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Abstract

We show that the maximum number of strictly star-shaped
polygons through a given set of n points in the plane is
�(n4). Our proof is constructive, i.e. we supply a construc-
tion which yields the stated number of polygons. We further
present lower and upper bounds for the case of unrestricted
star-shaped polygons. Extending the subject into three di-
mensions, we give a tight bound of �(n9) on the number of
distinct sets of star-shaped polyhedra.

1 Introduction

Reconstructing an initial geometric object from partial fea-
tures has always been of major interest in computational
geometry. Many well-studied problems in two and three
dimensions can be seen from this point of view, for exam-
ple triangulating a simple polygon [1] (or tetrahedralizing
a polyhedron [6], respectively), �nding the Delaunay trian-
gulation of a point set, reconstructing three-dimensional ob-
jects from cross-sectional slices [2], or �nding a triangulation
of a three-dimensional polygon [5].

Instead of actually reconstructing an object it is an ob-
vious related problem to �nd the maximum number of ways
to reconstruct it. Euler and Goldbach, for example, showed
an exact value of 1

n�1

�
2n�4
n�2

�
(the (n � 2)th Catalan num-

ber, in fact) for the number of distinct triangulations of a
convex n-gon (see, e.g. [7, 8]). Our paper deals with the
maximum number of star-shaped polygons and polyhedra
which connect a given set S of points.

A geometric object is called star-shaped, if its boundary
is entirely visible from an interior point or from a point on
the boundary. By extension, we call an object strictly star-

shaped, if this is valid even when visibility is restricted to
the interior of the object. The number of distinct strictly
star-shaped polygons through a �xed set of n points was
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bound by O(n4) independently by Bieri and Schmidt [4]
and by Auer and Held [3]. They showed that the number
of polygons can not exceed the size of the partition induced
by the O(n2) lines connecting each pair of points. Clearly,
the size of such a partition is O(n4). However, they failed to
provide a point arrangement that gives rise to that number
of distinct polygons, leaving a gap which we will close in this
paper. We will further prove asymptotic lower and upper
bounds for the case of unrestricted star-shaped polygons.

The number of distinct polyhedra that can be drawn
through a set of n points in 3-space has not been explored
before. We will see that with a straightforward generaliza-
tion one can obtain similar results as in the two-dimensional
case. Speci�cally, we will prove a tight worst-case bound of
�(n9) on the number of distinct sets of star-shaped polyhe-
dra. The paper is structured as follows: The next chapter
deals with strictly star-shaped polygons, whereas chapter
3 addresses unrestricted star-shaped polygons. Chapter 4
covers star-shaped polyhedra. The last chapter closes the
paper with some related open problems.

2 Strictly Star-Shaped Polygons

The kernel of a star-shaped polygon is de�ned as the set
of all points from which the polygon is fully visible. We
denote by S a set of n points in the plane which will be
the vertices of the polygons and we use p to denote a point
in the kernel of a speci�c polygon. Trivially, p can only lie
within the convex hull of S. Moreover, for the case of strict
star-shapedness, p can not lie collinearly with two (or more)
points of S, since the closest point would shadow all further
points. We start by establishing an upper bound on the
number of strictly star-shaped polygons:

Lemma 2.1 The maximum number of distinct strictly star-
shaped polygons through a set of n points is O(n4).

Proof: Every point p inside the convex hull of S not
collinear with any line through two points of S induces
exactly one star-shaped polygon, whose vertices appear in
sorted order around p. Such a polygon does not change as
long as p is not moved across any line through a pair of
points in S. We therefore obtain an upper bound on the
number of polygons by the arrangement of all lines through
the points of S. Since the number of lines through n points
is O(n2), the size of the arrangement and thus the number
of star-shaped polygons is O(n4). 2

We will now describe a point set S that allows to draw
the maximum number of O(n4) distinct polygons. The set
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Figure 1: Point set construction for the proof of lemma 2.2:
Auxiliary points p1 to p4 and point set A1.

contains four auxiliary points p1 to p4 and two congruent
point sets A1 and A2, with 2n + 1 points each. (Compare
Figure 1.)

The four auxiliary points lie on the corners of a square
centered at (n;n) with edge length 2n. The points are num-
bered in counter-clockwise order with p1 at the origin. We
will denote the square by B. The point set A1 consists of a
row a of n points along the y axis and a row b of n+1 points
on the negative x axis. The points ai (with 1 � i � n) have
coordinates (0; i); the points bi (with 1 � i � n+1) are uni-
formly distributed between (�2n � 1; 0) and (�2n; 0), with
b1 at the left-most position (i.e. the coordinates of bi are
(�2n � i�1

n
; 0)). The point set A2 is congruent to A1, but

is rotated by -90 degrees around the centre of B. (Compare
Figure 2.)

Lemma 2.2 The point set S described above gives rise to

(n4) distinct strictly star-shaped polygons.

Proof: Let l(p; q) denote the line through p and q. We
de�ne the wedge w(i; j) with 1 � i; j � n as the set of
points which lie both strictly above l(ai; bj) and strictly be-
low l(ai; bj+1) (refer to Figure 1). The spacing between the
points of the sets a and b guarantees that the lines l(bj ; ai)
do not intersect inside B. Therefore, all n2 wedges w(i; j)
are mutually disjoint.

Let us �rst ignore the presence of the point set A2. With
the remaining point set, each point p 2 w(i; j) \ B induces
a polygon with the vertex order

(p1p2p3p4an : : : ai+1b1 : : : bjaibj+1 : : : bn+1ai�1 : : : a1):

It takes a moment's time to verify that this vertex or-
der is unique for each wedge. Excluding now A1 from S, it
follows from symmetry reasons and from the congruence of
A2 and A1 that every point in each of A2's wedges will in
turn induce a polygon which is unique to this wedge. The
wedges of A1 and A2 intersect each other fully, producing
n4 quadrilaterals inside the square B. Each point inside a
quadrilateral induces a unique polygon as the combination
of the polygons obtained with the absence of A1 or A2, re-
spectively. 2

Combining Lemmas 2.1 and 2.2 we obtain the following
theorem:

Theorem 2.3 The maximum number of distinct strictly star-
shaped polygons through a set of n points is �(n4).
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Figure 2: Point set construction for the proof of
lemma 2.2: Point sets A1 and A2.

3 Star-Shaped Polygons

The key di�erence to strictly star-shaped polygons lies in
the fact that a polygon center p can now lie collinearly to
arbitrarily many points of S. Such incidences vastly increase
the number of possible polygons because every incidence
allows two di�erent ways to draw the polygon (towards or
outwards p, as we shall see below). Before we state an upper
bound on the maximum number of polygons we treat the
polygon center as �xed and prove the following lemma:

Lemma 3.1 The maximum number of star-shaped polygons

through a set of n points and containing a �xed point p is

(n � 1)2
n�7

2 for n odd and (n+ 4)2
n�8

2 for n even.

Proof: We distinguish the four possible locations of p with
regard to the line arrangent of all lines through S and take
the maximum of all cases. If p lies inside a partition cell,
the number of polygons is exactly one, as shown above. In
all the following cases we can arrange some points to lie
collinearly to p. Whenever a ray emanating from p crosses
two or more points, we have the choice between drawing the
polygon segment towards p, starting with the furthest point,
or from p away, starting with the closest point. Thus, each
such incidence will double the number of polygons. All the
following cases are depicted in Figure 2. With p coinciding
with a line, but not lying on a line intersection, at most two
such incidences can occur, leading to a maximum number of
polygons of four. If p lies on a line intersection disjunct from
S, at most n=2 such incindences can occur, which bounds

the maximum number by 2n=2. Finally, if p 2 S, we can
- with an odd number of n - arrange n � 1 points to be
pairwise collinear to p. In addition, we have the choice of
which points on two subsequent rays connect to p. This

leads to a maximum of n�1
2

2
n�5

2 = (n � 1)2
n�7

2 for the
number of polygons, which in turn is the maximum over all
four cases. For an even number of n, a similar calculation

leads to (n+ 4)2
n�8

2 for the number of polygons. 2

Next, we will treat the polygon centers as movable and
obtain the following upper bound:

Lemma 3.2 The maximum number of distinct star-shaped

polygons through a set of n points is O(n42n=2) and 
(n2n=2).



Figure 3: Worst-case point arrangements for the proofs of
Lemmas 3.1 and 3.2

Proof: We exploit the results in the proof of Lemma 3. For
the upper bound we again distinguish the four locations of
a polygon center p as stated above and now multiply the in-
dividual maximum numbers of polygons with the maximum
number of such locations. Clearly, the number of partition
cells, cell edges and cell corners are all O(n4), while by de�-
nition the size of S is n. The sum of the four products gives
the desired upper bound.

The point arrangement described above for the case where

p 2 S allowed (n � 1)2
n�7

2 distinct polygons. This number

is 2 
(n2n=2). 2

Figure 4: Point arrangement for the proof of lemma 4.1

4 Star-Shaped Polyhedra

In the two-dimensional case we have observed a reduction
from an exponential to a polynomial number of polygons
with the introduction of strict star-shapedness. The follow-
ing lemma states that we can not expect the same behavior
in three dimensions.

Lemma 4.1 The number of distinct strictly star-shaped poly-

hedra through a set of n points is 
(2n).

Proof: We speckle the surface of a sphere with n=10 points
and split up each point into ten new points which we place
on the corners of arbitrarily small decagons, such that all
points remain on the surface of the sphere. (Compare Fig-
ure 4.) This �nal arrangement consists of n points and n=10
decagons. Each decagon can be independently triangulated
in 1430 di�erent ways (see, e.g. [7, 8]), which leads to at

least 1430n=10 distinct ways to triangulate the whole poly-
hedron. With 210 < 1430 we have 1430n=10 62 O(2n), hence
the number of polyhedra must be strictly more than 
(2n).
2

Since, as the above point set shows, a �xed point in a ker-
nel can give rise to a set of possible star-shaped polyhedra,
it is a straightforward generalization of the two-dimensional
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Figure 5: Point set construction for the proof of lemma 4.3:
Auxiliary points p1 to p8 and point set A1.

case to ask about the maximum number of such distinct sets.
Let the function f assign to each point p inside the convex
hull of S the set of all star-shaped polyhedra through S
which are visible from p. We consider a partition P of the
convex hull of S into cells such that two points p1 and p2
belong to the same partition cell if f(p1) = f(p2). We �rst
establish an upper bound on the size of this partition:

Lemma 4.2 The size of the partition P is O(n9).

Proof: The proof closely follows the proof of lemma 2.1.
The crucial observation is that the set f(p) of polygons can
only change when p moves across a plane through three
points of S. Hence the size of the arrangement of all planes
through any three points of S gives an upper bound on the
size of the partition. With n points in S we obtain a max-
imum of O(n3) planes with an arrangement size of at most
O(n9). This in turn leads to the desired partition size of
O(n9). 2

Extending the results from chapter 2, we will describe
a point set whose induced partition size indeed is O(n9).
The set consists of eight auxiliary points p1 to p8 and three
congruent point sets A1 to A3, containing 3n+2 points each.

The eight auxiliary points lie on the corners of a cube
centered at (n;n; n) with edge length 2n. We will refer to
this cube as C. The point set A1 consists of three rows a, b,
and c of collinear, uniformly distributed points, positioned
on the y-, x-, and z-axis, respectively. The points of row a
have coordinates (0; i; 0), with i from 1 to n. The points of
row b spread uniformly from (�2n � 1; 0; 0) to (�2n; 0; 0),
such that bi has coordinates (�2n� i�1

n ; 0; 0), with i from
1 to n + 1. Row c �nally has its points uniformly spread
from (0; 0;�2n � 1

n ) to (0; 0;�2n), thus ci has coordinates

(�2n� i�1
n2

; 0; 0), with i again ranging from 1 to n+1. The
point set A2(A3) is a congruent copy of A1 after a rotation
by -90 degrees around an x(z)-axis through the centre of C.
(Compare Figures 5 and 6.)

Lemma 4.3 The point set S described above gives rise to


(n9) distinct sets of star-shaped polyhedra.

Proof: Let p(a; b; c) denote the plane through three points
a, b, and c. We de�ne the wedge w(i; j; k) with 1 � i; j; k � n
as the set of points which lie both strictly above p(ai; bj ; ci)
and strictly below p(ai; bj+1; cj+1) (refer to Figure 5). The
spacing between the point of sets a, b and c was chosen such
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Figure 6: Point set construction for the proof of lemma 4.3:
Point sets A1 to A3.

that the planes p(ai; bj; ck) do not intersect inside C. There-
fore, all n3 wedges w(i; j; k) are mutually disjoint inside the
cube.

Let us �rst disregard the presence of the point sets A2

and A3. With the remaining point set, each point p 2
w(i; j; k) \ C induces a set of polyhedra which, amongst
others, contains polyhedra as depicted in Figure 7. All
these polyhedra share as their key feature the triangle pairs
(p2; bj; ai)/(p2; bj+1; ai) and (p4; ck; ai)/(p4; ck+1; ai). It is
easy to see that no other set f(p0) with p0 2 w(i0; j0; k0) can
contain polyhedra of this kind since at least one of the char-
acteristic triangles would shadow a point in S, invalidating
the star-shapedness property.

Excluding now A1 and A3 from S, it follows from sym-
metry reasons and from the congruence of A1, A2, and A3

that every point in each of A2's wedges will in turn induce
a set of polyhedra which contains members that are unique
to the chosen wedge. Analogously, the same applies if we
exclude the sets A1 and A2. The wedges of A1, A2, and
A3 mutually fully intersect, producing n9 hexahedra inside
the cube C. Let us now choose an arbitrary point p inside
such a hexahedron. The induced set of polyhedra f(p) con-
tains members which are a combination of the characteristic
polyhedra obtained with the isolated treatment of A1, A2,
or A3, respectively. These members can not feature in any
other set of polyhedra, leading to 
(n9) distinct such sets.
2

Combining Lemmas 4.2 and 4.3 we obtain the following
theorem:

Theorem 4.4 The maximum number of distinct sets of star-

shaped polyhedra through a set of n points is �(n9).

5 Open Problems

The scope of this paper can be extended in various direc-
tions. First, it would be straightforward to generalize the
results to star-shaped polytopes of arbitrary dimensions. We
expect that the number of distinct sets of d-dimensional star-

shaped polytopes is �(nd
2

). With a view to Combinatorial
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Figure 7: A star-shaped polyhedra speci�c to a point p 2
w(i; j; k)

Geometry, instead of contenting with asymptotic bounds, it
would be interesting to explore the exact maximum of the
number of (strictly) star-shaped polytopes. I am not aware
of any research in this �eld. There is an unsatisfactorily
large gap between the lower and the upper bound of the
number of star-shaped polygons. It would be very nice to
bring them together as could be done in the case of strict
star-shapedness.

Dropping the requirement of star-shapedness, the maxi-
mum number of simple polytopes through a set of n points
is still an open question. For the two-dimensional case, it
is not even known whether there exists a polynomial-time
algorithm that generates a random simple polygon with a
uniform distribution [4].
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