
Ramsey-type results for unions of comparability graphs and convex sets in

restricted position

Adrian Dumitrescu
Computer Science, Rutgers University

e-mail: dumitres@paul.rutgers.edu
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Abstract

Given a graph on n vertices which is the union of two
comparability graphs on the same vertex set, it always
contains a clique or independent set of size n

1
3 . On the

other hand, there exist such graphs for which the largest
clique and independent set are of size at most n0.4118.
Similar results are obtained for graphs which are a union
of a fixed number k of comparability graphs. We also
show that the same bounds hold for unions of perfect
graphs. A geometric application is included.

1 Introduction

Let P = (V,≺) be a partially ordered set on V =
{v1, v2, . . . , vn}. The comparability graph of P , G =
(V, E) is a graph such that (vi, vj) ∈ E if and only if
either vi ≺ vj or vj ≺ vi.

Given a graph G = (V, E), let ω(G) be its clique num-
ber, namely the size of a largest clique in G and α(G)
be its independence number, namely the size of a largest
independent set in G. Write χ(G) for the chromatic num-
ber of G. A graph G is perfect if χ(H) = ω(H) for every
induced subgraph H of G, including G itself (see [B98]).

For k ≥ 1, put Ck = the class of graphs which are
unions of k comparability graphs on the same vertex set.
Write fk(n) for the minimum of max(ω(G), α(G)), over
all graphs G ∈ Ck on n vertices. Define Pk, gk(n) analo-
gously for perfect graphs (i.e. Pk is the class of graphs
which are unions of k perfect graphs). For k ≥ 2, in
Section 2 we obtain

Theorem 1.1

n
1
k+1 ≤ gk(n) ≤ fk(n) ≤ n

1+log k
k

In the case k = 2, in Section 3 we prove

Theorem 1.2

n
1
3 ≤ g2(n) ≤ f2(n) ≤ n0.4118

Let h(n) denote the maximum number with the property
that given a family of n convex sets in the plane, one can
always choose h(n) of them which are either pairwise dis-
joint or pairwise intersecting. It was proved [LMPT94],
[KPT97]

n
1
5 ≤ h(n) ≤ nlog27 4 ≤ n0.4207

In [LMPT94] four partial order relations are defined,
such that any two disjoint convex sets in the plane are
comparable using at least one of them (see Figure 1).
Let π(C) denote the projection of C on the x-axis. For
A ∩B = ∅

A <1 B if π(A) ⊆ π(B) and A lies belowB (“below”
means in the y-axis direction).

A <2 B if π(A) ⊆ π(B) and A lies above B.

A <3 B if the left endpoint of π(A) is to the left of
the left endpoint of π(B), the right endpoint of π(A)
is to the left of the right endpoint of π(B), and if
π(A) and π(B) overlap, A lies below B in that part.

A <4 B if the left endpoint of π(A) is to the left of
the left endpoint of π(B), the right endpoint of π(A)
is to the left of the right endpoint of π(B), and if
π(A) and π(B) overlap, A lies above B in that part.

We say that a family of convex sets is in restricted po-
sition of type (i, j), where 1 ≤ i < j ≤ 4, if any two
disjoint sets in the family are comparable by <i or <j.
For example, a family of convex sets is in restricted posi-
tion of type (1, 2) when for any two disjoint convex sets
their intervals of projection on the x-axis are comparable
by inclusion.

Let h(i,j)(n) denote the maximum number with the
property that given a family of n convex sets in restricted
position of type (i, j) in the plane, one can always choose
h(i,j)(n) of them which are either pairwise disjoint or
pairwise intersecting. In Section 4, we show
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Figure 1: The order relations <1, <2, <3, <4

Theorem 1.3 For 1 ≤ i < j ≤ 4,

n
1
3 ≤ h(i,j)(n) ≤ nlog27 4 ≤ n0.4207

Unions of comparability graphs have been used recently
in combinatorial geometry, for proving Ramsey-type the-
orems (see [KPT97], [LMPT94], [PA95], [PT94], [PT99],
[TV98], [T99]). In Section 5 we review these related ge-
ometric results which motivated our paper.

2 Proof of Theorem 1.1

All comparability graphs are perfect (see [B98]), there-
fore gk(n) ≤ fk(n).

We prove the lower bound in the Theorem by induc-
tion on k. For k = 1, the statement is a direct conse-
quence of the definition of perfect graphs. Suppose that
we have already proved the statement for k − 1 and for
all n. Let Gi = (V, Ei) (1 ≤ i ≤ k) be perfect graphs,
where |V | = n. Assume for simplicity that n = mk+1

for some integer m. Suppose that the size of any clique
in G(V, E = ∪ni=1Ei), is less than m = n

1
k+1 , else the

conclusion follows. Since G1 = (V, E1) is perfect and
ω(G1) < m, it can be colored by less than m colors,
so it contains an independent set V ′ of size (at least)
n/m = mk.

For i = 2, . . . , k, let G′i = (V ′, E′i) = Gi[V ′] be the
V ′-induced subgraph of Gi. The graphs Gi are perfect,
hence G′i are also perfect. By the induction hypothesis
and the assumption, the graph G′ = (V ′, E′ = ∪ki=2E

′
i)

contains an independent set I of size m. Then I is in-
dependent in G, proving the lower bound. We continue

with the proof of the upper bound.

Definition. Let G1(V1, E1) and G2(V2, E2) be two
graphs. The ordered product G(V, E) = G1 × G2 is the
graph with vertex set V = V1 × V2, and edge set

E(G) = {((x1, x2), (y1, y2)) | x1, y1 ∈ V1, x2, y2 ∈ V2,

(x1, y1) ∈ E1, or x1 = y1 and (x2, y2) ∈ E2}
Let k ≥ 2 be a fixed positive integer. By known bounds
for Ramsey numbers [AS92] we know that there is a
graph H = (V, E) such that N = |V | = 2k, and
ω(H), α(H) < 2k. First we show that H is the union
of k comparability graphs. Obviously, in H, the largest
connected component has at most |V (H)| = 2k vertices.
There exists a bipartite graph B1 ⊂ H on V , such that
in H \ B1 the size of the largest connected component
is at most 2k−1 (take any balanced bipartition of V ).
Similarly, we can take a bipartite graph B2 ⊂ H \ B1,
such that in H \B1 \B2 the size of the largest connected
component is at most 2k−2. After k analogous steps, the
largest connected component in the remaining graph has
just one vertex, so we can cover all edges of H by at
most k bipartite graphs on V . Since bipartite graphs are
comparability graphs, H is the union of k comparability
graphs. Let

G =

i times︷ ︸︸ ︷
H × · · · ×H

It is easy to see that G is also a union of k comparability
graphs. n = |V (G)| = N i = 2ki and

ω(G), α(G) < (2k)i = n
1+log k

k

This concludes the proof of Theorem 1.1.
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Figure 2: A configuration of 12 segments defining a polygon-disjointness graph H1 (left), and a decomposition of the
graph H2

3 Proof of Theorem 1.2

We only have to show the upper bound in the Theorem.
We first describe a class of graphs which are unions of two
comparability graphs. A polygon-disjointness graph is a
graph whose vertices form a family of convex polygons for
which the union of their vertices are in convex position.
Each convex polygon gives a vertex in the graph. Two
vertices of the graph are joined by an edge when their
corresponding polygons are disjoint.

Lemma 3.1 Any polygon-disjointness graph is in C2.

Proof. Omitted in this abstract.
�

Let H1 be the polygon-disjointness graph on 12 ver-
tices corresponding to the configuration of 12 segments
in Figure 2. It has ω(H1) = 4 and α(H1) = 2. Let H2 be
the graph on 13 vertices drawn in Figure 2 (this graph
is used to show that the Ramsey number R(3, 5) ≥ 14).
We know that ω(H2) = 2 and α(H2) = 4. In Figure 2
a decomposition of H2 as a union of two comparability
graphs is also shown. Put H = H1 ×H2 ∈ C2. We have
|V (H)| = 156, ω(H) = ω1ω2 = α1α2 = α(H) = 8. Put

G =

i times︷ ︸︸ ︷
H × · · · ×H

Then G is still the union of two comparability graphs,
n = |V (G)| = 156i, and

ω(G), α(G) = 8i = nlog156 8 < n0.4118

This concludes the proof of the Theorem.

4 Proof of Theorem 1.3

The proof of the lower bound in Theorem 1.3 is as in
[LMPT94], a repeated application of Dilworth’s Theo-
rem [D50] (or it follows directly from Theorem 1.1). We
continue with the proof of the upper bound. Consider
families of segments having disjoint endpoints and let
S = {s1, . . . , sn} be such a system of n segments. We
say that S can be flattened if for every ε > 0 there are
two discs of radius ε at unit distance from each other, and
there is another family of n segments S′ = {s′1, . . . , s′n}
such that s′i and s′j are disjoint if and only if si and sj
are disjoint, and the endpoints of each s′i lie one in each
disc.

Lemma 4.1 For 1 ≤ i < j ≤ 4, any system S of seg-
ments whose endpoints form the vertex set of a convex
polygon, can be flattened such that the resulting system
of segments is in restricted position of type (i, j).

Proof. Omitted in this abstract.
�

In the family S1 of 27 segments in Figure 3, taken
from [KPT97], the largest pairwise disjoint or pairwise
intersecting subfamily has size 4. This gives a recursive
construction of a family of 27k segments where the largest
pairwise disjoint or pairwise intersecting subfamily has
size 4k; the recursive step replaces a segment of S1 with
a suitable flattened copy of S1. For 1 ≤ i < j ≤ 4,
it can be seen that the restricted position of type (i, j)
can be maintained at each step using Lemma 4.1. This
completes the proof of Theorem 1.3.
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Figure 3: A system of 27 segments

5 Remarks

Probably the first Ramsey-type result that used unions of
comparability graphs appears in [LMPT94]; it is shown
that among any n convex sets in the plane, there are ei-
ther n1/5 pairwise intersecting or pairwise disjoint. Most
likely this bound is not the best possible. The best known
result from the other direction is : for infinitely many n,
there exists a collection of n convex sets in the plane such
that less than n0.4207 of them are pairwise intersecting or
pairwise disjoint [KPT97].

For some special classes of convex sets there are even
stronger results. Any collection of n axis-parallel rectan-
gles contains either

√
n/(2 logn) pairwise intersecting or

pairwise disjoint [LMPT94]. Among n homothetic copies
of a convex set in the plane there are either c

√
n pairwise

intersecting or pairwise disjoint. It is the consequence of
the following more general result. We say that a convex
planar set K-fat, if the ratio of the radii of the smallest
covering disc R and the largest inscribed disk r satisfies
R/r ≤ K. For any K > 0, any collection of n K-fat
convex sets in the plane contains c(K)

√
n pairwise inter-

secting or pairwise disjoint [P80].
Given a system of n convex polygons for which the

union of their vertices are in convex position, one can
always choose c

√
n/logn of them which are pairwise dis-

joint or pairwise intersecting. In particular it is true for
a system of n segments having their endpoints in convex
position. This is a direct consequence of a theorem in
[KK97].

A geometric graph is a graph drawn in the plane so that
the vertices are represented by points in general position
and the edges are represented by straight line segments
connecting the corresponding points. Using comparabil-
ity graphs, Pach and Törőcsik obtained the following re-
sult [PT94]: any geometric graph of n vertices and k4n+1
edges contains k + 1 pairwise disjoint edges. Using sim-
ilar methods, this bound was improved in [TV98] and
recently further improved in [T99]: any geometric graph
of n vertices and 29k2n edges contains k + 1 pairwise
disjoint edges.
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