A Simple Probablistic Algorithm for
Approximating Two and Three-dimensional
Objects !

Binhai Zhu 2

1 Introduction

Approximating complex geometric objects with simple
ones is an important problem in geometric computing
(i.e. in GIS, graphics, image processing). Usually, given
an error bound d, to approximate a geometric object
O we make two “copies” of O (O1,02) such that the
Hausdroff distance between them and O is bounded by
d and then we simply compute the minimum size polyhe-
dron (polygon in 2D) between O1,02. (Recall that the
Hausdroff distance between two objects is the maxmin-
distance, or more formally the sup inf-distance, between
all the points in the two objects.) In two dimension
(2D), given a small error bound, optimal linear time al-
gorithms are known to approximate simple polygonal ob-
jects [II86, II88, HS91]. All these algorithms are very
similar to the result of Suri [Su86]. If the error bound is
large such that O1, 02 become non-simple, Guibas et al.
also present O(nlogn) time algorithm to solve the prob-
lem [GHMS93]. In three dimension (3D), the situation
is a little different. Even computing the minimum size
convex polyhedron between a pair of convex polyhedra
is NP-complete [DJ90, DJ92, DG97]. (We call a pair of
nested convex polyhedra conver annulus throughout this
paper.) Nevertheless, several approximation algorithms
have been proposed to solve this problem and among them
Mitchell and Suri first proposed an O(n?) time O(log n)-
factor approximate solution [MS95]. Later, Clarkson pre-
sented a simple randomized algorithm with the same ap-
proximate ratio [C193] and most recently Bronnimann and
Goodrich obtained a constant factor approximate solu-
tion for this problem using a beautiful combination of set
covers in finite VC-dimension and randomized “natural
selection” algorithms [BG95]. However, their algorithm
is very slow (O(n*logn) time) when the optimal solution
has size > n® since it uses the algorithm of Matousék et
al. as a subroutine which spends O(n®) time to compute
e-nets in a set system [MSW90].

We note that in 2D the algorithms of [II86, 1188, HS91]
involve computing weakly visible polygon of a segment in
a simple polygon and in practice this operation is tedious
to implement and in 3D most of the solutions are too slow;
therefore, the first motivation of this paper is to present
a simple, fast probablistic algorithm to approximate the
minimum size convex polyhedron (polygon in 2D) within
a pair of nested convex polyhedra (convex annulus). Then
we note that given a general simple object in 2D and 3D
there exists good practical algorithm to decompose it into
(minimum number of) convex pieces (in 2D it is trivial
and in 3D although theoretically it is NP-hard the re-
cent algorithm of Chazelle et al. reports exciting results
[CDST97]). Consequently, we can approximate general
simple objects in 2D and 3D by decomposing them into

1This work is partially supported by the research grant No.
9030617 from City University of Hong Kong.

2Dept. of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong and Dept. of Math and Computer Science,
Laurentian University, Sudbury, Ont P3E 2C6, Canada. Email:
bhz@cs.cityu.edu.hk.

convex pieces and then use our above approximate algo-
rithm as subroutines.

We use the following 2D example to illustrate our idea
in 3D (see Figure 1). Given a 2D convex annulus, i.e.,
a pair of nested convex polygons P,@Q with Q C P, we
want to approximate the minimum size convex polygon
contained in P —). We first generate a set R of r i.i.d.
random points in P — (@, then we compute the convex hull
of RUQ and finally output the convex hull as the approx-
imate solution A. Intuitively if r — +o0o0 A will have an
infinitely large size and if r is very small (like 0 or 1) then
A is of roughly the same size as P, Q. In both situations,
we are not able to approximate the minimum size convex
polygon in P— Q. In the next section we show that under
a weak condition on P, @, by choosing r = O(logn) we
can bound the size of A by n (n is the maximum size of
P, Q). The actual size of A should be much smaller but we
cannot prove this as it involves complicated conditional
probability in a geometric domain. Several different em-
pirical results strongly support our claim.

Figure 1: A simple example of approximating minimum
size convex polygon in a convex annulus.

2 Theoretical Result

In this section we present our algorithm and then give a
proof that under a mild condition the expected approx-
imate solution has size < n. Without loss of generality
we only study 3D objects in this section. We formally
define a convex annulus as the difference between a pair
of nested convex polyhedra P,Q, i.e., P — Q. P is called
the outer polyhedron and @ is called the inner polyhe-
dron. The optimal approximate convex polyhedron O*
is the one which lies totally within the annulus and its
size (number of vertices) is minimized. Computing such
an optimal minimum size polyhedron O™ is NP-complete.
We present the following algorithm to compute an ap-
proximate solution for O*. To make our theoretical result
meaningful, we assume that P and @ has the same num-
ber of vertices (size) n. We call n the the size of the
annulus. We point out that this assumption has no re-
striction on the algorithm itself.

Algorithm APP(P,Q)

1. Generate a set R of r i.i.d. points in P — @ where
r = Clogn.

2. Compute the convex hull of RU Q.

3. Output the computed convex hull A as the approx-
imate solution.

The running time of Steps (2) and (3) is clearly O(nlogn).

The efficiency of Step (1) depends on the implementa-
tion (i.e., whether one is willing to do extra preprocessing
on P and @). In the worst case (as what we have done
in our implementation), we perform no preprocessing on
P, Q and we generate random points uniformly within the
minimum volume axis-parallel bounding box B of P. To
generate one random point with P — @ it takes expected

O(%&5?@) time (as we have to spend O(n) time to

check whether it is within P — @ or not) and clearly to
generate O(logn) number of random points in P — @ it

takes O(%&E?Q)n log n) time. Therefore, if we do not

perform any preprocessing on P, () our algorithm takes ex-
pected O(%&(f%)nlog n+nlogn) = O(nlogn) time.

We repeat that the performance of above algorithm is
very intuitive: if we choose r to be very small (like 1 or 2)
then the size of A is almost n so we have no approximate
solution at all, but if r is too big then with the result of
Rényi and Sulanke [RS63] the size of A goes to infinite.
So r has to be something in between. In the proof of
the following theorem we in fact prove why r must be
bounded by O(logn). Without loss of generality, we can
relax the condition for the points in R: they can be under
the (o, 8)-measure, i.e., P[P — Q]=1 and ay(S) < P[S] <
Bv(S) for every measurable subset S of P — @, where
is the usual Lebesgue measure. We state the result as
follows.

Theorem 1 Given a well-shaped convezr annulus with size
n, by choosing r = C'logn (C is a universal constant only
related to the shape of P,Q) the expected size of the ap-
prozimate convexr polyhedron computed by Algorithm
APP(P,Q) is less than n.

_ induced polyhedron

Figure 2: Illustration for the definition of “well-shaped”
convex annulus.

The term of “well-shaped” is defined as follows. First
of all we note that among the vertices of A there are some
interesting ones: some of them are the vertices of (). For
each vertex v € @@ we compute the plane h(v) through v
such that the intersection of the halfspace through h(v)
not containing @, h™(v), and P — Q has the minimum
volume (see Figure 2). We call this volume, which must
be larger than a constant (to be specified below), the in-
duced volume of v over P,@ (induced volume of v, for
short), A (v) N (P — Q) is called the induced polyhedron
of v and v is called an induced vertez of P, Q. Clearly, as
the points in R are independently identically distributed

(i.i.d.) if an induced vertex vi has a large induced poly-
hedron then it has a larger chance to contain some i.i.d.
points in R hence has less chance of being a vertex of A.
However, we note that the induced polyhedra of the ver-
tices of () might intersect each other and for easy proba-
bilistic analysis we are only interested in the maximum set
of independent induced polyhedra, i.e., the maximum set
of induced polyhedra none of which intersect each other.
(If we take each induced polyhedron as a vertex in a graph
G and there is an edge between two vertices in G if and
only if the two corresponding induced polyhedra intersect
each other, then the maximum set of independent induced
polyhedra corresponds exactly to the mazimum indepen-
dent set of G.)

Definition. A convex annulus P, Q is well-shaped if Q
contains a set of at least c¢;logn independent induced
polyhedra with volume at least a1d® where d is the Haus-
droff distance between P, and ci,a; are universal con-
stants only related to the shape of P, Q.

Now we proceed to prove the theorem.

Proof: Note that a vertex of @ is a vertex of A if and
only if there exist two points p,q in R such that the in-
tersection of the halfspace through the plane A(pgv) and
not containing @), with P — Q contains no other points in
R. Obviously this intersection region (polyhedron) has a
volume at least as large as the induced volume of v. If
P, Q is well-shaped then among the corresponding max-
imum set of induced vertices the expected number of A
vertices is bounded by

(c1logn)-B- (;) (1—a1d®)"™? < (c1logn)-B-n”-(1—ard®) 2.

There are some other points which can be the vertices of A
and their number is bounded by the size of R, r, plus the
number of non-induced vertices of @}, n — c1 log n. There-
fore, the expected number of vertices of A is bounded by

(crlogn)-B-n”- (1 —a1d®)" > + 7+ (n—cilogn).
This is bounded by
(crlogn)-B-n°- (1 —a2)""> 4+ r+ (n—cilogn)
with a2 = a1d® and this can further be bounded by
(crlogn)-B-n*-e 2072 4 r 4 (n—cilogn).

If we choose mﬁfﬂ—"—fﬂ <r<(c1—d)logn (dis

an arbitrary small constant) then this number is bounded
by
c1f + (c1 — d)logn + (n — c1 logn),

which is
n—dlogn+c18 < n.
O

We note that the above theorem is closely related to
the term of “well-shaped”. In fact, if we set the condition
that @ has ¢'n (¢ < 1) number of independent vertices
then we can prove A has an expected number of at most
cn vertices with ¢ < 1. We believe that the actual ex-
pected number of vertices of A is much smaller but we

Delaunay polyhedra

are not able to prove this as when the induced polyhedra
intersect each other it is difficult to compute the (condi-
tional) probability that a vertex of @ is a vertex of A.
But our empirical results, obtained over different classes
of 3D convex polyhedra and 2D convex polygons, strongly
support our claim.

3 Empirical Results

In this section we present some empirical results. We
first test our approximate subroutine in 3D, i.e. testing
the performance of the algorithm on 3D annulus. We
then test the algorithm on approximating 2D monotone
polygonal chains. Lastly we comment on how to use our
algorithm to approximate (simplify) polyhedral terrains.
We would like to mention that the running time of our al-
gorithm is not a problem in our implementation, as long
as the input is of reasonable size, and in fact the run-
ning time is likely to be dominated by generating random
points in the annulus instead of computing convex hulls
if the input size is huge and if we employ a brute force
method to test whether a random point is within the an-
nulus.

3.1 Empirical results on nested convex polyhedra

In testing the algorithm on 3D annulus (nested convex
polyhedra) we try three classes of convex polyhedra: De-
launay polyhedra, s-polyhedra (obtained by generating
random points in the sphere z° + y* 4+ 2> = 1 and then
compute their convex hull) and ¢g-polyhedra (obtained by
generating random points in the qube bounded by (-1,-
1,-1) and (1,1,1) and then compute their convex hull). In
each of these situations, P, @ are isomorphic (i.e. we can
obtain P from @ by a scaling and vice versa).

s-polyhedra

Figure 3: Illustration for the constructing of various poly-
hedra.

Delaunay polyhedra are obtained by projecting each
point (z,) in the plane to the parabola z = 2 4+ y* and
then computing the convex hull of all the projected 3D
points. Because of convexity, all the projected points are
on the Delaunay polyhedra. It is therefore easy to know
the size of the Delaunay polyhedra P, Q. We mainly test
our algorithm for Delaunay polyhedra with size 10,000.
We start with generating 25 random points in P — @ and
each time we increase the number of random points gener-
ated by 25 and for each case we repeat 10 times and com-
pute the mean (average) of the size of A. The 2D points
are generated within square bounded by (-1.1,-1.1) and
(1.1,1.1) then we make two “scaled copies”, one bounded
by (-1,-1) and (1,1), the other bounded by (-1.2,-1.2) and
(1.2,1.2). P,Q are the convex hull of the 3D projected

g-polyhedra

points form the latter two copies of points. In this case,
the Hausdroff distance between P, is 0.2. The results
are reported in the following table. It is clear that us-
ing our algorithm the optimal size of A is obtained when
roughly 100 random points are generated.

r (sizeof R) [25 [50 | 75 | 100 | 125 | 150 | 175 | 200

Size of A 41 134|133 | 29 | 32 | 36 | 36 | 37

Table 1. Empirical results for Delaunay polyhedra with
size 10K, d = 0.1.

We also test the algorithm on Delaunay polyhedra un-
der the same condition as above, except that the Haus-
droff distance between P, @ is now 0.02. The results are
reported in Table 2. In this situation, using our algorithm
the optimal size of A is obtained when roughly 75 random
points are generated.

r (sizeof R) | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200

Size of A 28 | 28 | 26 | 27 | 31 32 | 34 | 34

Table 2. Empirical results for Delaunay polyhedra with
size 10K, d = 0.01.

As described above, s-polyhedra are the convex hull
of random points in a unit sphere. We generate 100K
points in the unit sphere, but the number of vertices in the
corresponding s-polyhedra are roughly 1400. We report
in the following table the corresponding empirical results
when the Hausdroff distance between P, @ is 0.2. Again,
we take average over ten tries.

Size of P,(Q | 1441 | 1411 | 1404 | 1431
r (size of R) 50 100 150 200
Size of A 34 29 30 41

Table 3. Empirical results for s-polyhedra generated
from 100K points.

We remark that we have tried larger size polyhedra
occasionally and similar (usually better) results hold. For
instance, for Delaunay polyhedra with 30K points and
d = 0.01 if we add 500 random points the resulting size
of A is only 37. In this case the approximate ratio is
only about 0.0012. We also obtain some empirical results
for g-polyhedra. But since when we choose 100K random
points the resulting g-polyhedra has size of only about
200, the performance of the approximate algorithm is not
easy to judge. When we choose more than 100K random
points it takes longer and longer time to compute the sub-
sequent g-polyhedra.

In this implementation, we use O’Rourke’s program
to compute 3D convex hulls [O’R94]. This program is
very robust (no numerical error is ever encountered in
our testing) but it is fairly slow when all the points are
on their convex hull.

3.2 Empirical results on approximating monotone chains

In this section, we present some empirical results on ap-
proximating monotone chains (functions) given a fixed er-
ror bound. Unlike results in the previous subsection, we
need to first decompose a given monotone chain (function)

into convex or concave subchains and then approximate
each subchain with APP(P,Q).

Because of the space constraint, we omit all the details
in this subsection. But our empirical results show that for
reasonably complex monotone chains, our algorithm can
obtain approximate ratios between 22% and 32%.

3.3 Some comments on approximating polyhedral ter-
rains

Approximating (simplifying) polyhedral terrains is a very
important problem in GIS and spatial databases. Theo-
retically this problem is NP-hard [AS94] and some prov-
ably good approximations are known [AS94, AD97]. Most
previous work are based on heuristics (see [AD97] for a
complete list of references). We believe our algorithm,
combined with the recent practical convex decomposition
algorithm of Chazelle et al. [CDST97], will produce good
practical results. As pointed out by Chazelle et al. in
practice most of the surfaces only consist of a constant
number of convex pieces. Therefore, this idea should
work well and besides that, both the heuristic algorithm
of Chazelle et al. and ours runs in O(nlogn) time so the
running time should not be causing any problem even if
the data has a huge size. We note that the approximation
algorithm of [AS94] has a time complexity of O(n®) and
the one proposed in [AD97] runs in O(n**°) time.

4 Concluding Remarks

In this paper we present a very simple probablistic al-
gorithm to approximate 2D and 3D geometric objects.
This algorithm is very easy to implement and the empir-
ical results are very promising especially for 3D objects.
Nevertheless, this work also raises several problems. (1)
What will this algorithm perform in approximating (sim-
plifying) polyhedral terrains? Although we believe that
the result will be excellent if we employ the practical al-
gorithm of Chazelle et al. to decompose a polyhedral ter-
rain into convex pieces, the actual performance will only
be known after this work is performed. (2) Our Theorem
1 only proves a very weak theoretical result. Is it possible
to apply deeper probablistic analysis to obtain stronger
theoretical results?

5 Acknowledgements

I thank Cao An Wang, D.T. Lee for comments in the early
stage of this work.

References

[AD97] P. Agarwal, and P. Desikan. An efficient algo-
rithm for terrain simplification. In Proc. 8th
Sympos. Discrete Algorithms, pages 139-147,
1997.

[AS94] P. Agarwal, and S. Suri. Surface approximation
and geometric partitions. In Proc. 5th Sympos.

Discrete Algorithms, pages 24-33, 1994.

[ABOSY89] A. Agarwal, H. Booth, J. O’'Rourke, S. Suri
and C.K. Yap. Finding minimal convex nested
polygons. Info. and Comput., 83:98-110, 1989.

[BG95] H. Bronnimann and M. Goodrich. Almost op-
timal set covers in finite VC-dimension. Disc.

Comput. Geom., 14:463-479, 1995.

[C193] K. Clarkson. Algorithms for polytope covering
and approximation. In Proc. 8rd WADS (LNCS
709), pages 246-252, 1993.

[CDST97] B. Chazelle, D. Dobkin, N. Shouraboura
and A. Tal. Strategies for polyhedral surface
decomposition-An experimental study. Com-
put. Geom. Theory Appl., 7:327-342, 1997.

[DJ90] G. Das and D. Joseph. The complexity of min-
imum convex nested polyhedra. In Proc. 2nd
Canadian Conf. on Comput. Geom., pages 296—

301, 1990.

[DG97] G. Das and M. Goodrich. On the complexity of
optimization problems for 3-dimensional convex
polyhedra and decision trees. Comput. Geom.

Theory Appl., 8:123-137, 1997.

[DJ92] G. Das and D. Joseph. Minimum vertex hulls
for polyhedral domains. Theo. Comp. Seci.,

103:107-135, 1992.

[GHMS93] L. Guibas, J. Hershberger, J. Mitchell and
J. Snoeyink. Approximating polygons and sub-
division with minimum link paths. Intl. J. Com-
put. Geom. and Appl., 3:383-415, 1993.

[HS91] S. Hakimi and E. Schmeichel. Fitting polygonal
functions to a set of points in the plane. CVGIP:
Graph. Mod. Image Process., 53(2):132-136,

1991.

[I186] H. Imai and M. Iri. An optimal algorithm for
approximating a piecewise linear function. J.
Inform. Process., 9(3):159-162, 1986.

[1188] H. Imai and M. Iri. Polygonal approximations
of a curve-formulation and algorithms. In Com-
putational Morphology, G. Toussaint ed., North
Holland, Amsterdam, pages 71-86, 1988.

[MS95] J. Mitchell and S. Suri. Separation and approx-
imation of polyhedral objects. Comput. Geom.

Theory. Appl., 5:95-114, 1995.

[MSW90] J. Matousék, R. Seidel and E. Welzl. How to
net a lot with little: small e-nets for disks and
halfspaces. In Proc. 6th Annu. ACM Sympos.
Comput. Geom., pages 16-19, 1990.

[O’R94] J. O’'Rourke. Computational Geometry in C.
Cambridge University Press, 1994.

[RS63] A. Rényi and R. Sulanke. Ueber die konvexe
Hulle von n zufallig gewahlten Punkten, I. Z.
Wahrschein,2:75-84, 1963.

[Su86] S. Suri. A linear time algorithm for minimum

link paths inside a simple polygon. Comput.
Vision Graph. Image Process., 35:99-110, 1986.

