
Polygonal Chains Cannot Lock in 4D

Roxana Cocan and Joseph O'Rourke�

Abstract

We prove that, for all dimensions d � 4, every simple open polygo-

nal chain may be straightened, and every simple closed polygonal

chain may be convexi�ed. Both can be achieved by algorithms

that use polynomial time in the number of vertices, and result in

a polynomial number of \moves." These results contrast to those

known for d = 3, where open and closed chains can be \locked."

1 Introduction

1.1 Summary

A polygonal chain P = (v0; v1; : : : ; vn) is a sequence of con-
secutively joined segments (or edges) ei = vivi+1 of �xed
lengths `i = jeij, embedded in space. A chain is closed if
the line segments are joined in cyclic fashion, i.e., if vn = v0;
otherwise, it is open. A chain is simple if only adjacent
edges intersect, and only then at the endpoint they share.
We study recon�gurations of simple polygonal chains, con-
tinuous motions that preserve the lengths of all edges while
maintaining simplicity throughout. One basic goal is to de-
termine if an open chain can be straightened|stretched out
in a straight line, and whether a closed chain can be convex-
i�ed|recon�gured to a planar convex polygon. If neither
is possible, the chain is called locked. This terminology is
borrowed from [BDD+99].

It is an open problem to determine if every open (or
closed) chain in 2D can be straightened (or convexi�ed).1

See [ELR+98] for partial results. In 3D it is known that
there exist both open and closed chains that are locked [CJ98,
BDD+99, Tou99], and several special cases are known to be
unlocked [BDD+99]. In this paper we prove that, for all
dimensions d � 4, neither open nor closed chains can lock.
We partition our results into three main theorems:

Theorem 1 Every simple open chain in 4D may be straight-
ened, by an algorithm that runs in O(n3�(n)) time, and

�Dept. of Computer Science, Smith College, Northampton, MA
01063, USA. frcocan,orourkeg@cs.smith.edu. Research supported by
NSF Grant CCR-9731804.

1An example of J. Mitchell [Personal communcation, Feb. 1999.]
makes it seem likely that there are locked chains in 2D as well.

which accomplishes the straightening in O(n) moves.

Here \move" is used in the sense de�ned in [BDD+99]. Es-
sentially each move is a simple monotonic rotation of a few
joints. We have implemented this algorithm for the case
when the vertices are in general position, when it is straight-
forward.

Theorem 2 Every simple closed chain in 4D may be con-
vexi�ed, by an algorithm that runs in O(n6 log n) time, and
which accomplishes the straightening in O(n6) moves.

Theorem 3 Both Theorems 1 and 2 hold for all dimen-
sions d � 4, i.e., polygonal chains cannot lock in dimensions
greater than three.

We partition the results this way because the proofs of
these three theorems are rather di�erent. In particular, the
proof of Theorem 3 is not di�cult. In this extended ab-
stract, we will sketch the proofs of the theorems. More de-
tailed proofs are contained in [Coc99], and we are currently
preparing a full version for publication.

We summarize our results in the context of earlier work
in the table below.

Dimension (Un)Locked

2 ?
3 9 locked chains

d � 4 Cannot lock

2 Straightening Open Chains in 4D

Let P be a simple, open polygonal chain in 4D with n � 2
vertices vi. Each vertex is also called a joint of the chain.
Let si = vivi+1 be the i-th segment or link of the chain. We
say a joint vi is straightened if (vi�1; vi; vi+1) are collinear
and form a simple chain; in this case, the angle at vi is �.

We prove Theorem 1 by straightening the �rst joint v1,
\freezing" it, and repeating the process until the entire chain
has been straightened. This is a procedure which, of course,
could not be carried out in 3D. But there is much more room
for maneuvering in 4D.

Let sg0 = v
g
0v1 be the goal position for segment s0: the

position that represents straightening of joint v1. Let w0

be the goal direction: a vector orthogonal to s
g
0 that repre-

sents the direction in which s0 should be rotated to move
it to its goal position. Note that rotation is in a plane in d
dimensions, in this case the plane determined by s0 and w0.

We distinguish three possibilities:



1. The goal position is intersected by some other link of
the chain.

2. The goal direction is obstructed in that rotation of s0 in
the direction w0 will hit some link of the chain along
the way to the goal position. Note that if the goal
position is intersected, the goal direction is obstructed
because s0 will hit the intersecting segments when it
reaches the goal position.

3. The goal direction is free when it is not obstructed
(and so the goal position is not intersected).

We consider these possibilities in reverse order, easiest to
most di�cult. A high-level view of the algorithm is as fol-
lows:

repeat until chain straightened do
1: if w0 is free then
Rotate s0 directly to s

g
0.

else if w0 is obstructed then
Rotate s0 to new position whose goal direction is free.
goto 1.

else if sg0 is intersected then
Move v1 so that the goal position is not intersected.
goto 1.

In this abstract we will concentrate only on skirting ob-
structions, the middle step of the algorithm. This employs
what we call the \obstruction diagram." First we describe
the space in which the obstruction diagram is embedded.

Consider the space of possible directions from which s0
might approach s

g
0. In 3D, this set of unit vectors forms a

circle S1, which can be viewed as orthogonal to and cen-
tered on s

g
0. Similarly, in 4D, the set of possible approach

directions toward s
g
0 forms a 2-sphere S2. Every point on

this sphere represents a direction of approach to s
g
0. In di-

mension d, this set of directions form the unit sphere Sd�2.
Note we consider approach directions to s

g
0 rather than de-

parture directions from s0, because the former is �xed on
the unmoving s

g
0, whereas we will be moving s0.

Let ŵ be the unit vector along a direction w. The ob-
struction diagram Ob(sg0) is the set of vectors ŵ represent-
ing obstructed goal directions for sg0. The obstructions arise
from the particular con�guration of the other links in the
chain P (aside from s0). We now argue for this key lemma:

Lemma 1 The obstruction diagram Ob(sg0) consists of a
union of n arcs on S2.

Consider �rst the obstruction diagram for a 3D chain.
Each segment of the chain potentially obstructs a set of ap-
proach directions for s0 that form an arc on the circle S1.
This can be seen by projecting a segment si onto the plane
containing S1, which is orthogonal to s

g
0, and then viewing

that projected segment s0i from the center of S1. The union
of these n arcs is Ob(sg0). It is clear that such a union could
cover all of S1, which means that every approach direction
is obstructed. And indeed it is easy to arrange this by sur-
rounding s

g
0 with a \cage" of segments, so that s0 cannot

approach the goal position without colliding with some seg-
ment of the cage.

Now turn to the case at hand, the obstruction diagram
Ob(sg0) for a 4D chain. Take an arbitary segment si of the
chain, and project it into the 3D subspace containing the
sphere S2 representing all directions orthogonal to sg0. From

the center of S2, this projected segment s0i corresponds to
an arc on the sphere. See Fig. 1. Note we are being conser-
vative by including an arc in Ob(sg0) even if the obstruction
is \behind" s0 and so does not present a true obstacle to
rotation.

s'i

O

SS2

w0

Figure 1: In 4D, si projects to s0i in the 3D subspace con-
taining S2, and produces an arc of the obstruction diagram
determined by the intersection of the triangle (O; s0i) with
S
2.

The implication of Lemma 1 is that not all directions can
be obstructed, for a �nite collection of arcs cannot cover all
of S2. If w0 is obstructed, then bw0 touches one or more
arcs of the obstruction diagram (as in Fig. 1). It is now
relatively easy to �nd a �w that will move w0 to be free:
choose a direction on S

2 that steps o� of the obstructed
spot, and choose a step length that maintains the simplicity
of the chain. Move s0 in the direction �w; and from its new
position s�0, its goal direction w�

0 = w0+�w is unobstructed.
Now move s�0 directly to the goal. No further details will be
presented.

The total number of moves used by the algorithm is at
most 3n = O(n). It is easy to achieve the claimed time
complexity of O(n3�(n)) as follows. For each of the n steps,
construct the relevant obstruction diagrams as arrangements
of circular arcs on a sphere. This arrangement can be con-
structed inO(n2�(n)) time andO(n2) space [EGP+92, Hal97].
This then establishes Theorem 1.

3 Convexifying Closed Chains in 4D

Our algorithm for convexifying closed chains employs the
line tracking motions introduced in [LW95]. Indeed our al-
gorithm mimics theirs in that we repeatedly apply line track-
ing motions, each of which straightens at least one joint,
until a triangle is obtained (which is a planar convex poly-
gon, as desired). Although the overall design of our algo-
rithm is identical, the details are quite di�erent, for there
are two major di�erences with [LW95]: (1) They permitted
self-intersections of the chain; (2) Their choice of a line in
the line tracking motion is di�erent than ours.

Let (v0; v1; v2; v3; v4) be �ve consecutive vertices of a
closed polygonal chain. We allow v0 = v4. A line track-
ing motion of v2 moves v2 along some line L in space, while
keeping both v0 and v4 �xed. As long as the angle at joints



v1 and v3 (the elbows) are neither � (straight) nor 0 (folded),
such a motion is possible. Neither angle can be 0 because
that would violate the simplicity of the chain. Straighten-
ing one joint is precisely our goal, so we assume that neither
joint is straight; and therefore a line tracking motion is pos-
sible.

We will choose L and a direction along it so that the
movement increases the distance from v2 to both v0 and v4
simultaneously. This necessarily opens both elbow angles.
The motion stops when one elbow straightens. The only is-
sue is whether this can be done while maintaining simplicity.
We prove this lemma:

Lemma 2 For a simple 4D chain (v0; : : : ; v4), there exists a
line tracking motion of v2 that straightens either v1 or v3 (or
both) while maintaining simplicity of the chain throughout
the motion.

As before, we start by thinking about the situation in
3D. Let R[0;1) be the interval [0; 1) on the real line. We
will parametrize the location of v2 along L by t 2 [0; 1),
with t = 0 the start, and t = 1 chosen to be the �rst time
at which a joint, which we take to be v1 without loss of
generality, straightens. Let C be the con�guration space
of the four-link system in isolation, permitting intersections
between the links. It should be clear that

C = S
1� S1�R[0;1) : (1)

This can be seen as follows. Fix some t so that v2 is �xed.
Then each of v1 and v3 is free to rotate (independently) on
a circle in 3D centered on v0v2 and v2v4 respectively. As t
varies from 0 to 1, these circles move in space, and grow and
shrink in radius. At t = 1 the v1 circle shrinks to a point.
But for t 2 [0; 1), both circles retain a positive radius. Thus
the con�guration space C has the topology of S1 � S

1 for
each t, and thus the claim follows.

Turning now to 4D, an elbow at the join of two links has
a space of possible motions in 4D that is topologically S2, for
it is the intersection of two 3-spheres. Thus the con�guration
space of our four-link chain, ignoring self-intersections, is

C = S
2� S2�R[0;1) : (2)

As in Section 2, we incorporate the obstacles represent-
ing the other links via an \obstruction diagram." We start
by ignoring the four moving links as obstructions, and only
consider the remaining links of the polygonal chain as obsta-
cles. We develop the obstruction diagram �rst for �xed t, so
that the relevant con�guration space is S2�S2. Because we
are ignoring the moving links as obstructions, movement on
the two spheres is independent, so it su�ces to determine
the obstruction diagram on one S2, that for v1: Ob(v1). Our
key observation is the following lemma:

Lemma 3 In 4D, if (v2 � v0) � (v1 � v0) 6= 0 and (v2 � v0) �
(v2�v1) 6= 0, then a single segment contributes at most four
points to Ob(v1).

Let p1(t) represent the position of v1 on its sphere S2

at a particular time t. The goal is for the links (v0; v1; v2)
to avoid all obstacles, which means that p1(t) should avoid
points of the obstruction diagram. The import of the above
lemma is that at a �xed t avoiding the special cases men-
tioned in the lemma, the diagram is a �nite set of points.
Letting t vary, the points move. It is always possible to \run
away from" a �nite set of moving points on the surface of a 2-
sphere. This freedom permits us to avoid self-intersections,
and therefore to straighten a joint.

We o�er an informal geometric argument for Lemma 3,
which is key to establishing Theorem 2. Let s be a segment,
and let C be a cone spun out by the link v0v1. We �rst
explore the situation in 3D, and then argue in a parallel
manner for 4D. In 3D:

1. If C does not lie in a plane, i.e., the apex angle of C
is not �.

(a) Let s lie in a plane � parallel to the base of C,
such that s does not contain the apex a of the
cone. See Fig. 2a. Then � \ C is a circle, and it

s

(a) (b)

Π

s

Figure 2: (a) A segment intersects a cone in two points in
3D; (b) A segment intersects a cone in two points in 4D.

is clear that s intersects this circle in at most two
points.

(b) Now suppose s is in a plane � not parallel to the
base, such that s does not contain the apex a of
the cone. Then � \ C is an ellipse, and again s
intersects this ellipse in at most two points.

(c) If s lies in a line through the apex a of C, then it
may intersect C in a segment.

2. If C lies in a plane � [Case omitted here].

Now to 4D. Just as the base of a cone in 3D is a 1-sphere,
the base of a cone in 4D is a 2-sphere. This base sphere lies
in a 3D subspace orthogonal to the axis of the cone.

1. If C does not lie in a 3D subspace.

(a) Let s lie in a 3D subspace � parallel to the base
of C, i.e., orthogonal to the cone axis, and s does
not contain the apex a of the cone. Then �\C is
a sphere, and s intersects this sphere in at most
two points. See Fig. 2b.

(b) Let s lie in a 3D subspace � not parallel to the
base, and s does not contain the apex a of the
cone. Then �\C is an ellipsoid, and s intersects
this ellipsoid in at most two points.

(c) If s lies in a line through the apex a of C, then it
may intersect C in a segment.

2. If C lies in a 3D subspace � [Case omitted here].

So except for the special cases where s contains the apex, or
C is degenerate, s intersects the cone in at most two points.
Lemma 3 follows because the chain (v0; v1; v2) sweeps out
two cones.

The case in the preconditions of Lemma 3 refers to the
situation in which one cone is degenerately at. As Fig. 3
illustrates, here a segment might obstruct a range of rota-
tions of v2 � v1, producing an arc in Ob(v1). But because
these preconditions can only hold once as t varies from 0 to
1, they present no impediment to connectivity.



v1

v2

v0

s

Figure 3: (v2�v0)�(v2�v1) = 0 and segment s (which lies in
the plane of the circle) contributes an arc to the obstruction
diagram Ob(v1).

3.1 Motion Planning

Skipping the details that establish that our initial and �nal
positions, t = 0 and t = 1, are connected in the con�guration
space C, we know a path that avoids self-intersection exists,
i.e., either the joint v1 or v3 can be straightened. The next
step is to compute such a path algorithmically. General
motion planning algorithms here yield a polynomial-time
algorithm.

Our \robot" consists of the four links (v0; v1; v2; v3; v4)
moving in the 5-dimensional con�guration space C, Eq. (2).
The subspace C0 that avoids self-intersection between the
four links is some semialgebraic subset of C, semialgebraic
because the constraints on self-intersection may be written
in Tarski sentences (see, e.g., [Mis97]). The free con�gura-
tion space F is composed of the points of C0 that avoid the
obstacles, which is again a semialgebraic set. Then motion
planning between two points of F in the same connected
component may be achieved by any general motion plan-
ning algorithm [Sha97, Sec. 40.1.1]. For example, Canny's
Roadmap algorithm achieves a time and space complexity
of O(nk log n), where n is the number of obstacles, and k
the number of degrees of freedom in the robot's placements.
In our case, k = 5. His algorithm produces a piecewise al-
gebraic path through F , of O(nk) pieces. Each piece consti-
tutes a constant number of moves, with the constant depend-
ing on the algebraic degree of the curves, which is bounded
as a function of k. Therefore each joint straightening can be
accomplished in O(n5) moves. Repeating the planning and
straightening n times leads to O(n6) moves in O(n6 log n)
time, proving Theorem 2.

4 Higher Dimensions

We have already shown that every simple open/closed chain
in 4D can be straightened/convexi�ed. Our task is to prove
that this result holds for higher dimensions, using the results
from 4D.

For an open chain, we straighten four links at a time
and then repeat the procedure until the chain is straight. If
the chain contains less than four links, then it determines
a space that has at most dimension three, and it can be
included in a 4D-space. For a closed chain, our algorithm
also moves four links at a time. Four links determine a space
that is at most 4-dimensional, which means that it can be
included in a 4D-subspace of our d-dimensional space Rd ,
d � 4.

We have already shown that these four links, for both
open and closed chains, can be straightened in 4D; there-
fore, they can be straightened in this 4D-subspace of Rd .
We only have to worry about the pieces of the remainder of
the chain that intersect this 4D-subspace. But since we are
dealing with segments, their intersection with a 4D-subspace
is either a point or a segment. But these are the kind of ob-
structions we have proven that can be avoided in 4D. There-
fore, the straigtening of these four links can be completed in
the 4D-subspace, and therefore in the d-dimensional space
R
d , while maintaining rigidity and simplicity.
The complexity for the algorithms in d-dimensional spaces,

d � 4, is the same as for the algorithms in 4D.

Acknowledgement. We thank Erik Demaine for helpful
comments.

References

[BDD+99] T. Biedl, E. Demaine, M. Demaine, S. Lazard,
A. Lubiw, J. O'Rourke, M. Overmars, S. Rob-
bins, I. Streinu, G. Toussaint, and S. Whitesides.
Locked and unlocked polygonal chains in 3D. In
Proc. 10th ACM-SIAM Sympos. Discrete Algo-
rithms, pages 866{867, January 1999.

[CJ98] J. Cantarella and H. Johnston. Nontrivial em-
beddings of polygonal intervals and unknots in
3-space. J. Knot Theory Rami�cations, 7:1027{
1039, 1998.

[Coc99] Roxana Cocan. Polygonal chains cannot lock in
4D. Undergraduate thesis, Smith College, 1999.

[EGP+92] H. Edelsbrunner, Leonidas J. Guibas, J. Pach,
R. Pollack, R. Seidel, and M. Sharir. Arrange-
ments of curves in the plane: Topology, combi-
natorics, and algorithms. Theoret. Comput. Sci.,
92:319{336, 1992.

[ELR+98] H. Everett, S. Lazard, S. Robbins, H. Schr�oder,
and S. Whitesides. Convexifying star-shaped
polygons. In Proc. 10th Canad. Conf. Comput.
Geom., pages 2{3, 1998.

[Hal97] D. Halperin. Arrangements. In J. E. Good-
man and J. O'Rourke, editors, Handbook of Dis-
crete and Computational Geometry, chapter 21,
pages 389{412. CRC Press LLC, Boca Raton,
FL, 1997.

[LW95] W. J. Lenhart and S. H. Whitesides. Recon�gur-
ing closed polygonal chains in Euclidean d-space.
Discrete Comput. Geom., 13:123{140, 1995.

[Mis97] B. Mishra. Computational real algebraic geome-
try. In J. E. Goodman and J. O'Rourke, editors,
Handbook of Discrete and Computational Geom-
etry, chapter 29, pages 537{558. CRC Press LLC,
Boca Raton, FL, 1997.

[Sha97] M. Sharir. Algorithmic motion planning. In J. E.
Goodman and J. O'Rourke, editors, Handbook
of Discrete and Computational Geometry, chap-
ter 40, pages 733{754. CRC Press LLC, Boca
Raton, FL, 1997.

[Tou99] G. T. Toussaint. A new class of stuck unknots
in Pol6. Technical Report SOCS-99.1, School of
Comput. Sci., McGill Univ., 1999.


