Generating Random Star-Shaped Polygons
(Extended Abstract)

Christian Sohler
Heinz Nixdorf Institute and Department of Computer Science,
University of Paderborn, D-33095 Paderborn, Germany

Abstract

In this paper we deal with two problems on star-shaped
polygons. At first, we present a Las-Vegas algorithm
that uniformly at random creates a star-shaped polygon
whose vertices are given by a point set S of n points in
the plane that does not admit degenerated star-shaped
polygons. The expected running time of the algorithm
is O(n?logn) and it uses O(n) memory. We call a star-
shaped polygon degenerated if its kernel has 0 area.
Secondly, we show how to count all star-shaped poly-
gons whose vertices are a subset of S in O(n® logn) time
and O(n) space. The algorithm can also be used for
random uniform generation. We also present lower and
upper bounds on the number of star-shaped polygons.

1 Introduction

The random generation of geometric objects recently
has received some attention by researchers [1][2][4]. One
of the most challenging among these problems 1s the

generation of simple polygons uniformly at random. Since

it 1s not known whether there exists a polynomial time
algorithm to solve this problem, researchers either try
to use heuristics that do not have a uniform distribu-
tion or restrict on certain classes of polygons such as
monotone or star-shaped polygons.

Recently, Aichholzer [5] discovered the first algo-
rithm to count triangulations and simple polygons that
has a running time sublinear in the number of triangu-
lations (but still exponential in the number of points).

The main application for the random generation of
geometric objects is to simplify the evaluation of algo-
rithms. It is often not possible to get data from real
world applications when testing algorithms and a ran-
dom test set is a good alternative.

In this paper we discuss the special case of star-
shaped polygons. A polygon P is star-shaped, if there
exists a point p such that all line segments pv are inside
P for each vertex v of P. The kernel of a star-shaped
polygon P is the union of all points that satisfy the
above condition. It is degenerated if the kernel has zero
area (is a single point or line segment).

Given a point set S of n points in the plane in gen-
eral position we discuss lower and upper bounds on
the number of degenerated and non-degenerated star-
shaped polygons whose vertex set is S.

Then we present a Las-Vegas style algorithm (an al-
gorithm that with constant probability a computes a
solution while with probability 1 — a 1t answers “did not
find a solution; try again”) to compute a random star-
shaped polygon uniformly distributed among the set of
all non-degenerated star-shaped polygons over the point
set S. The algorithm needs O(n?logn) expected run-
ning time and O(n) space improving over the O(n*)
time and space algorithm of Auer and Held [1] (which
can be generalized to deal with degenerated cases). If
we generalize our algorithm to degenerated cases, the
distribution of the polygons will no longer be uniform.
Although the restriction to non-degenerated polygons
reduces the worst case number of polygons from an ex-
ponential size to a polynomial, there are good reasons to
consider this special case. First of all, for random point
sets (e.g., uniformly distributed in the unit cube) the
probability of degenerated cases is 0. Secondly, when
designing prototypes of algorithms, we often do not
want to consider degenerated cases since this increases
implementation time.

Finally, we show that there is a polynomial time al-
gorithm to count all (including degenerated ones) dif-
ferent star-shaped polygons whose vertex set is a subset
of S. The running time of this algorithm is O(n®logn)
and it uses O(n) space. It can be used for uniform gen-
eration, as well.



2 Lower and Upper Bounds on the Number of Star-
Shaped polygons

2.1 Non-Degenerated Case

Auer and Held [1] showed that the O(n*) complexity of
the induced line arrangement obtained by drawing lines
through each pair of points of S is an asymptotic upper
bound on the number of non-degenerated star-shaped
polygons.

Certain point sets achieve this bound: place n — 2
points on the parabola y = 22, half of them to the left
and the other half to the right of the y-axis. Finally, add
the two remaining points at (—oo, —o0) and (00, —o0).
Then the resulting point set has Q(n?) different non-
degenerated star-shaped polygons.

This can be verified using the following construc-
tion that defines all kernels of non-degenerated star-
shaped polygons of a point set S: for any pair of points
take the two half-lines defined by the line through these
points without the segment connecting them. Intersect
with C'H(S) to get two segments. Put these segments
and all bounding segments of the convex hull into a
set T'. The subdivision induced by T then defines all
kernels (the figure below describes a kernel subdivi-
sion for a set of five points). Using this construction
we can immediately apply the line segment intersec-
tion algorithm of Bentley and Ottmann[3]. Then we
have an O((n? + k)logn) time and O(n?) space (using
the method from [6]) algorithm to count all star-shaped
polygons (including degenerated ones), where k is the
number of non-degenerated star-shaped polygons. The
algorithm of Agarwal [7] can also be used to obtain
an O(n®/3polylog n) time algorithm to count all non-
degenerated star-shaped polygons.

figure 1: a kernel subdivision(all points within a cell
define exactly one star-shaped polygon); drawing lines
from a point within C'H (S) defines a star-shaped poly-
gon; when the grey point moves across the boundary of
the polygon’s kernel, the polygon changes

2.2 Degenerated Case

The following construction creates a point set with Q(?”/Z)

different star-shaped polygons: Take a random point p
in the plane (this point is not put into S) and shoot

5 half - lines away from p. Choose two points on each

half-line and put them into S. If necessary, put one or
two points into S such that p is in CH(S). Then S
has Q(?”/Z) valid star-shaped polygons, since any two
points on a half-line can appear in two different orders
on the boundary of the polygon (p is the kernel for these
polygons). On the other hand, the induced line arrange-
ment of S has at most O(n*) vertices. Each vertex has
at most degree n/2. Thus there is an upper bound of
O(2"/?n*) on the number of degenerated star-shaped
polygons.

3 Generating Star-Shaped Polygons

At first we describe how the algorithm works in general.
Details and analysis are given later in this section. The
idea is to select a random face of the kernel subdivision
without computing the whole subdivision. Let S be
a point set that does not admit any degenerated star-
shaped polygons. At top level the algorithm can be
described as follows:

e Compute CH(S), if S is in convex position, return

CH(S)
e Randomly select two segments from T’

e if the two segments do not intersect in a valid point
p, repeat from step 2

e construct the faces incident to p

e for each such face normalize the probability that
it is selected using the number of valid incident
points

e use the normalized probabilities to select a face
(further explained below); if a face is selected con-
struct the corresponding polygon, if not restart

Now the parts of the algorithm are explained in more
detail.

3.1 Selecting Segments

To randomly select a cell from the kernel subdivision
we at first try to find a vertex of this subdivision. Valid
vertices are intersections between segments of T" except
for the points in S. Note that any face i1s incident to
at least one valid vertex since S is in general position.
To find a valid vertex we randomly select two segments
from T' (to be more precise, we select halflines and com-
pute their intersection with CH(S) in O(logn) time) .
If these two segments do not intersect, we try again.
We will now give an upper bound on the number of
tries needed to find such a segment. Obviously, each
segment except for the boundary segments of C'H(S)
has at least one valid intersection point (the intersection



with the boundary edges of CH(S)). Let k be the num-
ber of points of S in the interior of CH(S) and n = |S].
Then there are k(n — 1) + (n — k) = k(n — 2) + n seg-
ments with at least k(n—1) valid intersections. Overall,
the probability that an intersection point is found, is at
least % = Q(ﬁ) = Q(nl—Q) Thus the expected
number of tries until an intersection point is selected 1s

O(n?).

3.2 Face Construction

Since S does not admit any degenerated star-shaped
polygon, there are exactly 4 faces incident to a given
valid vertex v. We can construct these faces using
O(n?logn) time and O(n) space. For each point p in
the interior of C'H(S) we compute all n — 1 half-lines
starting at p. Obviously, there is a sector bounded by
two half-lines hy, hs that contains v. The two half-lines
h1 and hsy together with v define two half-planes (we ex-
tend the half-lines to lines). We then compute the inter-
section of the current convex region with this these two
half-planes (or equivalently, with the sector bounded by
h1 and hs). Finally, we add the two segments defining
v and we constructed the faces incident to v. Time and
space bounds are immediate.

3.3 Uniform Distribution

Once the faces incident to the selected intersection point
are constructed, we count the number of valid points
on the boundary of each face. We then select one of
the faces according to the following simple rule: The
probability that a face f is selected as the kernel of a
polygon is 417 where v 1s the number of valid points on
the boundary of f. Note that the probabilities do not
usually sum up to 1. There is a chance that none of the
faces 1s selected. Then the algorithm restarts.

The overall probability that a certain face f 1s se-
lected is % - ﬁ = 4171 where ¢ 18 the number of overall
valid points. Clearly, two segments have at most one in-
tersection point and vice versa every intersection point
has exactly two defining segments. Therefore, the valid
points are uniformly distributed.

The overall probability that any face is selected 1s

4% where F' 1s the overall number of faces. Since F' =

©(q) this probability is constant and thus the expected
number of tries to select a face 1s also constant.

3.4 Summary

Our algorithm selects in O(n?logn) expected time a
valid intersection point. Then in O(n?logn) time the
incident faces are constructed and with constant prob-
ability one of them is selected. Otherwise, the algo-
rithm restarts. When a cell has been selected the cor-
responding polygon can be constructed in O(nlogn)

time. Thus, the overall expected running time of the
algorithm is O(n?logn).

4 Counting Star-Shaped Polygons Whose Vertices
are a Subsets of S

In this section we describe how to count all star-shaped
polygons whose vertex set 1s a subset of S. At first, take
a look at the planar subdivision K which is the intersec-
tion between C'H (S) and the induced line arrangement
of S. Observe that K is a refinement of all possible ker-
nels of subsets of S. In this case, we must also consider
segments between points in S, because each segment is
a boundary segment of C'H(S’) for some subset S’ C S
and thus 1t is a boundary segment for some kernel.

Let L be the set of lines induced by S. The defining
segment of a line in L is the segment between the two
points of S defining this line. To avoid that polygons
are counted multiple times, we implicitly assign to each
intersection point p of two lines {1,l from L a number
of polygons. To be more precise, a polygon 1s assigned
to such a point p, if p is the rightmost vertex of the
polygon’s kernel. Then for each such point we have to
count the number of assigned polygons and we are done.

The lines [; and /5 induce 4 sectors on the plane. We
call the sector left of the vertical line through their inter-
section point the kernel sector. Observe that any kernel
is convex. Then it follows that only those polygons are
charged to p whose kernel 1s a subset of the kernel sector
and including p. The algorithm works like the following:
For each pair of lines I;,ls € L with defining segments
s1 and s we compute the intersection point p of [; and
l5. Then we distinguish the following 4 cases:

e s1 and s, intersect; their intersection point is in
the interior of both segments

e 51 and s Intersect in a common endpoint. This
point is a point of 5.

e s1 and ss do not intersect, but /1 intersects so or
{5 1ntersects s

e only /; and /5 intersect

At first, observe that s; and s; are always boundary
segments of a polygon whose rightmost kernel vertex is
the intersection of Iy and [5. Thus in case 1 no valid
polygon exists, since s; and sy intersect. In the second
case (see also the figure below) all sets including the 3
endpoints of the segments and a subset of vertices in the
kernel sector form a unique star shaped polygon with
rightmost kernel vertex p. Thus the number of these
polygons is 2% where k is the number of vertices in the
kernel sector.



figure 2: Case 2 and 3

Case 3 can be handled almost similar. W.l.o.g. let
s1 intersect [5 and let h be the halfplane that contains
s9 and 1s bounded by ;. Then any subset of points of
S N h together with the 4 defining points of I3 and s
defines a star-shaped polygon. Let & be the number of
these points. Then there are 2% such polygons.

The last case is slightly more difficult. Here any
subset S’ C S defines a polygon charged to p, if p is
in CH(S') and if the 4 defining points of {1 and 5 are
in . Now assign the numbers 1 to 4 to the sectors
induced by /3 and [y in clockwise order starting with
the kernel sector. From now on we regard only subsets
S’ of S that include the 4 defining points of /1 and [s.
Then it is obvious, that p is in C'H(S’) if there exists a
vertex in S’ that is located in the third sector. If there
is no such vertex, p is inside C'H (S’) if there is an edge
between a sector 2 and a sector 4 vertex of S’ that does
not cross sector 1.

The number of choices for the first subcase is easy to
count: let k; be the number of points in the i-th sector,
then we have (2%2 —1) .27 %= different valid polygons.
To compute the number of valid polygons that do not
have a vertex in sector 3, we proceed as follows:

At first sort the points in sector 2 and 4 in clockwise
order around v. Then for each point ¢ in sector 4 com-
pute the number ks inyq1:4 of points in sector 2 that are
on the wrong side of the line through p and ¢, that is the
number of points such that a segment between ¢ and any
of these points crosses the kernel sector. Let k4 invatia
be the number of points smaller or equal to ¢ in clock-
wise order around v. Then the number of valid polygons

that have ¢ as the smallest boundary vertex in sector 4 1s
given by 9k1tks invatiatka—ka,invatid . (2k2_k2,znvalzd _ 1) —

oki1tkatka—ka invatia _ 9k1tk2 invatiatka—Fk4 invatid | Obvi-

ously, we can evaluate the positive and negative terms
separately and then compute their difference. Since we
only have to add powers of two and compute one time
the difference of two large numbers, the whole compu-
tation time for a single point p requires only O(nlogn)
time dominated by sorting.

Now that we can deal with all cases, we simply com-
pute all intersection points one by one and deal with
each intersection point separately using the above case
distinction. Each such case requires at most O(nlogn)

time. Thus the running time of the algorithm is O(n® log n)
and its space requirement is O(n) since there are O(n?)
different segments. We can adapt the algorithm to deal
with degenerated cases without further time or space
requirements. It is possible to detect degenerated cases
in O(nlogn) amortized time and O(n) space for each
intersection point. In this abstract we omit the details.

5 Conclusion and Open Problems

We presented two algorithms, one to generate random
star-shaped polygons on sets that do not have degener-
ated polygon and another one to compute the number
of all star-shaped polygons whose vertices are among
a subset of a given point set. This algorithm can also
be used for random generation of such polygons. It re-
mains open how to generate (with uniform distribution)
simple polygons and other geometric objects like simple
trees, simple paths, triangulations or sets of convex or
star-shaped obstacles.

6 Acknowledgment

The author would like to thank Tamas Lukovszki for
several useful discussions.

References

[1] T. Auer, M. Held, Heuristics for the Generation of
Random Polygons, Proc. 8th Canadian Conference
on Computational Geometry (CCCG’96), pages 38-
44,1996

[2] C. Zhu, G. Sundaram, J. Snoeyink, and J.S.B.
Mitchell, Generating Random Polygons with Given
Vertices, Comput. Geom. Theory and Appl.,
6(5):277-290, 1996

[3] J.L. Bentley and T.A. Ottmann, Algorithm for Re-
porting and Counting Geometric Intersections, IEEE

Trans. Comput., C-28:643-647, 1979

[4] J. O’Rourke and M. Virmani, Generating Random
Polygons, Technical Report 011, CS Dept. Smith Col-
lege, Northhampton, MA 01063, July 1991

[5] O. Aichholzer, The Path of a Triangulation, Proc.
15th Annu. ACM Symposium Comput. Geom., June
1999

[6] J.Pach, M.Sharir, On vertical visibility in arrange-
ments of segments and the queue size in the Bentley-
Ottmann line sweeping algorithm, STAM J. Comput.,
20:460-470, 1991

[7] P.K. Agarwal, Partitioning arrangements of lines:
I1. Applications, Discrete Comput. Geom., 5:533-573,
1990



