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Abstract

We consider orthogonal polygons with vertices lo-
cated at integer lattice points. We show that if all
of the sides of a simple orthogonal polygon without
holes have odd lengths, then it cannot be tiled by
dominoes. We provide similar characterizations for
orthogonal polygons with sides of arbitrary length.
We also give some generalizations for polygons with
holes and polytopes in 3 dimensions.

1 Introduction

In this paper we are concerned only with simple or-
thogonal polygons with vertices located at integer lat-
tice points. An important concept used throughout
the paper is the domino.

De�nition 1.1 A domino is a rectangle formed by
two unit squares adjacent along an edge.

It is well-known that a rectangle of integer side-
lengths can be tiled by dominoes if and only if at
least one side of the rectangle is of even length. The
proof of this is based on the simple observation that
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a region tiled by dominoes must always have an even
number of unit squares. Therefore if the tilable region
is a rectangle then one of its sides must be even.
There are several interesting ways to look for gen-

eralizations of this result: either by generalizing rect-
angle to simple polygon or domino to polyomino or
both. This gives rise to the following problem.

Problem 1.1 If a simple orthogonal polygon can be
tiled by dominoes does it have a side of even length?

Along the same lines, an interesting conjecture arises
from a generalization of de Bruijn's well-known the-
orem: if a rectangle is tilable by polyominoes with
sides 1 � p then one of its sides must have length
which is a multiple of p (see [1, 5]).

Problem 1.2 If a simple orthogonal polygon can be
tiled by 1�p polyominoes, does it have a side of length
a multiple of p?

In this paper we focus on Problem 1.1. In particu-
lar, we prove that the above stated theorem is true in
a much more general form, for all orthongonal simple
polygons without holes. (If the polygon has a hole
then this may not be true, as depicted by the left
picture in Figure 1.) A complication arises because
an orthogonal polygon (as opposed to a rectangle) of
odd sides may not be possible to tile although it has
an even number of unit cells (see Figure 1).
A fundamental observation in our proof of the main

theorem (see Theorem 2.1) is based on the fact that a
chessboard coloring of an orthogonal polygon of odd
sides cannot have the same number of black and white
squares. Thus, it cannot be tiled by dominoes, since
each domino occupies one black and one white square.
This raises the question if all polygons containing the
same number of black and white cells can be tiled
by dominoes. The answer is no, as the polygon on
Figure 1 shows.
Our technique is applicable only to Problem 1.1

and Problem 1.2 still remains unsolved.
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Figure 1: The polygon to the left has a hole (dashed
square), it is tilable by dominoes and all its sides have
odd length. The polygon to the right is a non-tilable
orthogonal polygon with the same number of black
and white unit-

The following de�nition provides useful terminol-
ogy that will be used in the sequel.

De�nition 1.2 Let P be an orthogonal polygon of
integer side lengths. Let R be the smallest rectangle
of vertical and horizontal sides containing P . Sup-
pose R is an n � m rectangle. Divide R into nm

unit squares, and denote by Ti;j(P ) (or simply Ti;j)
the unit square in the i-th row and j-th column. Of
course, some of these cells are in polygon P , others
are not. A chessboard coloring of an orthogonal poly-
gon is a coloring of its unit squares Ti;j by black and
white, such that any two squares which share a side
are colored with di�erent colors.

2 The Main Theorem

Theorem 2.1 Let P be an orthogonal polygon with-
out holes such that all sides are of odd length. Then
P cannot be tiled by dominoes.

Proof . Take a chessboard coloring of P . We are
going to prove that the number of black and white
cells are not the same. This implies the theorem,
since every domino occupies one black and one white
square.
We call Ti;j a corner square if Ti;j � P and at least

two adjacent sides of the square fall onto sides of P .
We may suppose that one of the corner squares of P
is black (otherwise we can reverse the coloring). We
will use the following two lemmas, which we prove
later.

Lemma 2.1 If one of the corner squares of P is
black, then every corner square is black.

Lemma 2.2 Suppose P has more than one row, and
all corner squares of P are black. Then one can cut
o� n cells C = fT1; : : : ; Tng (n > 0) from the polygon
P , so that the following conditions are satis�ed:

(i) P�C is a set of orthogonal polygons P �

1 ; : : : ; P
�

k ,
all of which have odd side lengths (k � 1) and all
corner squares of all of them are black.

(ii) If there is only one remainder polygon (k = 1),
then C contains at least as many black squares as
white ones.

(iii) If there are more than one remainder polygons
(k � 2), then C contains at most one more white
square than black one.

It is easy to see that Lemma 2.2 implies Theorem
2.1. Indeed, we can keep recursively cutting o� cells
from the remainder polygon or polygons. In the end
polygons with at most one row remain, where the
length of the row is always odd. Therefore the excess
number of black squares is the same as the number of
polygons. In the process, when the number of poly-
gons increases, we cut o� at most one more white cell
than black one, thus the original polygon contained
more black cells than white ones. This completes the
proof of Theorem 2.1 assuming the two lemmas.
Now all that is left is the proof of the two lemmas.

Proof of Lemma 2.1. Let us divide each edge of the
polygon into unit segments. Color the segments by
the color of the squares (in P ) those segments are the
sides of.
First, observe that each edge has its �rst and last

segment colored by the same color, because the con-
secutive segments have alternating colors, and the
length of the edge is odd. Also, any two segments
joining at a corner (positive or negative) must have
the same color. It follows that since at least one edge
has its �rst segment colored black, all edges have their
�rst and last segments colored black, therefore all in-
ternal corner squares are black. This completes the
proof of Lemma 2.1.
As before, one can observe (using similar argu-

ments) that all external corner squares are white. By
external corner square we mean a square not in P but
adjacent to two perpendicular edges of P .
Proof of Lemma 2.2. Suppose �rst that the polygon
contains a square (Tx;y), which is bounded on 3 sides
by the boundary of P . Without loss of generality, we
may assume that the only neighbor of Tx;y inside the
polygon P is Tx+1;y. It is clear that Tx;y is black,
while Tx+1;y is white. It is easy to see that there are
only 3 distinct cases (up to rotation and symmetry)
depending upon what neighbors of Tx+1;y are inside
the polygon (see Figure 4 (a), (b) and (c)).
In cases (a) and (b) (see Figure 4) we may take the

cut C = fTx;y; Tx+1;yg, which satis�es the conditions
of the lemma. Indeed, in both cases some sidelengths
of P are decreased by 2 (thus they remain odd) and
all new sides are of length 1. Also, all new corner
squares of P are black.
In case (c) we simply cut o� C = fTx;yg (see Figure

4(c)). The newly created edge of P along the bottom
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of Tx;y will have odd length, since it's length is the
sum of two previous edge lengths plus 1. No new
corner squares have been created.
Therefore we may suppose that all squares in the

polygon have at least two neighbors inside P . Let
T1;k be the leftmost square of the �rst row which is
inside P (so T1;k�1 6� P ). Let s be the number for
which

fT1;k; T1;k+1; : : : ; T1;k+sg � P but T1;k+s+1 6� P:

Clearly, s � 2, s is an even number, and T1;k+s is
black. We also know that T2;k � P .
Suppose �rst that T2;k�1 � P . The proof of

Lemma 2.1 implies that all external corner squares
are white, therefore T2;k+1 � P (see Figure 4(d)).
Then we can take the cut C = fT1;k; T1;k+1g. This
shortens an edge by 2 and lengthens another by 2.
The two potential new corner squares are T1;k+2 and
T2;k+1, both black. Thus C is a good choice.
The only case left is when T2;k�1 6� P . We can

similarly suppose that T2;k+s+1 6� P . The fact that
all edges are of odd length enforce that T3;k � P

and T3;k�1 6� P . Again we similarly conclude that
T3;k+s � P and T3;k+s+1 6� P . Thus, we have (see
Figure 5)

fT2;k; T3;k; T2;k+s; T3;k+sg � P; and
fT2;k�1; T3;k�1; T2;k+s+1; T3;k+s+1g \ P = ;:

We distinguish 2 subcases, depending on what ele-
ments of the second row are in P .

(i) fT2;k; : : : ; T2;k+sg � P .

C := fT1;k; : : : ; T1;k+s; T2;k; : : : ; T2;k+sg (see Fig-
ure 5(a)). This set contains an equal number of
black and white squares, and by cutting o� C,
we decrease each of two side-lengths by 2. To see
that all corner squares remain black, note the fol-
lowing. At least two new corner squares (besides
T3;k and T3;k+s) are created if T3;i 6� P for some
k < i < k + s. But, since all �rst and last unit
segments of each edge has been colored black,
it follows that each square inside P and next to
an edge in line 3 must be black. But those are
exactly the squares that become corner squares.
The fact that all new corner squares are black
implies that all new edge lengths are odd.

(ii) fT2;k; : : : ; T2;k+rg � P , but T2;k+r+1 6� P for
some r (r < s) (see Fig. 3(b)).

Now C := fT1;k; : : : ; T1;k+s; T2;k; T2;k+sg. In this
case there are one more white squares in C than
black ones, but T2;k+r+1 6� P guarantees that the

polygon falls into two parts after the cut. Fol-
lowing a similar reasoning as for case (i), we can
again conclude that all new corner squares are
black, in particular T2;k+r must be black, there-
fore the new side lengths are all odd. Thus, C
satis�es the conditions of the lemma.

This concludes the proof of Lemma 2.2.

3 Black versus White Squares

We are now in a position to characterize the di�erence
between the number of black and the number of white
squares in an orthogonal polygon all of whose sides
are odd. First we need to prove a simple lemma.

Lemma 3.1 Every orthogonal polygon with sides of
odd length has a total of 4n sides for some integer n.

Proof . Let us de�ne a coordinate system such that
the origin corresponds to one of the vertices of the
polygon. If we go around the boundary of the poly-
gon in clockwise order, jumping from one vertex to
the next, then the horizontal and vertical jumps are
alternating, so it is enough to prove that the number
of horizontal jumps is even. But after every horizon-
tal jump, the parity of the x-coordinate of the vertex
will change, while during vertical jumps it remains
the same. So since the start and goal coordinates are
0, we must make an even number of horizontal jumps.

The following de�nition will be important in the
sequel.

De�nition 3.1 Let Nb�w(P ) denote the number of
black squares minus the number of white squares cov-
ered by a polygon P . Let S(P ) denote the number of
sides of P .

Theorem 3.1 In an orthogonal polygon P of odd
side lengths S(P ) = 4 � jNb�w(P )j. In other words, if
P has 4n sides, the di�erence of the number of black
and white squares in P is n.

Proof . Without loss of generality we may suppose
that Nb�w(P ) � 0. Observe, that if an orthogonal
polygon P has only one row, then it has 4 sides, so
S(P ) = 4 and Nb�w(P ) = 1. Thus, the theorem is
true for all polygons with only one row. Therefore, by
using induction, it is enough to prove that if we make
a cut satisfying the conditions of Lemma 2.2, thenP

i S(P
�

i ) = 4 �
P

iNb�w(P
�

i ) implies that S(P ) =
4 �Nb�w(P ).
There are 6 di�erent cuts described in the proof of

Lemma of 2.2. For the cuts on Figures 4 (a), (b) and
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(d)
P

iNb�w(P
�

i ) = Nb�w(P ) and also
P

i S(P
�

i ) =
S(P ). For the cut on Fig. 2(c)

P
iNb�w(P

�

i ) =
Nb�w(P ) � 1, but

P
i S(P

�

i ) = S(P ) � 4, so those
cuts all satisfy the conditions.

For the cut on Figure 5(a),
P

iNb�w(P
�

i ) =
Nb�w(P ) and

P
i S(P

�

i ) = S(P ), because if originally
there were m distinct horizontal edges between the
second and third rows, then all those disappear in
addition to the upmost edge, while m+ 1 new edges
are created between the second and third rows.

Finally, for the cut on Figure 5(b)
P

iNb�w(P
�

i ) =
Nb�w(P ) + 1 and

P
i S(P

�

i ) = S(P ) + 4, this latter
because in place of the uppermost edge and the m

edges between the �rst and second row there are 5+m
new edges.

This proves that all cuts preserved the equality
S(P ) = 4 � Nb�w(P ), therefore the original polygon
must satisfy the same equality.

4 Polygons with Odd and Even

Sides

In this section we prove that for a polygon with arbi-
trary integer edge lengths Nb�w(P ) depends only on
the parities of the sequence of its edges.

De�nition 4.1 Let P denote any orthogonal poly-
gon with n sides. Let us follow the edges of P in
a clockwise order (starting at an arbitrary position)
and write down a letter 'e' whenever we encounter an
edge of even length, and write an 'o' for an odd edge.
Let us call such a sequence of 'e's and 'o's the parity
sequence of polygon P . Two sequences are consid-
ered equivalent, if they can be derived from the same
polygon by choosing a di�erent starting position.

Similarly, follow the edges of P in clockwise order,
and write down a letter 'c', when there is a clockwise
turn at a vertex, and write an 'r' for each reverse
(counter-clockwise) turn. Let us call the resulting
sequence the turn sequence of polygon P .

As an example, the polygon on Figure 1 has parity
sequence

'ooooeoooooeo'='eoooooeooooo'=...

and turn sequence

'crccrccrccrc'='rccrccrccrcc'=... .

Observe that every turn sequence contains 4 more 'c'
than 'r'. Also, every polygon with more than 4 edges
has at least one 'r' in its turn sequence.

v1

e1
v2 v3

v4

e2

e3

B

l

l
u

Figure 2: Four consecutive edges of a polygon.

Theorem 4.1 Every orthogonal polygon P with
Nb�w(P ) 6= 0 (with odd and/or even sides) can be
transformed into an orthogonal polygon P � with odd
side lengths only, where Nb�w(P

�) = Nb�w(P ).

For the proof of Theorem 4.1 we will need the fol-
lowing lemma.

Lemma 4.1 Suppose that e1; e2; e3 and e4 are four
consecutive edges of a polygon P (in clockwise order)
and the vertices enclosed by the above edges are v2; v3
and v4 (see Figure 2.). Suppose that v2 and v3 are
represented by 'cr' in the turn sequence. Then we can
transform P into P 0 such that

(a) The only di�erence in the turn sequences of P
and P 0 is that in P 0 v2 and v3 are represented by 'rc'
instead of 'cr'.

(b) The parity sequences of P 0 and P are the same.
(c) Nb�w(P

0) = Nb�w(P ).

Proof of Lemma 4.1. Suppose that the coordinates
of v2 and v3 are (x2; y2) and (x3; y3) respectively.
Without loss of generality we may suppose that e1
is a vertical edge. De�ne the broken line l as the line
connecting the points (x3��;1); (x3��; y3+�); (x2�
�; y2+�); (x2��;�1), where � is a small number (see
Figure 2). Clearly, l doesn't go through any vertices
of P , and it intersects only horizontal edges.
Get polygon P1 from P by shifting all vertices of P

to the left of l by the vector u = 2��!v3v2. The length
of the vertical edges of P will not change, while those
horizontal edges, which were intersected by l will be
extended by juj, an even number. Thus, the turn
sequences and parity sequences of P and P1 are the
same. Also, since every row of P is either unchanged,
or had been extended by juj, an even number, we
conclude that Nb�w(P1) = Nb�w(P ).
As a result of the above transformation, there is no

vertex now in the box B with lower right corner at
v3 and with horizontal edge length juj and vertical
edge length j��!v3v4j. On the boundary of B, the only
vertices are v2, v3 and v4.
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Now get P 0 from P1 by shifting v3 and v4 by u.
This transformation doesn't change the length of any
edges except for e4. If v4 was a 'c' turn, then the
length of e4 is increased by juj, if it was an 'r' turn,
then the length of e4 is decreased by juj. Note, that
in the latter case e4 had just been increased by juj in
the previous step, so it is always possible to decrease
its length by juj.
The parity sequences of P1 and P 0 are the same.

However v2 is changed into an 'r' turn, while v3
is changed into a 'c' turn. The volume of P1 is
changed by the squares in box B, but since there is
an equal number of black and white squares in this
box, Nb�w(P1) = Nb�w(P

0). This proves Lemma 4.1.

Proof of Theorem 4.1. As any polygon P with four
sides and Nb�w(P ) 6= 0 must have all sides of odd
length, so we may suppose that P has more than
four sides. We are going to show an algorithm for
transforming P into P �, a polygon with odd sides,
whenever Nb�w(P ) 6= 0. Without loss of generality
we suppose that Nb�w(P ) > 0.
Lemma 4.1 implies that any 'cr' in the turn se-

quence can be transformed into an 'rc', and similarly
any 'rc' can be transformed into a 'cr'. Since we have
at least one 'r' and at least �ve 'c's in the turn se-
quence, any three consecutive positions in the turn
sequence can be transformed into 'crc'.
First we show that any polygon P whose parity

sequence is 'xoeoy' (where x and y are any sequence
of 'o's and 'e's), can be transformed into a polygon P 0

with the parity sequence 'xey', such that Nb�w(P
0) =

Nb�w(P ).
Indeed, suppose that the 3 edges in P correspond-

ing to 'oeo' are e1; e2 and e3. Without loss of gener-
ality we may suppose that e1 is a vertical edge. Sup-
pose e1; e2; e3 and e4 are adjacent to the �ve vertices
v1; v2; v3; v4 and v5. By Lemma 4.1, the turn sequence
can be transformed in such a way that v2; v3; v4 cor-
responds to 'crc' (as in Figure 6(a).).
De�ne a broken line l the same way as in the proof

of Lemma 4. Let u = ��!v3v2 and shift every vertex to
the left of l by u as it is shown on Figure 6 (a). There
will be no vertex and no edge inside box B0. Suppose
we get P1 by the above transformations. As u is of
even length, clearly Nb�w(P1) = Nb�w(P ).
Let w be the point where the lines along the edges

e1 and e4 meet (see Fig. 5(b)). Let e�1 be the edge
v1w and e�4 be wv5. Now replace edges e1, e2, e3 and
e4 by e�1 and e�4. Since the length of e�1 is the sum of
the lengths of e1 and e3, both of which were odd, e�1
is of even length. The length of e�4 is the sum of the
lengths of e4 and e2, so since e2 was of even length,
e�4 has the same parity as e4.

Thus, if we get P 0 from P1 by changing e1, e2, e3
and e4 to e

�

1 and e
�

4, then the parity sequence changes
from 'xoeoy' to 'xey'. The di�erence in the area of
polygon P1 and P

0 is box B0, whose horizontal side is
of even length. Therefore Nb�w(P

0) = Nb�w(P1) =
Nb�w(P ).
We can similarly show that a sequence 'xeey' can

be changed into 'xy'. By using the notation on Fig-
ure 6(b), suppose now that e2 and e3 are of even
length, and again that v2; v3 and v4 correspond to
'crc'. In this case we �nd that e�1 and e�4 have the
same parity as e1 and e4, therefore P

0 has the parity
sequence 'xy'. Again, the di�erence box B0 contains
an equal number of black and white squares, therefore
Nb�w(P ) = Nb�w(P

0).
Thus, by applying the above two transformations

(changing the parity sequence from 'xoeoy' to 'xey'
or from 'xeey' to 'xy') several times, we can either
(a) get rid of all 'e's in the parity sequence, thus

getting a polygon P � which satis�es the conditions of
the theorem; or
(b) get a polygon P � with four sides, at least two

of which are of even length. But then Nb�w(P
�) = 0,

thus proving the theorem.

Corollary 4.1 The number jNb�w(P )j may be com-
puted by a linear time procedure using only the parity
sequence of P .

The proof of Corollary 4.1 follows from the proof
of Theorem 4.1.

5 Additional Observations

It is known that if we take a rectangle R of odd
sides with Nb�w(R) > 0, and remove one of its black
squares, then the resulting set can always be tiled by
dominoes. For the proof one has to observe that the
resulting set can always be dissected into 4 or less
rectangles each of which has at least two even sides
(see [2]).
One can ask if a generalization of this theorem

holds: Take a polygon P of 4n sides all of whose
lengths are odd, and suppose Nb�w(P ) > 0. Remove
n black squares from the chessboard coloring. Can
the resulting set P 0 be always tiled by dominoes? The
answer for n � 2 is no, as shown by the counterex-
ample in Figure 7.
The following example also shows that a simple

generalization of Theorem 2.1 in 3-dimensional space
does not hold. Let a 3d-domino be a 2� 1� 1 poly-
tope. There is a polytope in 3 dimensional space all of
whose edges are of odd length, but which can be tiled
by 3d-dominos. The polytope is depicted in Figure 3.
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Figure 3: A polytope which can be tiled by 3d-
dominoes but all of whose sides are odd.
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Tx,y

P

Tx,y

P

Tx,y

P
T2,k-1 P

T1,k

(a) (b) (c) (d)

Figure 4: The four cases considered in the proof of Lemma 2.2.

T1,k T2,k+r+1T2,k+r

T3,kT3,k T3,k+s T3,k+s

T T1,k+1 1,k+s

P

T T T1,k+11,k 1,k+s

P

(a) (b)

Figure 5: Two subcases in the proof of Lemma 2.2.
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w
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v5
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u

(a) (b)

Figure 6: Transforming the turn sequence of the polygon.
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Figure 7: The polygon depicted in the left-hand (respectively, right-hand) side has 8 (respectively, 12) sides such
that if we remove 2 (respectively 3) dashed squares it is not tilable.

Page 7


