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Abstract

We present some geometric relationships between the
ordinary Voronoi diagram, and the Voronoi diagram in
the Laguerre geometry. We derive from these proper-
ties an algorithm for the conversion of ordinary Voronoi
diagrams into Voronoi diagrams in the Laguerre geom-
etry.

1 Introduction

Voronoi diagrams are one of the most extensively stud-
ied structure in computational geometry (see Okabe [8]
for a general survey). The �rst type of Voronoi dia-
grams to be considered was the ordinary Voronoi di-
agram for sets of points. The Voronoi diagram has
been generalized to di�erent sets of sites (lines, cir-
cles, curves, polygons), and di�erent metrics or geome-
tries (Lp metrics, convex distances, Laguerre geome-
try). The generalization of the Voronoi diagram to the
Laguerre geometry is known as Laguerre diagram [9].
They are weighted Voronoi diagrams based on a met-
ric di�erent from the Euclidean distance: the power
of a point relatively to a weight circle. This Laguerre
metric is intrinsically connected to the inversive geom-
etry, and extends to the power of a point relatively to
a sphere in three dimensions (or relatively to hyper-
sheres in higher dimensions). The tessellation formed
by the Laguerre diagram is analogous to the tessellation
formed by the Power Voronoi diagram. The di�erence
is that in the Laguerre geometry the radii of the weight
circles correspond to the elevation of the sites in the
three-dimensional space (see Imai and al. [7]), mean-
while in the Power Voronoi diagram, they correspond
to the square root of the weight of the site (see Auren-
hammer [1]).

The work of Edelsbrunner and Shah [5] provides
an algorithm for the incremental construction of Power
Voronoi diagrams in the d-dimensional space by lifting
the sites to the d+1-dimensional space, constructing the
convex hull in the d+1-dimensional space, and project-
ing it back to the d-dimensional space. Their algorithm

runs in O
�
n log n+ nd

d

2
e
�
expected time. The projec-

tion of this convex hull onto the d-dimensional space
is the Power Voronoi diagram of the initial set of sites.
The algorithm proposed by Gavrilova [6] converts incre-
mentally ordinary Voronoi diagrams into Power Voronoi
diagrams in O

�
n2
�
worst-case running time without

lifting to the d+1-dimensional space. Her work [6] does
not provide a geometric construction for this conver-
sion. Moreover her assumption (Assumption 3.1.1 in
[6]), that the weight circles do not intersect is very limi-
tative, since in the applications the circles are not guar-
anteed to be disjoint.

In this paper, we will study an algorithm for the geo-
metric conversion of the ordinary Voronoi diagram into
the Laguerre diagram. We exhibit a property of the
Voronoi diagram in the Laguerre geometry analogous
to the empty circumcircle property of the dual of the
ordinary Voronoi diagram (the Delaunay triangulation
[10]). This works extends the applicability of an \empty
circle criterion" without assuming that the circles do
not intersect. Moreover, we give a geometric construc-
tion and a geometric interpretation of the \empty circle
criterion". The algorithm for the conversion of ordinary
Voronoi diagrams into Laguerre diagrams uses the fact
that the Laguerre vertex corresponding to a triple of
points can be constructed knowing only the circumcir-
cle of these three points (called here the Delaunay cir-
cle, and represented in Figure 1 as a dashed circle) and
their \weight" circles (represented on Figure 1 as thick
plain circles), a \
ipping" condition associated with the
\Laguerre empty circle" (represented on Figure 1 as a
densely dotted circle), and a linear time traversal of the
Delaunay triangulation.



Figure 1: The \Laguerre empty circle", the \weight"
circles and the Delaunay empty circle

This paper is organized as follows. In section 2, we
present some preliminaries about radical axis, inversive
geometry, and the Voronoi diagram in the Laguerre ge-
ometry. In section 3, we present an algorithm and its
geometric interpretation for the conversion from the or-
dinary Voronoi vertex to the Laguerre vertex. In section
4, we present a 
ipping criterion for the Laguerre dia-
gram, that works even if the weight circles intersect.
This 
ipping criterion is related to the Laguerre vertex
of a triple of circles. We introduce an algorithm for the
conversion from ordinary Voronoi diagrams to Laguerre
diagrams.

2 Preliminaries

Let R2 be the Euclidean plane. Let m be a point of
R2. Let S (a; r) be a circle of centre a and radius r. Its

equation is given by S (x) = 0 where S (x) = d (a; x)2�
r2 (see [4]). The power of the point m with respect to

the circle S is de�ned as [4]: S (m) = d (a;m)2 � r2.
If S (m) = 0, the point m is on S (a; r), if S (m) < 0,
the point m is inside S (a; r), if S (m) > 0, m is outside
S (a; r). If we take any line l passing through m and
intersecting S (a; r), at the intersection points t and t0,

we have the following property [4]:
�!
mt �

�!
mt0 = S (m).

Now, let's consider two circles S (a; r) and S0 (a0; r0).
The locus of points whose power with respect to S (a; r)
equals their power with respect to S0 (a0; r0) is called
the radical axis or chordale of S (a; r) and S0 (a0; r0).
This locus is de�ned if, and only if a 6= a0 (see Berger
[2]). In the case where it is de�ned, its equation is:

S (x) = S0 (x), and it is orthogonal to
�!
aa0 [2].

Two circles S (a; r) and S0 (a0; r0) are said to be or-
thogonal if, and only if, one of the following conditions
holds:

1. S0 (a) = r2

2. S (a0) = r0
2

3. d (a; a0)2 = r2 + r0
2

[2].

Let S = fSig be the set of generators (circles), where
Si is the circle whose centre is the projection �!pi of the
site onto the two-dimensional plane Oxy, and its radius
(the elevation of the site) zi [7]. The Laguerre region
of Si is the set of points of the Euclidean plane whose
power with respect to Si is smaller than or equal to
their power with respect to the other spheres [7]. It is
de�ned by:

V (Si) =
�
M 2 R2 : 8j 6= i; Si (M ) � Sj (M )

	
.

The bisector Hij between Si and Sj is the locus
of points whose power with respect to Si equals their
power with respect to Sj . Therefore, Hij is the radical
axis or chordale of Si and Sj .

3 Ordinary Voronoi vertex and Laguerre vertex

In this section, we will study the geometric transfor-
mation from the ordinary Voronoi vertex of a triple of
points fa; b; cg of the set of sites P into the Laguerre ver-
tex of the triple of circles A (a; �), B (b; �), and C (c; 
)
of the set of circles S. We do mean that the set of sites
P for the ordinary Voronoi diagram is the set composed
of the centres of the circles of S. The ordinary Voronoi
vertex of the triple of points fa; b; cg is the point of the
plane equidistant from these three points, and therefore,
it is the centre of the circle passing through these three
points. If this circle is a valid Delaunay empty circum-
circle, then a, b, and c are not aligned. In this section
we suppose that a, b, and c are not aligned. We do not
assume as in [6], that the weight circles do not intersect.
The circle passing through the three points is called the
Delaunay circle in this section. Let's assume that the
Delaunay circle is the circle D (d; �). Due to the lim-
itations on the length of the abstract, we will present
some of the lemmas and theorems without proof.

Lemma 1 : Let HAD denote the chordale of A and
D, HBD denote the chordale of B and D, and HCD

denote the chordale of C and D. Then, they intersect
two by two at three points i, j, and k.

Proof: By de�nition, the radical axis of two circles
is orthogonal to the line joining the centres of the two
circles. Therefore, HAD ? ha; di, and HBD ? hb; di,
and HCD ? hc; di. Since we supposed that a, b, and c

are not aligned, ha; di, hb; di, and hc; di, which all con-
tain d, are three distinct lines with distinct directions.
Therefore, since HAD ? ha; di, and HBD ? hb; di, and
HCD ? hc; di; HAD, HBD, and HCD are three distinct
lines with distinct directions. Therefore, they intersect
two by two at three points i, j, and k. Q.E.D.



Lemma 2: Let i denote the intersection of HAD

with HBD, j denote the intersection of HBD with HCD,
and k denote the intersection of HCD with HAD. Then,
the line orthogonal to ha; bi and containing i, the line
orthogonal to hb; ci and containing j, and the line or-
thogonal to hc; ai and containing k, intersect at a com-
mon point p.

Proof: Since i pertains to HAD, A (i) = D (i). Since
i pertains also toHBD,D (i) = B (i). Therefore, A (i) =
D (i) = B (i). Therefore i pertains to the radical axis
HAB of A, and B. Similarly, j pertains to the radical
axis HBC of B, and C; and k pertains to the radical
axis HAC of A, and C. By de�nition, the radical axis of
two circles is orthogonal to the line joining the centres.
Therefore, the line orthogonal to ha; bi and containing
i is the radical axis HAB of A, and B, and its equation
is A (x) = B (x). Using the same argument based on
the de�nition of the radical axis of two circles, we can
state that the line orthogonal to hb; ci and containing
j is the radical axis HBC of B, and C, and its equa-
tion is B (x) = C (x); and the line orthogonal to ha; ci
and containing k is the radical axis HAC of A, and C,
and its equation is A (x) = C (x). Since a, b, and c

are not aligned, ha; bi and hb; ci are not parallel. There-
fore, since ha; bi ? HAB and hb; ci ? HBC , HAB and
HBC are not parallel. Thus, they have an intersection
point. Let's call it p. Since p pertains to HAB, whose
equation is A (x) = B (x), A (p) = B (p) holds. Since
p pertains to HBC, whose equation is B (x) = C (x),
B (p) = C (p) holds. Therefore, A (p) = B (p) = C (p).
Since A (p) = C (p), p belongs to HAC (whose equation
has been shown to be A (x) = C (x)). Therefore, p be-
longs to HAB, HBC , and HAC. Therefore, p belongs
to the line orthogonal to ha; bi and containing i; the
line orthogonal to hb; ci and containing j, and the line
orthogonal to hc; ai and containing k. Q.E.D.

Proposition 1 (Construction of the Laguerre
vertex from the Delaunay circle and the weight
circles): The Laguerre vertex of A (a; �), B (b; �), and
C (c; 
) is the point p intersection of the three lines men-
tioned in Lemma 2.

Proof: In the proof of Lemma 2, we have seen that
A (p) = B (p) = C (p). Therefore, p has the same power
with respect to the circles A, B, and C. Therefore it is
the Laguerre vertex of A, B, and C. Q.E.D.

Theorem 1: The Laguerre vertex of A (a; �), B (b; �),
and C (c; 
) is the intersection of the internal bisectors
of the three radical axes HAD, HBD, and HCD.

Proof: The radical axis HAD is orthogonal to ha; di.
The radical axis HBD is orthogonal to hb; di. Therefore
the angle HAD;HBD formed by the chordales HAD and

HBD is the same as the angle
�!
da;

�!
db formed by the lines

hd; ai and hd; bi. Since d is the circumcentre of a, b, and

c, the triangle fa; d; bg is isocele in d (da = db). There-
fore, the line l0 orthogonal to ha; bi and containing d is

also the bisector of the angle
�!
da;

�!
db. We have proved

in proposition 1, that the Laguerre vertex pertains to
the line l orthogonal to ha; bi and containing i. This
line l is thus parallel to l0 (they are both orthogonal to
ha; bi), and thus l bisects internally the HAD;HBD in
i. Therefore the Laguerre vertex pertains to the inter-
nal bisector of the angle HAD;HBD. From Proposition
1, we know that the Laguerre vertex pertains also to
the line orthogonal to hb; ci and containing j, and to
the line orthogonal to hc; ai and containing k. There-
fore, using a similar reasoning, we can prove that the
Laguerre vertex pertains also to the internal bisector of
the angle HAD;HBD, and the internal bisector of the
angle HAD;HBD. Therefore, the Laguerre vertex is the
intersection of the internal bisectors of the three radical
axes HAD, HBD, and HCD. Q.E.D.

Theorem 2: There exists a (possibly pure imagi-
nary) circle centered at the Laguerre vertex of A (a; �),
B (b; �), and C (c; 
) and orthogonal to both A (a; �),
B (b; �), and C (c; 
). We call it the Laguerre empty
circle of A (a; �), B (b; �), and C (c; 
).

Proof: We know that A (p) = B (p) = C (p). There-

fore d (p; a)2 � �2 = d (p; b)2 � �2 = d (p; c)2 � 
2. Let

� be d (p; a)2 � �2 = d (p; b)2 � �2 = d (p; c)2 � 
2.
Then, if we denote by � the real or pure imaginary num-
ber such as �2 = �, the following relationships hold:
d (p; a)2 = �2 + �2, d (p; b)2 = �2 + �2, and d (p; c)2 =

2+ �2. Therefore the circle centered at p and of radius
� is orthogonal to both A (a; �), B (b; �), and C (c; 
).
This circle is a pure imaginary circle [3] if, and only if,
A (p) = B (p) = C (p) < 0. Q.E.D.

Theorem 3: This circle is a true circle if, and only
if, the intersection of the disk bounded by A, and the
disk bounded by B, and the disk bounded by C is empty.

4 The conversion from the ordinary Voronoi dia-

gram to the Laguerre diagram

Lemma 3: Let e be the vertex of the triple A (a; �),
B (b; �), and C (c; 
), and E (e; �) be the circle orthogo-
nal to A (a; �), B (b; �), and C (c; 
). Then, there exists
a circle D (d; �) of S for which the vertex e is also the
vertex of the triples fA;B;Dg and fA;C;Dg if, and
only if, D (d; �) is orthogonal to E (e; �).

Proof: (only if): If such circle D (d; �) exists, then
A (e) = B (e) = D (e) and A (e) = C (e) = D (e) .
Therefore, A (e) = B (e) = C (e) = D (e). Since E (e; �)
is orthogonal to A (a; �), B (b; �), and C (c; 
), accord-
ing to section 2, A (e) = �2. Since A (e) = D (e), we
have D (e) = �2, which expresses that D (d; �) is or-
thogonal to E (e; �).



Proof: (if): If D (d; �) is orthogonal to E (e; �), then
D (e) = �2. Since E (e; �) is orthogonal to A (a; �),
B (b; �), and C (c; 
), the following relationships hold:
A (e) = �2, B (e) = �2, and C (e) = �2. Since we had al-
ready D (e) = �2, we get A (e) = B (e) = C (e) = D (e).
And, we can conclude that the vertex e is also the ver-
tex of the triples fA;B;Dg and fA;C;Dg if, and only
if, D (d; �) is orthogonal to E (e; �). Q.E.D.

Theorem 4: Let e be the vertex of the tripleA (a; �),
B (b; �), and C (c; 
). Then, the vertex e is valid (the
triangle fA;B;Cg pertains to the dual of the Laguerre
diagram) if, and only if, the power of e with respect to
any circle D (d; �) of S is greater than any of the power
of e with respect to A (a; �), B (b; �), or C (c; 
).

Proof: The vertex e is valid (the triangle fA;B;Cg
pertains to the dual of the Laguerre diagram) if, and
only if, A (a; �), B (b; �), and C (c; 
) are the three
sites closest to e in the Laguerre metric. Since, e has
the same power with respect to A (a; �), B (b; �), and
C (c; 
); A (a; �), B (b; �), and C (c; 
) are the three
sites closest to e in the Laguerre metric if, and only
if, there is no other site D (d; �) of S, that is closer to,
or at the same distance from e than A (a; �), B (b; �),
or C (c; 
) in the Laguerre metric. Therefore e is valid
if, and only if, the power of e with respect to any circle
D (d; �) of S is greater than any of the power of e with
respect to A (a; �), B (b; �), or C (c; 
). Q.E.D.

The proofs that have been given in this section are
much simpler than the proof of the INCIRCLE test in
Gavrilova [6]. Lemma 3 gives a necessary and su�cient
condition and a geometric interpretation for the degen-
erate case where a Laguerre vertex is closer to four cir-
cles. Theorem 4 gives a way to test if a Laguerre vertex
is valid. Its geometric interpretation is that the vertex
e is valid (the triangle fA;B;Cg pertains to the dual of
the Laguerre diagram) if, and only if, no circle D (d; �)
of S, is orthogonal to a circle centered at e and of ra-
dius smaller than or equal to �. The assumption that
no three circle centres are aligned guarantees that the
bisectors (the chordales) are de�ned and intersect, and
that each Laguerre vertex is three-valent. It is possible
to convert an ordinary Voronoi diagram into a Voronoi
diagram for the Laguerre metric by performing the test
given in Theorem 4. In the worst case, O

�
n2
�
tests have

to be performed. This test can be performed by using
a queue storing the triangles that have to be checked,
in a way similar to Gavrilova [6]. After each triangle

ip, the old triangles are dequeued, and the new ones
are queued.

5 Conclusions

We have presented an algorithm for the conversion from
the ordinary Voronoi diagram to the Laguerre diagram.
We have presented some geometric properties related to
this algorithm, its geometric construction and its geo-
metric interpretation. The conversion from the Voronoi
vertex to the Laguerre vertex and the 
ipping criterion
do not suppose that the weight circles do not intersect,
and therefore they generalize the results in [6].
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