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Abstract

We consider two problems on dissections of
polygons. In the first problem we consider
the minimum number of pieces in dissecting
with rectilinear glass cuts an = X ™ rectangle
into a unit square. A rectangle is called semi-
integer if either its base or its height is an
integer. In the second problem we show that
no triangulation of a regular polygon can be
a dissection of another regular polygon of the
same area.

1 Introduction

Dissections of geometric objects have been
studied since ancient times [3]. A lot of ac-
tivity was sparked by Hilbert’s address to the
1900 International Congress of Mathemati-
cians, Hilbert conjectured the impossibility
of proving merely by dissections the equality
of the volume of two tetrahedra with identi-
cal basis and equal height, a problem whose
solution as described by Euclid uses approx-
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imation techniques (See Hilbert’s 3rd prob-
lem, [5]). The solution suggested by Dehn in
[2, 1] is based on the notion of “invariance”
of a polyhedron, which in turn depends on
the average weights of the edges and dihedral
angles of the polyhedron [7].

In this paper we consider two problems on
dissections of polygons. In the first problem
we study the minimum number of pieces in
dissecting with rectilinear glass cuts an 2 x
rectangle into a unit square, m > n. The dis-
section algorithm consists of O(logm) itera-
tions of dissections. It dissects the rectangle
into

221{:{ & J + O(logm),

i—0 LTi+1
rectangular pieces, where 1o = m > r =
n > -+ > 1y = ged(m,n) is the sequence

of integers produced by the computation of
ged(m, n) using the Euclidean algorithm.

In the second problem we prove an impossi-
bility result, namely we show that for m and n
sufficiently large no triangulation of a regular
m~gon can be a dissection of another regular
n-gon of the same area.

2 Rectilinear Dissections
of Rectangles

In this section we consider the following prob-

lem concerning rectilinear dissections of rect-
angles.



Problem 2.1 Find a rectilinear dissection of
a rectangle having area 1 to a unit square us-
ing the minimum number of pieces.

If the dimensions of the rectangle are a x b
(with @ > b) then a - b = 1. If either a or
b is irrational then the problem has no so-
lution. (E.g., the v/2 x 1/v/2 rectangle can-
not be dissected to a unit square. See [7].)
If the dissections are not necessarily rectilin-
ear then Montucla’s dissection (see [3]) will
dissect the rectangle into a unit square us-
ing at most [a/b] + 2 pieces (this dissection
is valid regardless of whether or not a,b are
rationals).

Therefore we consider only the case where
both a and b are rationals. Let a = m/n and
b = n/m, where m,n are integers and m >
n. We consider the problem of dissecting an
X 2t rectangle into a unit square using only
rectilinear glass cuts. It is easy to see that by
merely scaling the problem is equivalent to
dissecting a rectangle of dimensions m? x n?
into the mn x mn square. Let p(m,n) be the
minimum number of pieces in dissecting the
m? x n? rectangle into the mn x mn square.
In the sequel we prove th following lemma.

Lemma 2.1 [f m > n then
pim,n) <2- {TJ + p(n, m mod n).
n

Proor We start with a rectangle R of di-
mensions m? x n?. The dissection is in two
steps.

In the first step we dissect the original rect-
angle R with vertical glass cuts (see Figure
1). Each piece is a rectangle with dimensions
(mn) x n?, which gives rise to |(mn)/n?| =
|m/n| such rectangles. It also leaves two
“surplus” rectangles to be dissected: one, de-
noted by A, with dimensions (mn) x (mn —
|m/n|n?) (this is part of the m? x n? rect-
angle) and one, denoted by B, with dimen-
sions (m? — [m/n]mn) x n? (this is part of
the mn x mn square).

iz
n
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Figure 1: Step 1 in the dissection of an m?xn?
rectangle into an mn X mn square.
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Figure 2: Step 2 of the dissection. We rotate
the rectangle B and dissect. The remaining
rectangle R’ has dimensions n? x r2.

In the second step we rotate the rectangle
B 90 degrees counterclockwise, The resulting
rectangles have dimensions mn x rn and n? x
rm, where r = m— | m/n|n, We now perform
the following dissection. (see Figure 2).

We dissect A into |[mn/n%| = |m/n| rect-
angles each of dimension n? x rn. The re-
maining rectangle in A is in fact an rn x rn
square. These pieces are placed in B one on
top of the other. It is easy to see that the
remaining rectangle has dimensions n? x r2.

If R is the rectangle with dimensions n? x
r? we see that the original dissection problem
of converting the rectangle R into a square
has been transformed into the problem of con-
verting the rectangle R’ into a square at an
extra cost of 2|m/n| rectangles. This com-
pletes the proof of Lemma 2.1. [

Lemma 2.1 gives an algorithm for comput-
ing a dissection of the m? x n? rectangle into
an mn X mn square. Consider the sequence



of integers generated by the Euclidean algo-

rithm: rq = m,r; = n and
ro = qori+ T2 0<r<n
re o =qra+7r3 0<r3<mrg
i = qiTiv1 T T2 0 <ripe <ripg
Tk = qkTk+1 Tky2 = 0,

where 71 = ged(m,n) and k € O(logm). If
we iterate Lemma 2.1 k£ times then we obtain
a dissection consisting of

p(m,n SZZ{

rectangular pieces. To sum up we have proved
the following theorem.

J + O(log m)

Theorem 2.1 An = x I rectangle can be
dissected into a unit square using only rec-
tilinear glass cuts. Moreover the number of
pieces does not exceed

22{

where 1o = m > 1 =n > - > rpq =
ged(m, n) is the sequence of integers produced
by the computation of ged(m, n) using the Eu-
clidean algorithm. [

J + O(logm),

Note that the running time of the algo-
rithm is terms of the number of iterations is
O(logm). In general, the number of pieces
obtained by the algorithm never exceeds m +
O(log m). The worst-case number of pieces is
obtained when the m x 1/m rectangle is dis-
sected to form a unit square: the number of
pieces required is exactly m.

3 Triangulations

In this section we consider the following prob-
lem concerning triangulations and dissections
of regular convex n-gons.

Figure 3: A triangulation of a convex polygon
which is also a dissection of the square Pj.

Problem 3.1 Can a triangulation of a regu-
lar convex m-gon be a dissection of another

reqular conver n-gon of the same area, for
m#n?

It is of course possible that an arbitrary
convex polygon (i.e., not necessarily regular)
has a triangulation which forms a dissection
of another regular convex polygon. An exam-
ple of this is depicted in Figure 3.

For each positive integer n, let P, denote
the regular convex n-gon of area equal to 1.
We will prove the following result.

Lemma 3.1 Let m # n be positive integers.
If a triangulation of P, is a dissection of P,
then

1. n divides 2m, and
2. ¢ S m
where qb 15 Fuler’s totient function.

Before proving the lemma we poimt out an
application. Recall the well-known result of
Hardy and Wright [4][Theorem 328] that

Inl
lim inf $(m) InInm =e 7,
mMm—00 m
where 7 = lim, (31 —Inn) is Euler’s

constant. From this ObbeI'thIOIl and our main
Lemma 3.1 it follows that



Theorem 3.1 If either n [ 2m or Inlnm €
Q(n) then no triangulation of P, can be a
dissection of P,. [

PROOF of Lemma 3.1. First we prove part
(1) of the theorem. Assume we have a trian-
gulation of P,,. Since P, is regular it can be
inscribed in a circle. This implies that each
angle of each triangle of the triangulation is
an integer multiple of Z-. Since the triangula-
tion forms a dissection of P, each vertex angle
of the regular n-gon P, must be a sum of an-
gles of the triangulation. In particular, this
implies that

R
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where [ is some set of integers. It follows that
T — 2“ = [Z, for some integer | = 3. k.
D1V1de through by 7 and simplify to obtain
the equation (m — I)n = 2m. This concludes
the proof of part (1).

Now we focus on part (2) of the theorem.
We compute the lengths of the diagonals of
a regular m-gon of area 1. Elementary calcu-
lations show that the diagonal corresponding
to an angle of size k7 /m has length exactly

2

i = 2sin(kn /m), e

By assumption the triangulation is also a dis-
section of P,. This implies that the side of
the regular n-gon is a sum of diagonals of P,,.
Hence there exist positive integers [y, lo, . .., [,
and k1 < kg < --- < k, such that

s = > 1;sh.
j=1

From this we derive the equation

"1 ysin(kym/m) 1
_ Sin(ﬂ'/n) nsin(27/n ( )

msin(2w/m) "

Let w = e /™ denote the m-th root of unity.
For any integer s we have the identity

ezsw/m _ e—zsw/m s —s

: w* —w
sin(sm/m) = 5 = 5

Substituting this in equation (1) and squaring
both sides we obtain the equation

2 (555 (W —w ) 2)
_ (wm/n_wfm/n)2 w2m/n_ ,—2m/n

2 w—w1

Equation (2) is equivalent to a polynomial
with integer coefficients of degree at most
8m/n which is satisfied by w.

However, it is well-known from Galois the-
ory that the degree of the extension field Q(w)
over @) satisfies |Q(w) : Q| = ¢(m), where
¢(m) denotes Euler’s totient function. This
implies that w cannot be a root of a poly-
nomial equation with integer coefficients of
degree less than ¢(m). Hence we have that
8m/n > ¢(m) which completes the proof of
the second part of the lemma. [

Lemma 3.1 shows that the answer to Prob-
lem 3.1 is negative when either n does not
divide 2m or £ < -~ We now consider sep-

8 P(m)*

arately the case when n|2m and § < oy

Theorem 3.2 For n sufficiently large, no
triangulation of Ps, can be a dissection of P,,.

PROOF As in the proof of Theorem 3.1 the di-
agonals of P, have lengths given by formula

(2n) 2 SiIl(kﬂ'/Qn)
S = —————
nsin(mw/n)
and the side of P, by the formula

S 2sin(m/n)v/?2
1

mnsin(27/n)
It follows that

s _ sin(kw/2n)
s ~ sin(w/n)

cos(m/n),  (3)



which converges to k/2 as n goes to infinity.

Assume on the contrary that a triangula-
tion of P, is a dissection of P,. Then a side
of P, must be the sum of diagonals of Ps,.
We will show that this is impossible.

None of these diagonals can be equal to
s,(fn), for k > 3, because asymptotically in n,
iéili; is bigger than 1 whenever £ > 2. Next
Wle consider the cases k£ < 2.

Case 2. k£ = 2 then

(2n)
sy
A =/cos(m/n) <1

and also converges to 1 as n goes to oc.
Case 1. k£ =1 then

Sg2n) __ sin(r/2n)

Sgn) sin(m/n)
. \/cos(ﬂ'/n) \/2—1/c052(7r/2n)
o %cos(ﬂ'/Qn) 2

>3

cos(m/n)

and also converges to 1/2 as n goes to oo.
It follows tha s{™ cannot be the sum either

of two diagonals 3(12") or of two diagonals one

of the form s\*™ and one of the form s{*.
This and the previous observations prove the

theorem. ]

4 Open Problems

There are several interesting combinatorial
problems on dissections. One open problem is
related to Problem 2.1: find a rectilinear dis-
section of an orthogonal polygon to a square
of the same area using the optimal (or even
asymptotically optimal) number of pieces.

It is not known whether or not the tech-
nique of Dehn invariants is applicable to
Problem 3.1. There are several avenues to ex-
plore. E.g., P, can always be dissected (with
not necessarily rectilinear glass cuts) to P,
and the number of pieces is asymptotically
equal to % + o(m) (see [6]). What is the

minimal number of Steiner points (i.e. non-
polygonal vertices) used?

Another interesting related question is the
following decision problem: Given as input a
triangulation of a simple polygon and a pos-
itive integer n, is this triangulation a dissec-
tion of a regular convex n-gon of the same
area.
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