� = xi cos � + yi sin �: (1)

In the Hough transform, the above equation is considered as a mapping from an edge point

(xi; yi) to a sinusoidal curve � = xi cos � + yi sin � on the ���parameter plane. An important

property is that two parameters � and � determining the line passing through two edge points is

given by the two parameters (coordinate values) of the intersection between two curves for the

corresponding points. Based on the property, the problem of �nding digital line components

in an image plane can be reduced to that of detecting intersections of a number of lines.

If a number of edge points lie exactly on a line, then those corresponding lines meet exactly

at one point in the dual plane. However, since they are on integer grids, their intersections are

scattered in a region. A common technique to absorb this e�ect is to partition the dual plane

into small regions called buckets and to use voting along lines on them. An advantage of the

Hough transform is that the angle and distance are both limited to intervals of constant-length,

[0; �] and [0;
p
2N ], respectively.

Usually, the rectangular region in the dual plane is partitioned into O(N �N) buckets by

axis-parallel lines, where N is the length (number of pixels) of one side of an input image.

Then, for each edge point (xi; yi) we follow the curve � = xi cos � + yi sin � to put a vote into

buckets intersected by the curve at variable � values. When we complete the voting process for

every edge point, we enumerate all the buckets whose counts of votes exceed a predetermined

threshold and then report those lines corresponding to those buckets. This is the basic idea of

the Hough transform.

The original form of the Hough transform described above has several problems for practical

use. For example, it is not known how to choose a threshold value. To remove redundancy it

is desirable not to report non-maximal digital line components. The Hough transform is not

designed to �nd line segments with endpoints but in�nite lines. Then, we need some de�nition

of digital line segments probably based on another de�nition of density of edge points along

lines.

3 De�nition and Characterization of Digital Lines

We start with the de�nition of our objects, digital line components. Throughout the paper we

assume that lines have slopes between �1 and 1 for simplicity. It is easy to adapt the following

discussions for lines of slopes greater than 1 or smaller than �1.
[De�nition: Digital Line Components]

A common algorithm to draw a line y = ax + b on a screen puts white dots of distance to

the line being at most 0.5. Such a set of grid points is called a digital representation of a line

y = ax + b and it is denoted by G(a; b). Then, a set P of edge points for which there exist

a and b such that P � G(a; b) is a (digital) line component. A line component is maximal if

addition of any edge point violates the condition.

Now, the problem of detecting line components is described as follows:

[Problem of Detecting Line Components:]

Given a binary edge image of size O(N�N) containing n edge points and a threshold t, report

all maximal line components of size greater than t in the image.



Let P be a set of edge points. If P is a line component, there exist constants a and b such

that

�1

2
� yi � axi � b � 1

2
(2)

holds for each point pi = (xi; yi) in P . Here remark that our objects are lines with slope

between �1 and 1 and thus it su�ces to consider the vertical distance to the line.

Lemma 3.1 For any line component P , there is such (a; b) among those parameter pairs

characterizing P that a and b are both rational numbers of the forms q
p
and b = y � q

p
x � 1

2
,

respectively, where 0 � q � p � N � 1 and 0 � x; y � N � 1.

4 Voting Technique and Its Limit

Lemma 3.1 says that it su�ces to consider O(N2) di�erent slopes. For y-intercepts, there are

O(N4) possibilities since x and y can take O(N) di�erent values. However, for a �xed slope

O(N2) intercepts are enough. This means that if we make di�erent partitions for each slope

then we can save space complexity to O(N2�N2). Now we have a collection of one-dimensional

arrays one for each slope instead of a uniform 2-dimensional array. Using this data structure,

we do the voting. That is, for each edge point (xi; yi) we compute the value b = �axi + yi for

each slope a to put a vote at the bucket de�ned by (a; b). If we exchange the order of iteration

so that the iteration on each slope encloses that on edge points, then we do not need to maintain

the whole arrays. When we �nish the voting process for a slope, then after reporting maximal

buckets exceeding a threshold we can move to the computation for the next slope. Finding

maximal buckets is done in O(N) time although we do not go in detail due to space limit.

If our goal is to �nd all maximal line components, the number of votes required for each

slope is not one but many since as many buckets as 1/(vertical width of a bucket) satisfy

the inequality (1). So, in general it is required to put votes into consecutive buckets. If we

vote one for each bucket, it takes time proportional to the number of votes. For e�cient

implementation it is desirable to put votes as an interval. It is possible using a data structure

dealing with intervals, such as segment trees or interval trees, in which insertion of an interval

is done in O(logN) time. Thus, the overall running time is improved to O(nN2 logN +N4).

Although this is a great improvement over the previous method which takes O(nN4) time, it

looks pessimistic to have further improvement without a revolutionary change of idea.

5 An Algorithm Based on Arrangement of Lines

There is a totally di�erent algorithm based on an arrangement of lines in the dual plane. A

basic idea is presented by one of the authors[2]. In this paper we re�ne it.

A basic idea is as follows: An edge point p = (x; y) is contained in a line component G(a; b)

when the following inequality hods:

�1

2
� y � ax� b � 1

2
: (3)

Rewriting it, we have

�ax + y � 1

2
� b � �ax + y +

1

2
: (4)

A set of points in the dual plane which satisfy the inequalities above corresponds to a stripe

bounded by two parallel lines. In other words, an edge point is mapped to a stripe. When



stripes associated with two edge points have non-empty intersection, for any point (a; b) in the

intersection there is a line component for the line y = ax + b which contains these two edge

points. Thus, our job is to compute intersections where many such stripes meet.

Drawing the 2n lines bounding the stripes in the dual plane, the dual plane is partitioned

into small regions called cells. Here note that the cells in the arrangement are exactly the

equivalence classes de�ne earlier. That is, for any two point in one cell, their corresponding

line components are exactly the same. Thus, it su�ces to check all the cells. A naive method

to enumerate all the cells takes O(n3) time and O(n2) space, but Topological Walk by Asano,

Guibas and Tokuyama[1] can visits all of them in O(n2) time and O(n) space. An advantage of

the Topological Walk is that it can visit cells continuously. In other words, the next cell to be

visited is one of the cells adjacent to the current cell by an edge. Therefore, if we distinguish

upper and lower lines bounding stripes, it is not so hard to check the maximality of a cell.

6 Detecting Line Segments Considering Point Density

One of the disadvantages of the methods described so far is that it is hard to extract line seg-

ments instead of in�nite lines, because their basic informations are the sizes of line components

over the entire image and thus it is not so easy to incorporate informations about endpoints

or point density. In the following we show how to detect endpoints of line segments based on

point density without increasing the computational complexity.

In the voting schema based on voting, edge points are processed in order. But it was not

described in what order they are processed. A basic idea to take point density and endpoints

into accounts comes from an appropriate order of edge points. In our method we �rst determine

a sequence of slopes and then for each slope ai; �1 � ai � 1 we try to detect line components.

For this purpose, we compute the value vj = yj � aixj for each edge point pj = (xj ; yj) and

put a vote into buckets associated with it. If we process edge points in the order of their

x-coordinates, then each bucket receives edge points in the same order. So, at each bucket we

can easily maintain appropriate informations concerning point density and endpoints of line

segments. The details will be included in the �nal version.

Using those informations we can �nd a component of a line segment for which the point

density is greater than a threshold at any interval on the line segment and gaps between

consecutive edge points are within some threshold value. If there is any violation on the point

density or gaps, we should report a set of edge points enumerated so far at the bucket if the

count is greater than a threshold. In this way we can detect components of line segments with

two endpoints without any increase the computational complexity of the algorithm.
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