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Abstract 2 Preliminaries

Let R be a polygonal region with polygonal holes and Given a simple polygof in the plane, le®T denote the
vertices in total, and Il be a set ofn point guards in the  boundary ofT, and letint(T) denote the interior of . Let
interior of R. We show that the region of all points R now Ry, ... Ry be simple polygons such thBt C Int(Ry) for

visible from at least one guard B has at mosh+ 2mn+ each 1<i<h, andRNRj =0 for each 1<i< j <h.
4("$?) () vertices and can be computed in ti@¢ (m(h+ Let R be Ry \ Ui<i<nInt(R;). Informally, R is a polygo-
1))? + mnlogm) log(m+n)). nal region with holeRy, ... ,R,. The boundaryR of Ris

Uo<i<nOR and consists oh+ 1 components; the interior

Int(R) is Int(Ro) \ U1<i<nRi. Letn be the number of vertices
of R.

Visibility problems have a long history in computational ge- L€t P be a set ofn points inR (that is, in its interior or
ometry. Perhaps the most fundamental of these are the son the boundary). A poinp € P and a poing in R (but not
called art-gallery problems. In its simplest form, an art gallery Necessarily irP) are called mutually visible if the segment
is a simple polygon, perhaps with holes, and we ask how Pddoes not intersect Fhe exterior Bf Thevisibility region
many guards (points) inside the polygon are necessary toV (P) of & pointp € P is defined as the locus of all points
guard the whole polygon. Many variations on this theme 9 € Rthat are visible fronp. LetV(P) beUpcpV(p). We
have been studied, and a whole book surveys results on art&re interested in the combinatorial complexity&i), that
gallery problems [2]. is the number of \{ertices on the boundngc_QP).

We consider the situation where the guards are already A Vvertexvof Ris called aeflex vertexf a line segmens
given, and we are interested in computing the guarded re-€XISts that containsin its interior butis |§selffully contained
gion. To stay within the art-gallery metaphor, we have placed in R- Letr be the number of reflex vertices Bf
the guards, and we need to determine the safe parts of the FOr a pointp € P and a reflex vertex of R, lets(p,v) -
gallery—where artifacts can be placed under the supervisionP® the segment generated as follows: the ray with ongin
of the guards. and directionpv intersectsdR in zero or more points. For

Surprisingly, except for the case of a single guard, this at most one/ of these intersegtion points, the i_nterior of
problem seems not to have been studied before. We showfh® segmenvV lies completely inint(R). If there is such
that the number of vertices of the visibility regionrapoints @ Point, s(p,v) is defined as the segmewt’. Otherwise,
in the interior of a polygonal regioRwith h polygonal holes ~ S(P;V) is undefined. See also Figure 1, and note that this
andn vertices in total is at most+ 2mn+ 4(h;2) (7). i.e., deflnltlpn of.s(p,v) alsg covers degenerate situations, such
the term quadratic im does not depend am We also give as collinearity of a poinp € P and multiple vertices oR.
lower bound examples, and an algorithm for computing the All Segmentss(p,v) generated by and a vertew of R lie
visibility region in O(((m(h+ 1))2 + mnlogm) log(m+ n)) on the boundary o¥(p). For a pointp € P and a reflex
time. vertexv of R;, we calls(p,v) left-boundedf R lies locally

*This research was supported by HKUST DAG 97/98.EG15, and partially sup- to the I,eﬁ of the ray frorrp throughv, an.dnght-bognded
ported by the ESPRIT IV LTR Project No. 21957 (CGAL). otherwise. Note that one of the endpointssg,v) is the
vertexyv itself, the other endpoint lies aiR.

1 Introduction




Figure 1: Segments p,Vv) on the boundary o (p).

Figure 3: Two points generate- 1 interior vertices

It remains to bound the number of vertice3/P) in the
interior of R—we will call theminterior vertices There are
no interior vertices iP is a single point. P consists of two
or more points, then we divide the interior vertices into two
groups, theeachable verticeand theunreachable vertices
We call an interior vertexv formed bys(p,v) ands(q,u)
reachableif one of the trianglepwuor qwvlies inR. The
interior vertices in Figure 3 are all reachable vertices. An in-
terior vertex is calledinreachabléf it is not reachable. We
show that the number of reachable vertices is at mostf

Figure 2: Lower bound eXampIe for vertices on the boundary P consists of two p0|nts andq, then the number of unreach-

3 Complexity of the visibility region

For a single poinp € P, the vertices o¥/ (p) are either ver-
tices ofR or endpoints of segmengép,Vv) for some vertex
v of R. Since there are at mossuch segments for a single

able vertices is “basically” independentrodnd bounded by
4(“;2). This turns out to be enough to prove a good bound
for general point setB: Since every interior vertex of (P)

is defined by two point®,q € P, it must appear as an inte-
rior vertex inV ({p,q}), and so the total number of interior
vertices can be bounded by + 4("5?) (7).

point p, and since each segment has at most one endpoint

that is not a vertex oR, the number of vertices of (p) is
at mostn+r. In fact, a slightly more careful analysis shows
the number of vertices is at mast

A vertex ofV (P) is either a vertex o¥/ (p) for somep €
P, or is the intersection point of two segmestg,v) and
s(g,w) for p,q € P andv,w reflex vertices oR. It follows
that the number of vertices on the boundarydgP) is at
mostn+ mr+ () (5). Our main result shows that this naive

bound can be improved W+ 2mr+4(7) ("1?). In other
words, the term quadratic im does not depend amat all.

We will prove this bound by looking at different cate-
gories of vertices o¥/ (P). We start with the simple bound

on the number of vertices on the boundary.

Lemma 1 The number of vertices of(?) on the boundary
of R is at most A-rm.

Proof: Every such vertex is either a vertex®Rf or the end-
point of a segmerd(p,v). There are at mosm vertices of
this second kind.

Lemma 2 The number of reachable vertices is bounded by
rm, and is at least 1 in the worst case.

Proof: Figure 3 proves the lower bound.

We will prove the upper bound by charging each reach-
able vertexw to a unique visibility segmers(p,v). In fact,
if wis defined bys(p, V) ands(q, u), and the trianglgwvlies
in R, we chargev to s(p, V).

It remains to see that every visibility segment can be
charged at most once. This follows from the fact tivamhust
be the first vertex o¥ (P) ons(p, V).

To bound the number of unreachable vertices, we can re-

strict our attention to the visibility region of two poingsand

g. We will call an unreachable vertexof V ({p,q}) formed

as the intersection & p,v) ands(g,u) anentry vertexf ei-
therw lies to the right of the directed line fromto g, s(p, V)

is left-bounded and(q, u) is right-bounded, ow lies to the

left of the directed line fronp to g, s(p, V) is right-bounded
ands(q,u) is left-bounded. See Figure 4.

Figure 2 gives an example of a region where the number Lemma 3 The number of unreachable vertices df,q})

of vertices on the boundaryis—r +rm.

is at most four times the number of entry vertices.



Figure 4:wandw are entry vertices

Proof: We give the proof for the vertices lying to the right
of the directed line througlip andq, the other case being Figure 5: An example with @;1) unreachable vertices gen-
symmetrical. erated by two points.

Consider a visibility segmestp,v). It may contain sev-
eral unreachable vertices\é{{p,q}). We observe that these
vertices are formed by segmerdy,u) that are alternat-
ingly right-bounded and left-bounded, starting with a left-
bounded one. Similarly, the unreachable vertices on a vis-
ibility segments(q,u) are alternatingly right-bounded and
left-bounded, starting with a left-bounded one.

We give a charge of 4 to every entry verteX\(f{ p,q}).

Consider now each left-bounded visibility segmeff, v).
Its unreachable vertices are alternatingly right-bounded and
left-bounded. Since the right-bounded ones are entry ver-
tices, we can distribute their charge to the remaining un- p ©) q p ©) q
reachable vertices. After this step, every unreachable vertex ¢
on all left-bounded segmersép, v) has a charge of 2.

Consider now each segmesig, u). Its unreachable ver-
tices are alternatingly left-bounded and right-bounded, start-
ing with a left-bounded one. Since the left-bounded ones
have a charge of 2, we can thus distribute the charge to all
unreachable vertices on the segment and end up giving each
unreachable vertex a charge of 1.

Figure 6: The five cases.

defined byR, andR;. Letw' be the vertex closer tb There
are five different configurations, see Figure 6. Clearly, in
cases (@), (b), and (c) it is impossible for a comporint
Lemma 4 Given a polygonal region R with h holes and two to touchqw and eitherpw or gw from above. Cases (b’)
points p and g in R. Then the number of unreachable verticesand (c’) are excluded by a symmetric argument.

of V({p,q}) is at most4(h§2), and at Ieast4(h§1) in the Thus for every choice oR andR; there is at most one
worst case. entry vertex. Since there ate+ 1 choices wher® = R;,
and ("51) choices wher&, # Rj, it follows that the number

of entry vertices is at mos{f‘gz).

We now consider the case that there are entry vertices
above and below. Leth; andh, be the number of holes ly-
ing completely above resp. beldwand leths be the number
of holes intersecting.

Let’s first assume thdts = 0, so all holes lie completely
to one side of. Note that in this situation the outer bound-
ary 0Ry cannot participate in forming an entry vertex, and
so the number of entry vertices can be bounded'by™)

The following lemma allows us to give the final upper
bound.

Proof: The lower bound construction is given in Figure 5.

By Lemma 3 it is sufficient to prove that the number of
entry vertices is at mos(thgz). For simplicity of presenta-
tion, assume thagh andq lie on a horizontal line.

Let’s first assume that all entry vertices lie beléwAn
entry vertexw is defined by two segmergép, v) ands(qg, u),
wherev andu are vertices of two componenk and R;
of R, where 0<i,j < h. We argue that there is at most
one entry vertex for every choice 8 andR;. Assume to
the contrary that there are two different entry vertioes’



Figure 7: Holes intersectingcan be eliminated

and ("%1). Sinceh; + hy = h, we have("1) + (") =
("% = (+1)(h2+2) < ("32).

It remains to consider the possibility thag > 0. Again
we count the entry vertices above and belbweparately.
While counting the entry vertices abo&eve can discard all
holes below?, and we can connect the holes intersecting
to ORp as in Figure 7. The number of entry vertices abbve
can thus be bounded t(i)lgz) and in the same way we can
bound the number of entry vertices beléwy ("2)?). Since
h1 +h, = h—hs < h, we have

(hl + 2) N (hz + 2) Figure 8: Lower bound example, with detail of hole (below).
2 2
= e+ (") + (77 4 Algorithms
hy+hy+3 The visibility regionV (P) can be constructed using a divide
= (h+1)+ 5 —(m+1)(h2+2) and conquer approach. We divi@einto two setsP’, P of
ha o equal size, recursively computéP’) andV (P"), and merge
< ( + ) the regions int&/ (P) using a standard plane sweepQm)
2 time for a simple polygon [1, 2, pp. 203-206], and the vis-

ibility region of a single pointp € P can be constructed in

O(nlogn) time for a polygon with holes [2, pp. 217-219].
In the case of a polygon with holes, the running time

Theorem 1 Let R be a polygonal region with h polygonal T (m) for constructing the visibility region fom points inP

holes, r reflex vertices and n vertices in total, and let P be a therefore satisfies the following recurrence.

set of m points in R. Then the visibility regioriR} has at

most n+2rm+ 4("52) (7) vertices. T(1) = O(nlogn)

For any value of r and m and n sufficiently large, there  T(m) = 2T(m/2)+O(((h+ 1)m)2+mn) log(m+n))
are regions R and sets P such thatRy has at leastn — _
2(h+1)) +rm+h(m— 1) +4("51) (7) vertices. This solves t (m) = O(((m(h+1))?+mnlogm) log(m-+

n)). We have the final theorem:
Proof: By Lemmas 1 and 2, the number of reachable and
boundary vertices is at most+ 2rm.

Every unreachable vertex of V(P) is defined by two
pointsp,q € P, and sov must appear as an unreachable ver-
tex inV({p,q}). Since there ar€?) pairs of pointsp andg,
and by Lemma 4, the total number of unreachable vertices is

Theorem 2 Given a polygonal region R with h holes and n
vertices in total, and a set P of m points in R, the visibil-
ity region V(P) can be computed in time(@m(h+ 1))% +
mnlogm) log(m+n)).
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