
Surface-to-surface intersection based on triangular parameter domain

subdivision

Ernst Huber�

Institute of Computer Graphics
Vienna University of Technology

A-1040 Vienna, Karlsplatz 13/186/1, Austria.

Abstract: An improved algorithm for the computation
of the intersection curve of two general parametric surfaces
is presented. The introduced subdivision algorithm follows
a divide-and-conquer-approach. For each pair of patches,
it �rst checks if the corresponding bounding volumes in-
tersect. If they intersect, then it tries to �nd dispensable
parts of one patch (and the corresponding parts in the pa-
rameter domain) which can be cut o�. Next it splits the
reduced patch by splitting its parameter domain into trian-
gular pieces and treats all new pairs of patches recursively
until a prede�ned termination condition is satis�ed. To take
full advantage of the cut-o� operation patches with triangu-
lar domains bounded by so-called \Tripipeds" are used.

1 Introduction

This paper introduces an algorithm for computing
an approximative solution for the general surface-to-
surface intersection (SSI) problem. SSI is a basic prob-
lem in Computer Aided Geometric Design, it can be
stated very simply: Given are two intersecting surfaces
in R3 , compute all parts of the intersection curve.
If two surfaces intersect, the result will be a set of

isolated points, a set of curves, a set of overlapping sur-
faces, or any combination of these cases [1]. Because
exact solutions can be found only for some special sur-
face classes, approximation methods must be used for
the general case.
The basic algorithm was introduced in [3]. It is a

robust subdivision algorithm which computes an en-
closure for all parts of the intersection curve of two
general parametric surfaces. Surfaces are de�ned as

~s(u; v) =

8<
:
0
@ x(u; v)

y(u; v)
z(u; v)

1
A
������ (u; v) 2 D�

9=
; ; (1)

where D� = U � V , and U; V are two intervals1 in R.
The coordinate functions map a rectangular parameter

�huber@apm.tuwien.ac.at.
1Notation: small letters denote scalar values and functions;

capital letters denote intervals and functions returning intervals
with A = [a; a] = fa 2 R : a � a � ag; vectors are denoted by ~a.

domain to object space. It is only assumed that these
functions are continuous in the whole domain and that
the partial derivatives exist and are continuous.
The basic algorithm follows a divide-and-conquer ap-

proach. For each pair of patches, it �rst checks for in-
tersection of the corresponding bounding volumes. If
two bounding volumes intersect, it splits one patch into
two subpatches and treats both new pairs recursively
until a prede�ned termination condition is satis�ed.
The shape of the parameter domain of a patch deter-
mines in a certain way the shape of the corresponding
bounding volume. The basic algorithm divides a patch
by dividing its parameter domain vertically or horizon-
tally, the resulting domains are always axis aligned. In
object space we get patches with four corner points
which can be enclosed by a tight parallelepiped in con-
sidering the shape and orientation of the patch.

This work introduces an improved algorithm work-
ing with triangular domains. Triangular domains o�er
more freedom than axis aligned domains, because they
allow us to subdivide a patch in an arbitrary man-
ner by triangulating its domain. In object space we
get patches with three corner points which can be ap-
proximated by triangles and enclosed by a bounding
volume we call \Tripiped". This allows to take full ad-
vantage of an optimization step which detects parts of
a patch (and the corresponding parts in the parameter
domain), where one patch cannot reach the enclosure
of the other one. Cutting o� such dispensable parts
leads to smaller domains, smaller bounding volumes
and fewer subdivisions, thus speeding up the overall
algorithm.

// Improved divide-and-conquer SSI-algorithm
procedure intersect(Surface s; t)
if boundVolumesIntersect(s; t) then // Section 2,3
if termCondition(s; t) then

intersectBoundingVolumes(s; t)
else

s� cutDomain(s, boundVolume(t)) // Section 4
splitSurface(s�; s1; s2; : : : ; sn) // Section 4
for i 1 to n do intersect(t; si)

Similar to the basic algorithm the improved algorithm

�rst checks for intersection of the corresponding bound-
ing volumes. The di�erence is in the following steps:
If two bounding volumes intersect, it tries to �nd dis-
pensable parts of the domain of patch ~s which can be
cut o�. The reduced patch ~s� is split into two or more
subpatches ~si with triangular domain. Then all new
pairs of patches are treated recursively until a prede-
�ned termination condition is satis�ed.
The result is a collection of intersecting bounding

volumes in object space and a collection of pieces for
both parameter domains. Both representations are en-
closures for all parts of the corresponding intersection
curve. The usage of bounding volumes guarantees that
all intersection points are detected.
Crucial steps are the subdivision of the surfaces, the

computation of tight bounding volumes and the test
whether two bounding volumes intersect.

2 Enclosing triangular surface-parts

We start with the construction of an enclosure for a
patch ~s of the original surface. The patch is de�ned as

~s(u; v) =

8<
:
0
@ x(u; v)

y(u; v)
z(u; v)

1
A
������ (u; v) 2 D4

9=
; ; (2)

where D4 is the triangular domain de�ned by three
corner points (uj ; vj), j 2 f1; 2; 3g. Since the original
surface is de�ned for a rectangular domain, we may
further de�ne D� = U �V as the smallest axis aligned
bounding rectangle for D4, so that D4 2 D�. By
means of interval arithmetic and automatic di�eren-
tiation we compute inclusion intervals for the partial
derivatives with respect to u and v for the coordinate
functions, e.g. for x(u; v):

xu(u; v) 2 Xu

xv(u; v) 2 Xv

�
8(u; v) 2 D�:

For each coordinate function we apply the mean
value theorem of di�erential calculus for two indepen-
dent variables, e.g. for x(u; v):
8 u; u0 2 U; v; v0 2 V exists a �u 2 [u; u0] � U; �v 2

[v; v0] � V; so that

x(u; v) = x(u0; v0) + (u� u0)xu(�u; v0) + (v� v0)xv(u; �v):
(3)

Replacing the partial derivatives by the corresponding
intervals, u by u1, and v by v1 lets us rewrite for the
corner point ~c1 = ~s(u1; v1):

~c1 2 ~B(u1; v1) = ~s(u0; v0)+(u1�u0)~Su+(v1�v0)~Sv; (4)

where ~Su = (Xu; Yu; Zu), ~Sv = (Xv ; Yv; Zv), and
(u0; v0) 2 D4. This equation provides a bounding box
~B(u1; v1) containing the corner point ~c1. Repeating
this step for the other corner points and showing that
the three corner boxes can be transformed to each other
by a linear transformation allows to state the corollary:

Corollary 1 Each convex volume enclosing the three
corner boxes ~B(uj ; vj), j 2 f1; 2; 3g, is a bounding vol-
ume for the patch ~s(u; v).

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u0,v0
u1,v1

u2,v2

u3,v3

(a)

u0,v0
u1,v1

u2,v2

u3,v3

(b)

u0,v0
u1,v1

u2,v2

u3,v3

(c)

Figure 1: Enclosing triangular patches.

3 Tripipeds

The next step is to construct a tight bounding volume
for this enclosure. The three corner points of the patch
de�ne the orientation of a plane supporting a trian-
gle, which approximates the patch. We take a pair of
such planes (a top and a bottom plane) and move each
plane along its normal vector until all bounding boxes
B(uj ; vj) are completely contained in the slab. The ori-
entation of the planes supporting the three other faces
is de�ned by a vector normal to the top and bottom
plane and a vector supporting an edge of the triangular
approximation of the patch. Each plane is moved along
its normal vector until all bounding boxes B(uj ; vj) lie
inside the so-called \Tripiped".

For testing whether two Tripipeds intersect we apply
the following theorem [2]:

Theorem 1 Two convex polyhedra do not intersect if
and only if there exists a separating plane which is ei-
ther parallel to a face of one polyhedron or which is
parallel to at least one edge of each polyhedron.

An axis normal to a separating plane is called a sepa-
rating axis. Projecting both polyhedra on a separating
axis (by an orthogonal projection) we obtain an inter-
val for each polyhedron.
If at least one separating axis exists, where the pro-

jected polyhedra (the intervals) do not intersect, then
the polyhedra do not intersect (otherwise the polyhe-
dra intersect).

4 Dispensable surface parts

With the help of interval inclusions for the partial
derivatives, we compute parts of the parameter do-
main, where one patch cannot reach the enclosure of
the other one. Cutting o� such dispensable regions,
and corresponding parts in object space result in a
faster convergence of the algorithm.

Let us consider a patch ~s and a plane " which is
given by a normal vector ~n and the distance � of the
plane from the origin. The problem is stated as follows:
Determine parts of ~s and the corresponding regions in
the parameter domain which de�nitely lie on the same
side of " as a corner point ~cj of ~s.

n

ε

dcj j

(a)

n

c

εε

jddj j

(b)

Figure 2: Finding dispensable surface parts.

For each point of the patch, we can compute an en-
closure by a similar application of the mean value the-
orem of two independent variables as in Section 2:

~s(u; v) 2 ~cj + (u� uj)
| {z }

�u

~Su + (v � vj)
| {z }

�v

~Sv: (5)

We start with the computation of the distance d be-
tween a corner point ~cj and ". We may state: A surface
point ~s(u; v) lies on the same side as ~cj if all points of

its enclosure (~cj +�u~Su +�v~Sv) lie on the same side
as ~cj . The condition for this is:

(�u~Su +�v~Sv) � ~n < dj ; if dj � 0;

(�u~Su +�v~Sv) � ~n > dj ; otherwise.

Only points ~s(u; v), where the according points (u; v) of
the parameter domain solve the linear interval equation

(�u~Su +�v~Sv) � ~n = dj ; (6)

can lie on ". Thus Equation (6) provides boundaries
(a polygonal line) separating the parameter domain of
the patch into three regions:

1. a region de�ning all points of ~s which de�nitely lie
on the same side of " as ~cj ,

2. a region de�ning all points of ~s which possibly lie
on ", and

3. a region de�ning all points of ~s lying de�nitely on
the other side of ".

Note that region 2 must contain all points that can-
not be unambiguously assigned to region 1 or 3 due to
the fact that ~Su and ~Sv are intervals when computing
d and solving Equation (6).
We extend this construction for a pair of planes ("; ")

de�ning a slab (the top and bottom plane of the bound-
ing Tripiped for the second patch, see Figure 2b).

For each corner point ~cj of patch ~s we do the fol-
lowing steps: We check if the corner point lies outside
the slab. If this true, then we take the plane closer to
~cj and solve the linear Equation (6). As result we get
a (polygonal) line separating the region which can be
cut o� (shown in Figure 3 for the highest and lowest
corner point).

D

D

u

v

Figure 3: Reduced parameter domain.

5 Results

We are currently implementing the algorithm as part
of an experimental system (see http://www.apm.tu-
wien.ac.at/research/ssi/). We constructed algorithms
working with patches with rectangular or triangular
domains. We use parallelepipeds for patches with rect-
angular domain, and Tripipeds for patches with trian-
gular domain as tight bounding volumes. Axis aligned
bounding boxes can be used for both patch types for a
�rst intersection test. True interval arithmetic is used
for all critical operations to achieve a robust algorithm.
First experiments have shown that the cut-o� oper-

ations increase the speed of the overall algorithm by a
factor of 10 by decreasing the number of investigated
patches to 1

50
(results depend strongly on the surfaces,

more detailed results are given in the �nal paper).
Further investigations will be made for �nding a

proper termination condition (at the moment we only
check the size of the parameter domain of a patch), for
�nding a fast way of computing the intersection volume
of two Tripipeds and on data structures for storing the
output of the algorithm.

References

[1] R. Barnhill, G. Farin, M. Jordan, and B. Piper.
Surface/Surface Intersection. Computer Aided Ge-
ometric Design, 4:3{16, 1987.

[2] S. Gottschalk. Separating Axis Theorem. Tech-
nical Report TR96-024, Department of Computer
Science, UNC Chapel Hill, 1996.

[3] E. Huber. Intersecting General Parametric Surfaces
Using Bounding Volumes. In Tenth Canadian Con-
ference on Computational Geometry - CCCG'98,
1998.

