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Abstract

Let R be a polygonal region withh polygonal holes andn
vertices in total, and letP be a set ofm point guards in the
interior of R. We show that the region of all points inR
visible from at least one guard inP has at mostn+ 2mn+
4
�h+2

2

��m
2

�
vertices and can be computed in timeO(((m(h+

1))2+mnlogm) log(m+n)).

1 Introduction

Visibility problems have a long history in computational ge-
ometry. Perhaps the most fundamental of these are the so-
called art-gallery problems. In its simplest form, an art gallery
is a simple polygon, perhaps with holes, and we ask how
many guards (points) inside the polygon are necessary to
guard the whole polygon. Many variations on this theme
have been studied, and a whole book surveys results on art-
gallery problems [2].

We consider the situation where the guards are already
given, and we are interested in computing the guarded re-
gion. To stay within the art-gallery metaphor, we have placed
the guards, and we need to determine the safe parts of the
gallery—where artifacts can be placed under the supervision
of the guards.

Surprisingly, except for the case of a single guard, this
problem seems not to have been studied before. We show
that the number of vertices of the visibility region ofmpoints
in the interior of a polygonal regionRwith h polygonal holes
andn vertices in total is at mostn+2mn+4

�h+2
2

��m
2

�
, i.e.,

the term quadratic inm does not depend onn. We also give
lower bound examples, and an algorithm for computing the
visibility region in O(((m(h+ 1))2+mnlogm) log(m+ n))
time.
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2 Preliminaries

Given a simple polygonT in the plane, let∂T denote the
boundary ofT, and letInt(T) denote the interior ofT. Let
nowR0; : : :Rh be simple polygons such thatRi � Int(R0) for
each 1� i � h, andRi \Rj = ; for each 1� i < j � h.
Let R be R0 n [1�i�h Int(Ri). Informally, R is a polygo-
nal region with holesR1; : : : ;Rh. The boundary∂R of R is
S

0�i�h ∂Ri and consists ofh+ 1 components; the interior
Int(R) is Int(R0)n[1�i�hRi . Let n be the number of vertices
of R.

Let P be a set ofm points inR (that is, in its interior or
on the boundary). A pointp2 P and a pointq in R (but not
necessarily inP) are called mutually visible if the segment
pq does not intersect the exterior ofR. Thevisibility region
V(p) of a point p 2 P is defined as the locus of all points
q2 R that are visible fromp. Let V(P) be

S
p2PV(p). We

are interested in the combinatorial complexity ofV(P), that
is the number of vertices on the boundary ofV(P).

A vertexv of R is called areflex vertexif a line segments
exists that containsv in its interior but is itself fully contained
in R. Let r be the number of reflex vertices ofR.

For a pointp 2 P and a reflex vertexv of R, let s(p;v)
be the segment generated as follows: the ray with originv
and direction~pv intersects∂R in zero or more points. For
at most onev0 of these intersection points, the interior of
the segmentvv0 lies completely inInt(R). If there is such
a point, s(p;v) is defined as the segmentvv0. Otherwise,
s(p;v) is undefined. See also Figure 1, and note that this
definition of s(p;v) also covers degenerate situations, such
as collinearity of a pointp 2 P and multiple vertices ofR.
All segmentss(p;v) generated byp and a vertexv of R lie
on the boundary ofV(p). For a pointp 2 P and a reflex
vertexv of Ri , we calls(p;v) left-boundedif Ri lies locally
to the left of the ray fromp throughv, andright-bounded
otherwise. Note that one of the endpoints ofs(p;v) is the
vertexv itself, the other endpoint lies on∂R.
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Figure 1: Segmentss(p;v) on the boundary ofV(p).

Figure 2: Lower bound example for vertices on the boundary

3 Complexity of the visibility region

For a single pointp2 P, the vertices ofV(p) are either ver-
tices ofR or endpoints of segmentss(p;v) for some vertex
v of R. Since there are at mostr such segments for a single
point p, and since each segment has at most one endpoint
that is not a vertex ofR, the number of vertices ofV(p) is
at mostn+ r. In fact, a slightly more careful analysis shows
the number of vertices is at mostn.

A vertex ofV(P) is either a vertex ofV(p) for somep2
P, or is the intersection point of two segmentss(p;v) and
s(q;w) for p;q 2 P andv;w reflex vertices ofR. It follows
that the number of vertices on the boundary ofV(P) is at
mostn+mr+
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�
. Our main result shows that this naive

bound can be improved ton+ 2mr+ 4
�m

2

��h+2
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�
. In other

words, the term quadratic inm does not depend onn at all.
We will prove this bound by looking at different cate-

gories of vertices ofV(P). We start with the simple bound
on the number of vertices on the boundary.

Lemma 1 The number of vertices of V(P) on the boundary
of R is at most n+ rm.

Proof: Every such vertex is either a vertex ofR, or the end-
point of a segments(p;v). There are at mostrm vertices of
this second kind.

Figure 2 gives an example of a region where the number
of vertices on the boundary isn� r+ rm.

p q

Figure 3: Two points generater�1 interior vertices

It remains to bound the number of vertices ofV(P) in the
interior of R—we will call theminterior vertices. There are
no interior vertices ifP is a single point. IfP consists of two
or more points, then we divide the interior vertices into two
groups, thereachable verticesand theunreachable vertices.
We call an interior vertexw formed bys(p;v) and s(q;u)
reachableif one of the trianglespwuor qwv lies in R. The
interior vertices in Figure 3 are all reachable vertices. An in-
terior vertex is calledunreachableif it is not reachable. We
show that the number of reachable vertices is at mostrm. If
Pconsists of two pointsp andq, then the number of unreach-
able vertices is “basically” independent ofn and bounded by
4
�h+2

2

�
. This turns out to be enough to prove a good bound

for general point setsP: Since every interior vertex ofV(P)
is defined by two pointsp;q2 P, it must appear as an inte-
rior vertex inV(fp;qg), and so the total number of interior
vertices can be bounded byrm+4
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.

Lemma 2 The number of reachable vertices is bounded by
rm, and is at least r�1 in the worst case.

Proof: Figure 3 proves the lower bound.
We will prove the upper bound by charging each reach-

able vertexw to a unique visibility segments(p;v). In fact,
if w is defined bys(p;v) ands(q;u), and the triangleqwvlies
in R, we chargew to s(p;v).

It remains to see that every visibility segment can be
charged at most once. This follows from the fact thatw must
be the first vertex ofV(P) ons(p;v).

To bound the number of unreachable vertices, we can re-
strict our attention to the visibility region of two pointsp and
q. We will call an unreachable vertexw of V(fp;qg) formed
as the intersection ofs(p;v) ands(q;u) anentry vertexif ei-
therw lies to the right of the directed line fromp to q, s(p;v)
is left-bounded ands(q;u) is right-bounded, orw lies to the
left of the directed line fromp to q, s(p;v) is right-bounded
ands(q;u) is left-bounded. See Figure 4.

Lemma 3 The number of unreachable vertices of V(fp;qg)
is at most four times the number of entry vertices.
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Figure 4:w andw0 are entry vertices

Proof: We give the proof for the vertices lying to the right
of the directed line throughp and q, the other case being
symmetrical.

Consider a visibility segments(p;v). It may contain sev-
eral unreachable vertices ofV(fp;qg). We observe that these
vertices are formed by segmentss(q;u) that are alternat-
ingly right-bounded and left-bounded, starting with a left-
bounded one. Similarly, the unreachable vertices on a vis-
ibility segments(q;u) are alternatingly right-bounded and
left-bounded, starting with a left-bounded one.

We give a charge of 4 to every entry vertex ofV(fp;qg).
Consider now each left-bounded visibility segments(p;v).
Its unreachable vertices are alternatingly right-bounded and
left-bounded. Since the right-bounded ones are entry ver-
tices, we can distribute their charge to the remaining un-
reachable vertices. After this step, every unreachable vertex
on all left-bounded segmentss(p;v) has a charge of 2.

Consider now each segments(q;u). Its unreachable ver-
tices are alternatingly left-bounded and right-bounded, start-
ing with a left-bounded one. Since the left-bounded ones
have a charge of 2, we can thus distribute the charge to all
unreachable vertices on the segment and end up giving each
unreachable vertex a charge of 1.

The following lemma allows us to give the final upper
bound.

Lemma 4 Given a polygonal region R with h holes and two
points p and q in R. Then the number of unreachable vertices
of V(fp;qg) is at most4

�h+2
2

�
, and at least4

�h+1
2

�
in the

worst case.

Proof: The lower bound construction is given in Figure 5.
By Lemma 3 it is sufficient to prove that the number of

entry vertices is at most
�h+2

2

�
. For simplicity of presenta-

tion, assume thatp andq lie on a horizontal linè .
Let’s first assume that all entry vertices lie below`. An

entry vertexw is defined by two segmentss(p;v) ands(q;u),
wherev and u are vertices of two componentsRi and Rj

of R, where 0� i; j � h. We argue that there is at most
one entry vertex for every choice ofRi andRj . Assume to
the contrary that there are two different entry verticesw;w0

p q

Figure 5: An example with 4
�h+1

2

�
unreachable vertices gen-

erated by two points.
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Figure 6: The five cases.

defined byRi andRj . Let w0 be the vertex closer tò. There
are five different configurations, see Figure 6. Clearly, in
cases (a), (b), and (c) it is impossible for a componentRi

to touchqw and eitherpw0 or qw0 from above. Cases (b’)
and (c’) are excluded by a symmetric argument.

Thus for every choice ofRi andRj there is at most one
entry vertex. Since there areh+ 1 choices whereRi = Rj ,
and

�h+1
2

�
choices whereRi 6= Rj , it follows that the number

of entry vertices is at most
�h+2

2

�
.

We now consider the case that there are entry vertices
above and beloẁ. Let h1 andh2 be the number of holes ly-
ing completely above resp. beloẁ, and leth3 be the number
of holes intersecting̀.

Let’s first assume thath3 = 0, so all holes lie completely
to one side of̀ . Note that in this situation the outer bound-
ary ∂R0 cannot participate in forming an entry vertex, and
so the number of entry vertices can be bounded by

�h1+1
2

�
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Figure 7: Holes intersecting̀can be eliminated

and
�h2+1

2

�
. Sinceh1+ h2 = h, we have
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�
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:

It remains to consider the possibility thath3 > 0. Again
we count the entry vertices above and below` separately.
While counting the entry vertices above`, we can discard all
holes beloẁ , and we can connect the holes intersecting`
to ∂R0 as in Figure 7. The number of entry vertices above`
can thus be bounded by

�h1+2
2

�
, and in the same way we can

bound the number of entry vertices below` by
�h2+2

2

�
. Since

h1+h2 = h�h3 < h, we have
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Theorem 1 Let R be a polygonal region with h polygonal
holes, r reflex vertices and n vertices in total, and let P be a
set of m points in R. Then the visibility region V(P) has at
most n+2rm+4

�h+2
2

��m
2

�
vertices.

For any value of r and m and n sufficiently large, there
are regions R and sets P such that V(P) has at least(n�
2(h+1))+ rm+h(m�1)+4

�h+1
2

��m
2

�
vertices.

Proof: By Lemmas 1 and 2, the number of reachable and
boundary vertices is at mostn+2rm.

Every unreachable vertexw of V(P) is defined by two
pointsp;q2 P, and sow must appear as an unreachable ver-
tex inV(fp;qg). Since there are

�m
2

�
pairs of pointsp andq,

and by Lemma 4, the total number of unreachable vertices is
at most 4

�h+2
2

��m
2

�
.

An example proving the lower bound is given in Figure 8.
See the full paper for details.

A gap remains in the constant factors between the upper
and the lower bound.

Figure 8: Lower bound example, with detail of hole (below).

4 Algorithms

The visibility regionV(P) can be constructed using a divide
and conquer approach. We divideP into two setsP0;P00 of
equal size, recursively computeV(P0) andV(P00), and merge
the regions intoV(P) using a standard plane sweep. inO(n)
time for a simple polygon [1, 2, pp. 203–206], and the vis-
ibility region of a single pointp 2 P can be constructed in
O(nlogn) time for a polygon with holes [2, pp. 217–219].

In the case of a polygon withh holes, the running time
T(m) for constructing the visibility region form points inP
therefore satisfies the following recurrence.

T(1) = O(nlogn)

T(m) = 2T(m=2)+O(((h+1)m)2+mn) log(m+n))

This solves toT(m)=O(((m(h+1))2+mnlogm) log(m+
n)). We have the final theorem:

Theorem 2 Given a polygonal region R with h holes and n
vertices in total, and a set P of m points in R, the visibil-
ity region V(P) can be computed in time O(((m(h+1))2+
mnlogm) log(m+n)).
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