
1.  ABSTRACT
Many disciplines can profitably use large high-
resolution geometric models whose computa-
tional requirements exceed current computer 
hardware capabilities. This paper presents a 
new multiresolution surface representation and 
its application for building scalable geometric 
models in geoscience. We build models from 
surfaces at full resolution and construct topo-
logically correct decimated models. The tech-
nology is embedded into an application-neutral 
3D geoscience geometric modeling framework.

1.1  Keywords
Multiresolution, surface representation, geometric modeling,
decimation.

2.  INTRODUCTION
Geoscience applications need to build and share large high
resolution geometric models across widely varying computer
hardware. This paper presents a new approach, the Scalable
Interactive geometric Modeling Architecture (SIGMA)
which extends current geometric modeling technology to
solve many of the problems in building and sharing large
geometric models for geoscience.

Two major issues for interactively building large geometric
models are memory usage and rendering performance. There
is a rich literature on surface decimation [4,5] and one
solution is to construct the geometric model from decimated
surfaces. However, the information lost in decimation cannot
be recovered from the model.

SIGMA is a scalable solution that uses a new multiresolution
surface representation to build geometric models. The model
is built at full resolution to ensure no loss of information.
Furthermore, SIGMA can generate many topologically
consistent decimated models. Multiresolution surface
representations have been a hot research topic in recent years
[7], but the research has been confined to visualization.

The SIGMA surface representation is a multiresolution
hierarchy based on a regular subdivision. The hierarchy is
implemented as a quadtree, and is used for intersection
computations and multi-resolution decimation. This paper
focuses on the surface representation, geometric modeling,
and model decimation. SIGMA visualization is presented in
another paper [8].

2.1  Background
A geoscience geometry model is built from surfaces that
represent the discontinuities of material properties in the
subsurface. Figure 1 illustrates some subsurface structures.

We construct subsurface geometry models using Irregular
Space Partitioning (ISP) [2]. ISP is a sequence of subdivides
by surfaces and volumes on a volume of interest which is
similar to Constructive Solid Geometry [10]. See Figure 2

This paper assumes a piece-wise linear geometric modeling
kernel. We use SHAPES from XOX [15].

3.  PSEUDO-MANIFOLDS
A pseudomanifold [1], M, is a simplicial complex such that

1. M is homogeneously n-dimensional. That is, every 
simplex of M is a face of a n-simplex of M.

2. Every (n-1)-simplex is a face of at most two n-sim-
plices.

3. If  and  are two distinct n-simplices of M, then 
there exists a sequence  of n-simplices in M, such 

that ,  and  meets  in a (n-1)-face 

for .
A triangulated surface or triangle mesh is a two-dimensional
pseudo-manifold. The boundary of a simplicial complex K is
denoted by .
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Figure 1.  Cross-sections of 3D subsurface structures
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Figure 2.  Irregular Space Partitioning. 
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4.  CELL COMPLEXES AND CLASSIFICA-
TION
Our boundary representation is based on the notions of CW-
complexes [9], except the cells are relaxed to be pseudo-
manifolds as opposed to disks [3, 6]. We call these
boundary representations subdivided complexes denoted by
(X,C) where X is a topological space and C is the collection
of cells. The boundary representation is similar to Selective
Geometric Complexes [11]. We define the operation of
classification for ISP. The previous works [3, 6, 14] also
define classification, but their interest is with the
representation of cellular topology.

Let (X,C) and (Y,D) be two subdivided complexes. A
boolean classification of (X,C) and (Y,D) is a third
subdivided space (Z,E), such that,

1.
2. For each pair of cells  and  there are 

disjoint collections of cells in , such that, 

,  and .
Classification must commute with the boundary operator,
that is  as cells in E. 

5.  ISOMORPHISM OF MODELS
Let (X,C) and (Y,D) be two subdivided complexes. A
continuous map  is a cellular map if f induces a
map from C to D. If the cellular map is a homeomorphism
which induces an isomorphism on the cells C and D, then
(X,C) is isomorphic to (Y,D).

5.1  Cracking
Cracking is often seen as a new hole where there was no
hole before. Figure 3 shows an example of cracking.

Let (X,C) and (Y,D) be two subdivided complexes. Then
(Y,D) is a crack-free representation of (X,C) if there is a
cellular map  which has a left inverse ,
that is .

5.2  Bubbling
Bubbling is new intersections where there were none
previously. In Figure 4 shows an example of bubbling.

Let (X,C) and (Y,D) be two subdivided complexes. Then

(Y,D) is a bubble-free representation of (X,C) if there is a
cellular map  which has a left inverse 
that is .

6.  AN HIERARCHICAL SURFACE REPRE-
SENTATION
SIGMA has a new hierarchical surface representation based
on a quadtree. A quadtree [12] was chosen because of its
geometrical relationship to sub-sampling in grids. SIGMA
supports ISP through the boolean classification operator.
SIGMA also supports the construction of crack-free and
bubble-free decimated models.

6.1  Definitions
The number of elements (cardinality) in a collection C will
be denoted by Card(C). Every node of a quadtree can be
assigned a unique key, Key(N). The quadtree node of a key
K is Node(K). In a fixed quadtree  and

. The depth of the key K is Depth(K).
and the root key has depth 0. The ancestor key at depth i of
the key K is Ancestori(K). Ancestori(K) is defined for

 with .
Ancestorsi(C) are the ancestor keys of the keys C.

A collection of nodes, C, of the tree T is a node front if
every leaf node of T has at most one ancestor in C. A node
front is a complete node front if every leaf node of T has
exactly one ancestor in C. A node front D is finer than the
node front C of the tree T, (C is coarser than D) if every
node in a node in C is an ancestor of a node in D.

6.2  Subdivision
For each surface in the model a quadtree is built. Triangles
are assigned to unique tree leaf nodes. For a structured grid
this is done by tiling the parameter space of the grid with
quadtree leaf nodes and assigning a grid cell’s triangles to
its nearest quadtree leaf node. Each tree node is assigned the
triangles of its descendants. Hence, a complete node front
defines a partitioning of the triangles. The tree leaf node
which contains the triangle S is Leaf(S). 

6.3  Vertex Descriptor
Each triangle has been assigned to a leaf node in the tree and
the vertices of the triangle are also assigned to the same leaf
node. The vertex descriptor for the vertex, v, is the list of
leaf keys of the triangles connected to the vertex, v,

 where Simps(v) are

the triangles having v as a vertex.

6.4  Boundaries of Tree Nodes
A tree node comprises a collection of triangles originating
from a pseudo-manifold and has a well-defined boundary.
Let C be a complete node front of the tree. The boundaries
of C are the boundaries of all the nodes of C. The
boundaries of the complete node front form a graph.

In Figure 5a the unshaded vertex can be dropped without
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Figure 3.  Cracking in a model.
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Figure 4.  Bubbling in a model.
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changing the topology of the graph. In Figure 5b when the
vertex b is collapsed to the vertex a, the valence of vertex a
changes from three to four and the topology is modified.

It can be seen the only vertices which can be dropped and
still preserve the topology of the graph are the vertices of
valence two. This can be made precise by introducing the
notion of homeomorphic graphs [1].

6.5  Critical Vertices
Let  be the lowest dimension of the cells that a
vertex v lies in. Let 
be the number of ancestor keys at depth i of the vertex v.
Then the vertex v is critical at level i, if .
The depth of the vertex v is the smallest i for which the
vertex is critical. A vertex is assigned to all the nodes for
which it is critical. The critical vertices for a complete node
front, C, of the tree T are all those vertices which have been
assigned to the nodes of C. Figure 6 shows how critical
vertices approximate a surface.

Lemma: The critical vertices of a complete node front, C,
contain the vertices which cannot be removed without
changing the topology of the graph of boundaries of C.

Lemma: Suppose a complete node front D is finer than the
complete node front C. Then the critical vertices of C are a
subset of the critical vertices of D.

Lemma: Let nodes N and M share a critical manifold
vertex, v. Let P and Q be the pseudomanifold subsets of N
and M respectively which contain v. Then P and Q are
connected by the pseudomanifold relationship.

6.6  The Topology of Tree Nodes
If a tree node includes any triangles that are on the boundary
of the underlying mesh, then this node is called a macro-
node. Any tree node which is not a macro-node is required
to be homeomorphic to a 2-disk, in particular the node is
connected and simply-connected (does not have any holes).

Lemma: Let C be a complete node front. Then every node
in C has at least one critical vertex.

7.  MODEL CONSTRUCTION
As described in Section 2 an ISP model is constructed
incrementally by inserting new surfaces or new volumes
into an existing model. When a new surface is introduced
into the model it is necessary to recompute the topology of
the model, which is called classification. Classification
requires identifying a new decomposition of the model as
pseudo-manifolds. This section describes the SIGMA part
of the classification algorithm and the decimation.

Geometric modeling algorithms break into two fundamental
parts, geometry calculations and topological calculations.
The geometry calculations are performed by SHAPES [15].
This paper addresses some of the issues of the topological
calculations. We assume the geometric modeling kernel can
compute the topology of a collection of simplices.

7.1  Pairwise Intersection of Surfaces
The classification algorithm first identifies all intersecting
simplices. The SIGMA tree structure aids in this calculation
by storing a min-max box (or similar data-structure, such as,
a convex hull), at each node of the tree large enough to
contain all the triangles assigned to this node.

Given two SIGMA trees pairwise intersection of min-max
boxes using hierarchical traversal will identify all
intersecting leaf nodes. This process identifies a complete
node front from each tree. 

The collection of triangles from the intersecting leaf nodes
of a surface forms a swath. The swaths are passed to the
geometric modeling kernel which intersects all the triangles
passed to it. This is sufficient to compute the topology of the
swath.

7.2  Migration
Migration is the process by which the new pseudomanifold
regions are computed during classification. Migration splits
the original tree into several trees, one tree for each
component. Migration is implemented as a flood fill
operation in a complete node front seeded from the
intersecting triangles.

Let C be a complete node front which contains all the leaf
nodes involved in the intersection. Suppose, furthermore
every leaf node containing a non-manifold vertex is in C
and all other nodes in C are connected.

Migration proceeds as follows. Triangles which are
involved in the intersection are retriangulated to respect the
new intersection curve; each new triangle is assigned to the
leaf node of the original triangle. Using the pseudo-
manifold structure of a leaf node, we migrate from the
interior edges of the split triangles to the remaining triangles
that were not split in a split leaf node. This results in a new
collection of interior edges which lie on the boundary of
nodes in the complete node front which were not split. 

Collect all the vertices from a collection of interior edges
from one of the swath components. Next collect the vertex
descriptors from these vertices. From these vertex

Figure 5.  Dropping a vertex may change graph topology.
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descriptors identify the coarsest non-migrated node in the
complete node front C which has this vertex as a critical
vertex. If there are no nodes left in the complete node front
then the migration has been completed. If any split nodes
have any of the migrated vertices as critical vertices which
were not in the original collection of split nodes for this
collection of interior edges, connect the two swaths of
triangles.

After the migration has been completed the critical vertices
of the tree nodes are recomputed. The min-max boxes of the
quadtree nodes which were split can also be recomputed.

7.3  Decimation
Constructing a decimated model which is isomorphic to the
original model is of interest to both visualization and
simulation. This section describes an algorithm to construct
a crack-free and bubble-free decimated model for SIGMA.

By analogy with the quadtree a binary tree is constructed for
each 1-cell. A complete node front of the binary tree defines
a crack-free decimation of the 1-cell by taking line segments
joining the critical vertices. Many 2-cells may share the
same 1-cell as a boundary and must use the same decimated
version of this 1-cell to prevent cracking. In the parameter
space of each 2-cell the pre-image of the decimated 1-cell
may have bubbles, which must be removed.

For each 2-cell, choose a complete node front from the
quadtree. Collect the critical vertices from the node front.

In the parameter space of a 2-cell, build a list of parameter
values and edges from the critical vertices and the edges
from the decimated bounding 1-cells. Run a tessellator (for
example, constrained Delaunay [13]) which respects the
imposed edges from the 1-cells in the surface and the
critical vertices from the chosen quadtree nodes. Build up a
tessellation of the surface in three-dimensional space by
evaluating the parameter values for the surface and using
these as corner points for the triangles computed by the
tessellator in parameter space.

This algorithm prevents cracking in the model. To prevent
bubbling rerun the classification algorithm and ensure no
additional topology has been introduced. If new topology
has been introduced then refine the model in these areas.
Since the full-resolution model has no bubbling this process
must terminate.

8.  CONCLUSIONS
This paper presents a new multiresolution representation
which can be used for scalable geometric modeling in
geoscience. Geometric models are built from surfaces at full
resolution and we construct topologically correct decimated
models from a full resolution model. The new
representation has been integrated with a commercial
geometric modeling kernel. The integration defines a clear
separation of topology computation from geometric
computation. We have embedded the technology presented
in this paper into a 3D geoscience geometric modeling
application framework that supports many applications.
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