
Fast Delaunay point location

with search structures

Luc Devroye� Christophe Lemairey Jean-Michel Moreauz

Extended abstract { submission to CCCG'99

Note: this extended abstract is the shorter version
of a full paper ([4]) with same title, submitted to this
Conference, the postscript version of which may be
retrieved at the address given in the bibliography.

1 Introduction

We study the expected time behaviour of the Jump-
and-walk paradigm when the set of sites is controlled
by a binary search tree or a well-balanced 2-d tree.
Throughout the paper, we shall assume that we are
given a Delaunay triangulation on N sites uniformly
distributed in the unit 2-dimensional square, [0; 1]2.
We are requested to locate a query point q, which will
be assumed to be bounded away from the boundary of
the Delaunay triangulation, as the expected analysis
of the general case calls for more powerful tools (to
be published in a future paper).

The rest of the paper is organized as follows: Sec-
tion 2 presents (oversampled) BinSearch & Walk, an
optimization of Jump & Walk, and analyzes its ex-
pected running time. We then analyze the expected
running time of a static variant of this scheme, based

�Research sponsored by NSERC Grant A3456 and by

FCAR Grant 90-ER-0291. Address: School of Computer

Science, McGill University, 3480 University Street, Montreal,

Canada H3A 2K6. Email: luc@cs.mcgill.ca.
yThe research of the second author was done while he was

at setra. New address: cea / mls BP 12, 91680 Bruy�eres-le-

Châtel, France. Email: lemairec@bruyeres.cea.fr.
zResearch partially supported by lnh-edf, Chatou, France.

Address: lisse / ensm.se, 158 Cours Fauriel, St-Etienne,

France. Email: Jean-Michel.MOREAU@emse.fr.

on a 2-d tree (Section 3). Experimental and compar-
ative results are given in Section 4, and we conclude
on possible extensions and generalizations.

2 Using a balanced 1-d tree

Jump & Walk ([6]) proceeds as follows: pick k 2
[1; N ] random sites from the data, select �, the one
closest to q, and traverse the triangulation from � to
q, exploiting the adjacency relationships between the
successive triangles crossed by segment (�; q). Using
the following lemma:

Lemma 2.1 (Bose & Devroye [2]) Let � > 0 be
�xed, and let L be a random line segment on [�; 1��]2.
Then the expected number of triangles and edges of a
Delaunay triangulation for N random sites on [0; 1]2

cut by L is bounded from above by c0 + c1jLj
p
N ,

where c0 and c1 are universal positive constants not
depending upon L or N .

Devroye, M�ucke & Zhu proved that the expected run-
ning time of their method is O(k +

p
N=k), which

reaches its optimum (O(N1=3)) when k is �(N1=3).
If we now assume that the sites are organized as a dy-
namically maintained weight-balanced binary search
tree (bounded balanced trees, cf. [1]), BinSearch &
Walk proceeds as follows: start from the root of the
tree, search for q; while doing so, determine, among
all sites visited, the one, �, closest to q. Finally walk
from � to q, as for Jump & Walk. We can prove the
following Theorem:

1



Theorem 2.2 The expected running time of Bin-
Search & Walk is O(

p
N= logN ).

Sketch of proof: In a bounded balanced tree, we
are given a constant � 2 [1=4; 1� 1=

p
2], and the fol-

lowing property: if � is any node in the tree with left
subtree l(�), and we denote by �(�); �(l(�)) the num-
ber of external nodes (leaves) in � and l(�), respec-
tively, the ratio �(l(�))=�(�) is always in [�; 1� �].
(Note that this property also applies to �'s right sub-
tree.) A direct consequence is that all the root-to-leaf
paths in such a tree on N sites contain a subtree with
�(
p
N ) nodes. We now consider that the k sites on

the remaining part of the search paths are the sam-
ples to initiate the walk. Using well-known properties
of order statistic variables with unit uniform parent,
the expected length of the horizontal side of the rect-
angle containing q and all sites carried by the above
mentioned subtree is �(1=

p
N ). Next, we can show

that, the vertical distance between q and its near-
est neighbour in this rectangle is O(1=k). Using the
triangle inequality and Lemma 2.1, the overall time
for the method is O(logN + k +

p
N=k), accounting

for searching, sampling, and walking. The theorem
follows from the fact that k is �(logN ), since any
B�-tree on M nodes has �(logM ) height. 2

Since it is possible to perform insertions (and dele-
tions) at logarithmic cost per operation on such
bounded balance trees, the location algorithm may
be used in a dynamic context. Obviously, its worst
case performance is linear in N .

Observe that the optimum of O(k +
p
N=k) is

O(N1=4), and is reached when k is �(N1=4). Hence,
we can optimize the previous method by oversam-
pling : traverse the tree from root to leaf, then move
back up the search path, recursively traversing all
non-visited subtrees (while still registering the visited
site closest to q), until we have \sampled" �(N1=4)
nodes. This yields:

Theorem 2.3 The expected running time of
Oversampled-BinSearch & Walk on N random
sites uniformly distributed in a square is O(N1=4)
(provided the query point is bounded away from the
boundary of the triangulation).

A more formal presentation of Oversampled Bin-
Search & Walk and of its analysis may be found in [5].
Note that N ! N1=4 is competitive withN ! log

2
N

up to more than 10,000,000 sites.

3 Using a balanced 2-d tree

If we remove the possibility of inserting or removing
sites, we may devise an even faster method, as fol-
lows. The unit square is recursively partitioned by
a perfectly balanced 2-d tree, that is, the partition-
ing alternates directions between x and y, and mem-
ber sets in the partition are rectangles. Every node
in the 2-d tree receives one data point, about which
the remaining points are split. Leaves correspond to
empty rectangles. It is clear, therefore, that there are
N non-leaf nodes, and N + 1 leaves. For a rectangle
that properly contains a collection of data points, if
a vertical split is made, it is made at the x-median of
these points, where the x-median is uniquely de�ned
if the number of points is odd, and is the leftmost
of the two candidate medians when N is even. Hori-
zontal splits are made about y-medians. A rectangle
with one point is thus split about this point, and this
results in two empty leaf rectangles.

When splits alternate between horizontal and verti-
cal, we end up with a rather balanced 2-d tree. This
structure is used in a static manner then for point
location in a Delaunay triangulation for s1; : : : ; sn.
Assume a query point q is given. We determine in
O(log

2
n) worst-case time the leaf region for q. Then

we let � be the node at the parent of this leaf. This
node's position in the Delaunay triangulation is of
course known (in O(1) time). Then walk across the
segment (�; q) in the Delaunay triangulation to de-
termine the triangle for q. The extra time needed for
this walk is O(1) plus the number of Delaunay edges
crossed by the walk. If q is restricted as before, we
can prove the the following Lemma:

Lemma 3.1 Efk� � qkg � e
p
8
p
8=n.

Proof: Omitted in this extended abstract. See full
paper ([4]). 2

2



In other words, the expected length of the longest
side in any leaf rectangle determined by the static 2-
d tree is O(1=

p
N ), and the expected running time

for the walk phase is O(1) (assuming the above men-
tioned restriction on q). Hence, the overall expected
time to locate q among N random sites is O(logN ).

4 Experiments

The full paper presents experimental results, and
comparative tests with various methods, including O.
Devillers' randomized location algorithm ([3]).

5 Conclusion

We have shown how to use simple order-based search
structures to locate query points in a Delaunay tri-
angulation. Such structures are also very useful in
the construction of the Delaunay triangulations. The
combination of the two strategies allows hybrid appli-
cations: �rst build the massive triangulations using
an order-based optimal algorithm, and then perform
the relatively fewer location operations. Actually,
BinSearch & Walk is used in a real-scale constrained
Delaunay mesh application developed at ensm.se for
(and with the �nancial support of) the French Board
of Electricity (edf-lnh, Chatou, France).

We are currently investigating the generalization
of the methods presented in this paper to divided
k-d trees, a powerful dynamic structure for multi-
dimensional range searching ([8]), and working on the
expected time analysis of all these methods in the
general, unrestricted, case.

References

[1] N. Blum and K. Mehlhorn. On the average num-
ber of rebalancing operations in weight-balanced
trees. Theoretical Computer Science, 11:303{320,
1980.

[2] P. Bose and L. Devroye. Intersections with ran-
dom geometric objets. Computational Geometry:
Theory and Applications, 10:139{154, 1998.

[3] O. Devillers. Improved incremental randomized
Delaunay triangulation. In Proceedings of the
14th Annu. ACM Symp. Comput. Geom., pages
106{115, Minneapolis, Minnesota, May 1998.
Also Technical Report 3298, inria, Sophia An-
tipolis, France, November 1997.

[4] L. Devroye, C. Lemaire, and J-M. Moreau.
Fast Delaunay point location with search
structures. Full paper version. Submitted
to CCCG'99. Postscript version available at
http://www.emse.fr/ECOLE/FRENCH/SIMADE/

LISSE/FTP/dlm-cccg-fp-1999.ps.gz.

[5] L. Devroye, C. Lemaire, and J-M. Moreau. Fast
Delaunay point location with search structures.
Technical report, lisse-ensm.se, St-Etienne, to
appear.

[6] L. Devroye, E. P. M�ucke, and B. Zhu. A note
on point location in Delaunay triangulations of
random points. See also [7], 1995.

[7] E. P. M�ucke, I. Saias, and B. Zhu. Fast ran-
domized point location without preprocessing in
two- and three-dimensional Delaunay triangula-
tions. In Proceedings of the 12th Annu. ACM
Symp. Comput. Geom., pages 274{283, Philadel-
phia, 1996.

[8] M. J. van Kreveld and M. H. Overmars. Divided
k-d trees. Algorithmica, 6:840{858, 1991.

3


