Proceedings of the
Ninth Canadian Conference
on Computational Geometry

Queen's University Kingston, Ontario August 11-14, 1997

Local Arrangements
Selim Aki, Nancy Barker, Robin Dawes,

Henk Meijer, David Rappaport , all of Queen's University

Program _Committee

David Avis, McGill University .
Prosenijit Bose, Université du Québec a Trois-Riviéres
Henk Meijer, Queen's University ‘
David Rappapont, Queen's University (conference chair)
Tom Shermer, Simon Fraser University

James Stewart, University of Toronto

Cao an Wang, Memorial University of Newfoundland

Foreword

The Ninth Canadian Conference on Computational Geometry was held from August 11-14, 1997,
at Queen’s University in Kingston, Ontario. This annual conference attracts researchers in compu-
tational geometry from around the world to Canada, for an open exchange of new ideas and results.
The goal of the conference is to encourage research in a broad area of topics, and to promote col-
laboration. This volume contains the abstracts of 46 contributed papers, as well as four invited
talks by J. Akiyama (Tokal University), W. Haken (University of Illinois), E. Fiume (University of
Toronto), and J. Mitchell (SUNY Stony Brook).

The organizing committee thanks those who submitted papers to the conference, the invited speak-
ers, the members of the program committee, and especially all those who attended the conference.
We gratefully acknowledge the financial support from the Information Technology Research Centre
of Ontario, the Office of the Vice Principal (Research} of Queen’s University, the Office of the Dean
of the Faculty of Arts and Science, Queen’s University, and the Department of Computing and
Information Science, Queen’s University. Special thanks to Nancy Barker for her extraordinary
administrative assistance and to Linda Moulton for her assistance in preparing this proceedings.

David Rappaport

Avant-Propos

La neuviéme conférence canadienne sur la géométrie algorithmique a eu lieu du 11 au 14 aodt 1997,
a I’Université Queen’s & Kingston, en Ontario. Cette conférence annuelle réunit au Canada des
chercheurs en géométrie algorithmique du monde entier, pour un échange d’idées et de résultats.
Le but de ces rencontres est d’encourager la recherche sur des sujets d’une grande diversité et
de promouvoir la collaboration. Ce volume contient les textes de 46 articles communiqués & la
conférence, ainsi que les résumés de 4 articles présentés sur invitation par J. Akiyama (Tokai
University), W. Haken {(University of Iilinois), E. Fiume (University of Toronto), et J. Mitchell
(SUNY Stony Brook).

Le comité organisateur remercie les auteurs des communications, les conférenciers invités, les mem-
bres du comité de programme et surtout les participants. Nous désirons exprimer notre recon-
. naissance & I'Information Technology Research Centre of Ontario, & I’Office of the Vice Principal
(Research), a P’Office of the Dean of the Faculty of Arts and Science, et au Department of Com-
puting and Information Science, de 'Université Queen’s, de leur support financier. Nous tenons
également & offrir notre gratitude a Nancy Barker pour P’extraordinaire assistance administrative
gu’elle nous a apportée et a Linda Moulton pour son aide a la préparation de ces comptes-rendus.

David Rappaport

The Ninth Canadian Conference on Computational Geometry

August 11-14, 1997
Queen’s University
Kingston, ON, CANADA

Table of Contents

Session MON1

Vertex w-lights for monotone mountains
Joseph O ROUTKE . .\uui ittt e e e 1

Constructing piecewise linear homeomorphisms of polygons with holes
Mark Babikov and Diane L. Souvaine, and Rephael Wenger 6

On folding rulers in regular polygons
Naixun Pei and Sue Whitesides ..o 11

On the number of internal and external vistbility edges of polygons
Jorge UTTULIa .. ourit it e e 17

Session MON2

On a partition of point sets into conver polygons _
Masatsugu Urabeo e 21

Dominoe tilings and two-by-iwo squares
Jurek Czyzowicz, Evangelos Kranakis and Jorge Urrutiaooooiiiiioiiiiin, 25

Covering a set of points by two azis-parallel bores
Sergei Bespamyatnikh and Michael Segalol 33

Encoding a triangulation as a permutation of its point set
Markus O. Denny and Christian A. Sohlerciiiiiiii i 39

Session MON3 Invited talk

Recognizing the trivial knot by planer diagrams
Wolfgang Haken C e e e e e e et 44

Session MON4

A note on the tree graph of a set of points in the plane
Eduardo Rivera-Campo and Virginia Urrutia-Galiciaol 46

iit

A straight-line embedding of two or more rooted trees in the plane
1 R Y JE R 50

A balanced partition of poinls in the plane and tree embedding problems
Atsushi Kaneko e e e 56

Parallel algorithms for longest increasing chains in the plane and related problems
Mikhail J. Atallah, Danny Z. Chen and Kevin S. Klenk 59

Session TUEi

Planar segment visibility graphs _
H. Everett, C. T. Hoang, K. Kilakos and M. Noyoooiiiiiiiiiiiiaoae, .. 65

The visibility graph contains a bounded-degree spanner
Gautam Das ..ottt i i e i e i e .. 70

- Contracted visibility graphs of line segments _
J. Bagga, S. Dey, J. Emert, L. Gewali and J. McGrew ..., 76

 Geometric matching problem of disjoint compact convez seis by line segments
Kiyoshi Hosono and Katsumi Matsudacovvvvniirrrinerniarneninnn. e 82

Session TUE2

Handling rotations in the placement of curved conver polygons
Frangois Rebufat ... e e 87

Almost optimal on-line search in unknown sireels
Evangelos Kranakis and Anthony Spatharisoooi e 93

An on-line algorithm for exploring.an unknown polygonal environment by a point robot
S. K. Ghoshand J. W. Burdicko it ce e 160

Understanding discrete visibility and related approm'maﬁon algorithms
S. K. Ghosh and J. W. Burdickcooiiiiin .t e rrerereeraaeatie e 106

Session TUES3 Invited Talk

Why Taro éan do geometry :
Jin Akiyama PP e e e e e 112

iv

Session TUE4
A quantum-searching application nofe

Ngoc-Minh L& . .on et i e e e 113

Some methods to determine the sign of a long integer from its remainders
Toshiyuki IMalot i i i e e 117

A quadratic non-standard arthmetic .
Dominique Micheluccl ... e 123

Analysis of a class of k-dimensional merge procedures, with an application to 2D Delaunay trian-
gulation in ezpected linear time after two-directional sorting
Christophe Lemaire and Jean-Michel Moreauc.cooviiiiiiiii . 129

Session WED1
On-line searching in geomelric trees

e 170 =Y oA AR 135

Biased search and k-point clustering _
Binay K. Bhattacharya and Hossam ElGindy ...t 141

Walkz'ng in the visibility complex with applications to visibility polygons and dynamic visibility
Stéphane RIVIBrecuviiiiiin it i 147

The 8D visibility complez: A unified data-structure for global visibility of scenes of polygons and
smooth objects
Fredo Durand, George Drettakis and Claude Puech e 153

Session WED2

The width of a convez set on the sphere
F.J. Cobos, J. C. Dana, C.I. Grima and A. Marquez0ooviiiiiiiiines 159

Diameter of a set on the cylinder
F.J. Cobos, J. C. Dana, C.I. Grima and A. Mérquezcooiiiiot 164

Testing roundness of a polytope and related problems ‘
Artur FUuRTIAanD oo it i e 169

On hardness of roundness calculation
Sergey P. Tarasov .uuviu e ettt iaeiai ettt i 175

Session WEDS3 Invited Talk

. Applied geometry for computer graphics
Eugene Fiuome,. O P S

Session WED4

- Reconstruction qf 3-D surface object from its pieces
Goktiirk Ugoluk and Hakki Toroslu N

Sampling and reconstructing manifolds using alpha,—sﬁapes
Fausto Bernardini and Chandrajit L. Bajajovvmoiiiiiiiii i

Periodic B-spline surface skinning of anatomic shapes
Fabrice Jaillet, Behzad Shariat and Denis Vandorpecoooiiiiiiiiiiiian,

Shape reconstruction using skeleton-based implicit surface
Serge Pontier, Behzad Shariat and Denis Vandorpeoocvviiiiiiininn,

Session WEDSB5

' Dynamizing domination queries in 2-dimensions: The paper stabbing problem revisited
Michael G. Lamoureux, J. D. Horton and Bradford G. Nickerson

Fast piercing of iso-oriented rectangles
Christos Makris and Athanasios Tsakalidis oovvvirie i e

‘Shooter location problems revisiled .
Cao An Wang and Binhal Zhu ...

Session THU1 Invited Talk

Approzimation algorithms for geometric optimization problems
Joseph Mitchelloiiuuuiiii i

Session THU2

Label placement by mazimum independent set in rectangles 7 '
Pankaj K. Agarwal, Mark van Kreveld and Subhash Surl ..o

Easy triangle strips for TIN terrain models
Bettina Speckmann and Jack Snoeyink ...

vi

Partitioning algorithms for transportation graphs and their applzcatzons to routing
Cavit Aydin and Doug Terardiooiiiiiiii i ittt 245

Session THU3

Stability of Voronoi neighborship under perturbations of the sites
Frank WWellor .. .ovvr ittt e et e r et e e 251

An iterative algorithm for the determination of Voronoi vertices in polygonal and non-polygonal
domains '
Frangois Anton and Chrisopher Goldo 257

Some tools for modeling and analysis of surfaces
Carsten Dorgerloh, Jens Liissem and Morakot Pilouk and Jirgen Wirtgen 263

An increasing-circle sweep-algorithm to construct the Delaunay diagram in the plane
B. Adam, P. Kauffmann, D. Schmitt, and J.-C. Spehner 268

Index of AULROTS «..tir it et e 274

vil

Vertex n-Lights for Monotone Mountains

Joseph (’Rourke *

Abstract

It is established that [¢/2] = [n/2] -1 vertex n-lights
suffice to cover a monotone mountain polygon of £ =
n— 2 triangles. A monotone mountain is a monotone
polygon one of whose chains is a single segment, and
a vertex w-light is a floodlight of aperture m whose
apex is a vertex. .

Keywords. art gallery theorems, floodlights, mono-
tone polygons.

1 Introduction

It was established in [ECOUX95] that for any o < 7,
there is a polygon that cannot be illuminated with
an o-floodlight at each vertex. An a-floodlight (or
a-light) is a light with aperture no more than a. A
verter a-light 1s one whose apex is placed at a vertex,
aiming a cone of light of up to o into the polygoun.
Each vertex may be assigned at most one light. The
result of [ECOUX95] is then that n vertex a-lights
do not always suffice when o < #. Let a polygon
P have ¢ triangles in any triangulation, ¢ = n — 2;
we will phrase bounds in terms of £. For a = =,
an easy argument shows that ¢ vertex w-lights always
suffice: place a light at an ear tip, cut off the ear,
and recurse. This ralses the question of finding a
better upper bound. Urritia phrased the problem this
way [Urr97]: is there a ¢ < 1 such that cn vertex
w-lights always sufice? The largest lower bound is
¢ = 2 via an example of F. Santos.

In this paper we pursue this question, but only in
special cases. In particular, we show that ¢ = % for
spirals and, more interestingly, for monotone moun-
tains. A monotone mountain is a monotone polygon
one of whose chains is a single segment. More pre-
cisely, a monotone chain is a polygonal chain whose

*Department of Computer Science, Smith College,
Northampton, MA 01063, USA. orourke@cs.smith.edu. Sup-
ported by NSF grant CCR-9421670.

intersection with any wvertical line is at most one
point. A monotone mountain consists of one mono-
tone chain, whose extreme (left and right) vertices are
connected by a single segment. Note this base edge
need not be horizontal.! Fig. 5 shows a monotone
mountain with base edge xy.

Although this is a severely restricted class of
polygons, it deserves attention for three reasons:
the examples establishing the results of [ECOUX95)
(and [OX94]) are “nearly” monotone mountains; the
problem is already not completely trivial for mono-
tone mountains; and there is some reason to hope
similar techniques will apply to the unrestricted prob-
lem.

We start with a result on spiral polygons, where
the problem is trivial.

2 Spiral Polygons

A spiral polygon consists of two joined polygonal
chains: a chain of reflex vertices, and a chain of con-
vex vertices.

Theorem 1 A spiral polygon S of t = n—2 triangles
may be covered by [t/2] = [n/2] — 1 vertex w-lights;
some spirals require this many.

Proof: If § has no reflex vertices, S is convex and
can be covered with one vertex w-light at any vertex.
So assume S has at least one reflex vertex.

Let z, y, and z be three consecutive vertices of 5,
with z reflex, y convex, and z convex. Such a triple
always exists, because any polygon has at least three
convex vertices. The segment 2z must be an internal
diagonal of the polygon. Therefore at least two trian-
gles are incident to z in any triangulation of S. Plac-
ing a light at z, as shown in Fig. 1, therefore covers
at least two triangles; because z is convex, the light
covers the entire angle at z. Removing the covered

1This definition differs in this respect from that introduced
in [OX94], which demanded a horizontal base edge.

triangles leaves a smaller spiral polygon. Repea.tiug

this process covers § with at most [¢/2] lights.
Generalizing the polygon shown in Fig. 1 estab-

lishes that the bound is tight. : O

Figure 1: Placing a w-light at z covers at least two tri-
angles. The light is shown as a full #-light, although
only the angle interior to the polygon is relevant.

Natice that the procedure implied by this proof
places lights only on convex vertices. One reason spi-
ral polygons are so easy is that lights never need be
placed on reflex vertices, and so the potentially dif-
ficult decision of how to orient a w-light at a reflex
vertex need not be confronted.

'3 Non-Locality

Monotone mountains are more difficult than spirals
for two reasons: reflex vertices canmot be avoided,
and the decision of how of orient a light at reflex
vertex cannot be made locally. Many art gallery the-
orems can be proved inductively as follows: cut off a
small piece, illuminate that piece, and recurse on the
remainder [O’R87]. The reason this paradigm works
is that decisions can be made locally: what happens

_in the small piece is independent of the shape of the

remainder of the polygon. -

This is not the case with the vertex r-light problem,
even for monotone mountains. Consider the polygon
shown in Fig. 2, and imagine trying to decide whether
to shine the light at z left or right, basing the decision
only on the portion of the polygon to the left of z.

“ One can see that no ¢ < 1 can be achieved without
looking at the structure of the right portion: if the

“wrong” decision is made at z (asillustrated), then an
arbitrarily large fraction of all remaining vertices will
need lights. Although the decision is obvious in this
case, as it can be based on the number of triangles
incident to z, the effect might be more subtle.

Figure 2: A wrong orienting decision at z can lead to
suboptimal coverage. '

4 Worst Case

It is clear that if the number of triangles incident to
z in Fig. 2 from the left is k£ and from right is also
%, then a lower bound of ¢ = % is attained: t =
2k + 1, and k + 1 = [t/2] lights are necessary, one
at z and k on the opposite reflex chain. The same
bound is acheived by the shape shown in Fig. 3. In
this polygon, the extension of vjv; meets vsvy; the
extension of vov3 meets v4vs; and so on.-

Figure 3: [t/2] lights are necessary: t = 5 and
[8/2] = 3 are needed.

We prove this simple fact for later reference: =~

Lemma 1 The generalization of the polygon M in
Fig. 3 requires [t/2] = [n/2] — 1 vertez w-lights.
Proof: Each vertex on the left chain can only see two
vertices on the right chain, and vice versa: vs can see
vz and wvs, because the extensions of v vs and vpvs
straddle s; etc. Thus at most {in fact exactly) three
triangles are incident to v in a triangulation of M. A
n-light at v can only fully cover two of these three
triangles, because v is reflex. So each light covers at

most two triangles, and [¢/2] are needed overall. O

5 Duality

One way to view the phenomenon illustrated in Fig. 2
is as follows: the polygon naturally partitions into
two monotone mountain subpolygons at z. If at light
is placed at z and aimed left, then in the right sub-
polygon, placing a light at z is forbidden (as that
would place two lights at one vertex). Moreover, that
example shows that a {sub)polygon with one vertex
forbidden a light could in fact require one light per
triangle. _

However, there is an interesting “duality” at play
here, in the following sense: if a polygon with one
forbidden vertex requires many lights, then placing a
light at the forbidden vertex permits it to be covered
with few lights. In other words, there is no polygon
structure that is both bad with a forbidden vertex
and bad without that vertex forbidden.

If M is a monotone mountain with extreme left and
right vertices z and y, let L1o(M) be the number of
vertex w-lights needed to cover A when vertex z is
assigned a light and y is forbidden to have a light; and
let Lo (M) be the number needed when y is assigned
a light and z is forbidden. Note that, in these defi-
nitions, not only is one vertex forbidden a light, but
the other extreme vertex must be assigned a light.
The precise statement of duality is captured in the
following lemma:

Lemma 2 For any monotone mountain M of t tri-
angles, Lio(M)+ Loy (M) <t 1.

The generalization of Fig. 4 establishes that the sum
is sometimes as large as t4-1: here L1o{M) = 1 {vp as-
signed) and La1 (M) = ¢ (vo forbidden, asillustrated).

Figure 4: Duality: Lio(M)+ Loi(M)=1¢t+1.

Lemma 2 is the key to the main theorem in the
next section. We now prove it via induction.

Proof: Let M be a monotone mountain of ¢ tri-
angles. The induction hypothesis is that Lyo(M') +
Loi(M') € t' + 1 for any monotone mountain M’
of t' < t triangles. The base case is a single trian-
gle T, t = 1, when Lyo(T) = Lo1(T) = 1, and so
Llu(T) -+ Lm(T) =2=t+1.

Let the base edge of M be zy, and let z be the
vertex first encountered by sweeping the line contain-
ing ay vertically; see Fig. 5. It must be the case that
both 2z and yz are internal diagonals. This provides
a natural partition of M into three pieces: Azyz, a
subpolygon A sharing diagonal zz, and a subpolygon
B sharing diagonal yz. Note that it may well be that
either A or B is the empty polygon @; if both are
empty, t = 1 and we fall into the base case of the
induction.

Figure 5: Induction partition of M into A, B, and
Dryz.

It is clear that A and B are monotone mountains.
In particular, the angle at z in A is convex, as is the
angle at z in B: for the monotone chain enters z from
the left and leaves it from the right (Fig. 6), as do the
diagonals zz and zy respectively.

We prove the lemma in two cases,

Case 1: Neither A nor B is empty.

We compute a bound on Lyo(), which places a
light at z but forbids a light at y. Because the angle
at z in M is convex, the light at 2 covers Azyz. This
light also serves as a light at = in A. It makes sense in
this situation to place a light at z and aim it into B.
Doing this gives us an upper bound on Lo (M), upper
because this sensible light placement and orientation
at z might not optimal. This strategy yields

Lm(ﬂf) < LI(}(A) + LIQ(B) . (1)

A

Figure 6: The monotone chain enters each vertex
from the left halfplane and leaves in the right half-
plane.

Analogous reasoning (again the light at y (illustrated
in Fig. 5) covers Azyz) yields :

Loy (M) < Loy (A) + Lo1(IB)- {2)

Adding Egs. 1 and 2 yields

Lyo(M)+ Loy (M) < [L1o(A)+ Lo (A)+[L1o(B)+ Lo (BY].

Suppose 4 contains e triangles and B contains b tri-
angles, so that ¢t = a + b+ 1. Then applying the
induction hypethesis to each yields

Lio(M) + Lo (M

) S la+1]+[b+1]
Lio(M) + Lpa (M) '

t+4+1.

IA IA

This is the claim to be proved.

It only remains to handle the case where one of A
or B is empty.
Case 2: A = but B is not empty.

This case is illustrated in Fig. 7; the case with

B =) is symmetric and need not be considered. If a
light is placed at z, it serves to cover Azyz, and the
reasoning is just as before:

Lio(M) < 14 Ly(B).
If a light is placed at y, then it covers Azyz (as illus-
tratedin Fig. 7}, and there is no need to an additional
light to cover thé empty A

Lot (M) < L (B).

Adding yields

Luo(M) + Ia(M) € 1+[Lso(B)+ Lu(B)}
Lio(M) 4+ Loy(M) < 14[b+1]
Lio(M)+Loy(M) < t+41.

B

- Figure 7: A=0.

6 Main Result

With Lemma 2 in hand, the ﬁnal.step is easy:

Theorem 2 A monotone mountain polygon M of
t = n—2 triangles may be covered by [t/2] = [n/2]-1.
vertex w-lights; some monotone mouniains require
this many.

Proof: We know from Lemma 2 that

Lio{M)+ Lpn(M}<t+1.

Let : '
L(M) = min{Lm(M), L(;]_ (M)} .

By the pigeonhole principle,
LM) < |(t+1)/2] = [t/2].

Lemma. 1 established that this bound can be at-
tained (Fig. 3). o
. The proofs of Lemma 2 and Theorem 2 imply a
simple algorithm: compute a bound on L;o(M) by
placing lights at the left corners of A and of B and
recursing, and compute a bound on Ly, (M) similarly.
Use the light placement of whichever is smaller. The
algorithm is easily seen t6 be O(nlogn): spend lin-
ear time finding z, and recursively process the pieces.
This leads to the familiar divide-and-conquer recur-
rence.

An example is shown in Fig. 8. Here M has t = 14
triangles, and Lig{M)} + Loy (M) < 5+ 10 =t + 1.
This example illustrates a number of features of the
light placements implied by the bound computation
on L10 and L01C-

1. Every vertex that is not a local maximum is as-
signed a light in either the L;p or Ly; compu-
tation. (Some vertices are assigned a light in
both.) '

2. All the lights in the Ly placement aim to the
right; and all those in the Lg; placement aim to
~ the left.

Figure 8: Example: ¢ = 14, L;p = 5 (top), Lg; = 10
(bottom).

3. The sum L1o{M) + Lg;(M) achieved is always
exactly ¢ + 1, because blindly following the pro-
cedure places lights even if they might not be
needed (e.g., when M is convex).

4. Lights at reflex vertices are turned either fully
counterclockwise (in Li¢) or clockwise (in Lyg):
intermediate positions are never needed.

7 Discussion

Many of the features present in monotone mountains
hold for the problem for general simple polygons as
well: for example, non-locality. For other features,
it remains unclear: for example, whether every light
may be fully turned (observation 4 above). In any
case, | believe that a version of the duality described
in Lemma 2 holds and will be a key to solving Urru-

tia’s problem. I conjecture ¢ = -g— is achievable.

References

[ECOUXS95] V. Estivill-Castro, J. O’Rourke, J. Urru-
tia, and D. Xu. Ilumination of polygons
with vertex floodlights. Inform. Process.
Lett., 56:9-13, 1995.

J. O'Rourke. Art Gallery Theorems and
Algorithms. Oxford University Press,
New York, NY, 1987.

[O'R87]

J. O’Rourke and D. Xu. Ilumination
of polygons with 90° vertex lights. In
Snapshots of Computational and Dis-
crete Geometry, volume 3, pages 108-
117. School Comput, Sci., McGill Univ.,,
Montreal, PQ, July 1994, Technical Re-
port SOCS-94.50.

[0X94]

J. Urrutia. Art gallery and illumina-
tion problems. In J.-R. Sack and J. Ur-
rutia, editors, Handbook on Compula-
tional Geometry. North-Holland, 1997.
To appear. :

‘Constructing Piecewise Linear Homeomorphisms of Polygons with
Holes

Mark Babikov

Abstract

Let P and @ be two homeomorphic polygons with
holes with vertex sets {p1,...,pn} and {q1,...,qa},
respectively, such that there is a homeomorphism
from P to @ mapping p; to ¢. We show how to
construet in O(n?) time a plecewise linear homeo-
morphism from P to) mapping p; to g; using O(n?)
triangles. Equivalently, we construct in O(n?) time
isomorphic triangulations of P and @ identifying p;
with q; using O(n?) triangles.

1 Introduction

Let P and Q be two polygons in R?, possibly with
holes. Two triangulations 7p and Tg of P and @,
respectively, are isomorphic if there is a one to one,
onto mapping f from the vertices of 7p to the vertices
of Ty such that (p,p',p") is a triangle of Tp if and
only if (F(p), f(p'), F(p")) is a triangle of Tg. These

triangulations may contain many additional bound-

ary and interior vertices beyond the original vertices
of P and Q. Our goal is to construct isomorphic tri-
angulations of P and (), assuming they exist, using
as few triangles as possible.

More specifically, let {p1,...,pn} and {a1,...,qa}
be the vertices of P and @, respectively. We would
like to construct isomorphic triangulations of P and
(} where vertex p; is mapped to vertex g;, assuming
such triangulations exist. Such triangulations may
require additional vertices.

Our motivation for constructing isomorphic trian-
gulations comes from constructing piecewise linear
homeomorphisms. A homeomorphism from P to Q

“Rutgers University, Piscataway, NJ 08855, U.S.A.
(dls@cs.rutgers.edu). Supported in part by NSF grants CCR-
91-04732 and NCR-95-27163.

TOhio State University, Columbus, OH 43210, U.S.A.
{(wenger@cis.ohio-state.edu). Supported by NSA grant
MDAS04-97-1-0019. .

Diane L. Souvaine*

Rephael Wenger!

is a one to one, onto, continuous map with continu-
ous inverse from polygon P and its interior to polygon
@ and its interior. A homeomorphism A from P to
@ is piecewise linear if P has a triangulation Tp such
that the homeomorphism is linear on each triangle.
Isomorphic triangulations 7p and 7o of P and Q
induce a piecewise linear homeomorphism b from P
to (& which linearly maps each triangle in 7p to the
corresponding triangle in 7o as follows. For each
vertex v of Tp, let -h(v) be the corresponding ver-
tex of 7. For every point p € P, lying in triangle
(v,7',v") of Tp, express p in barycentric coordinates
as av + o'v’ + a”v" where o, o', @ € R and let h(p)
equal ah(v) + a'h(v’) + o’ h(v"). A little checking is

- needed to-be sure that k is well-defined.

Conversely, a piecewise linear homeomorphism A
from P to @ induces isomorphic triangulations of P
and Q. If Tp is a triangulation of P and k is linear on
each triangle of Tp, then the image of each triangle
in Tp is a triangle of @ and these triangies form a
triangulation of Q. '

Let P and @ be two homeomorphic polygons with
holes with vertex sets {pi,...,pn} and {g1,..., 2},
respectively. In this paper we present an algorithm
for constructing isomorphic triangulations and piece-
wise linear homeomorphisms between P and ¢ map-
ping p; to g;, assuming such triangulations and home-
omorphisms exist. The algorithm runs in O(n?) time
and the construction uses O(n?) triangles.

Aronov, Seidel and Souvaine in [}] showed how

to construct isomorphic triangulations and piecewise

linear homeomorphisms of simple polygons in O(n?)
time using O(n?) triangles where n was the number
of vertices of each polygon. They also showed that
this number of triangles is sometimes required. Their
algorithm aflows one to prespecify which pelygon ver-
tices must be identified.

Kranakis and Urrutia in [5] gave an algorithm
for constructing isomorphic triangulations of simple
polygons P and @ which ran in O(n + rprglogn)

time using O(n + rpro) triangles where n is the
number of vertices of each polygon and rp and rg
are the number of reflex vertices of polygons P and
Q, respectively. They also gave a different algo-
rithm which runs in Q(n + (rp +rg)%)} time and uses
O(n + (rp + rg)?) triangles.

Saalfeld in [8] gave an algorithm for constructing
isomorphic triangulations and piecewise linear home-
omorphisms between two rectangles P and ¢} under
the constraint that certain interior points p; € P must
map to corresponding interior points ¢; € ¢. Both
the running time and the number of triangles was
potentially exponential. Souvaine and Wenger in [9]
gave an O(n?) algorithm using O(n?) triangles for the
same problem. Pach, Shahrokhi and Szegedy in [7]
proved that 2{n?) triangles are sometimes required.

Interior points of a rectangle or a polygon can be
modelled as vertices of “degenerate” holes consisting
of single points. Thus the algorithm in this paper for
constructing isomorphic triangulations and piecewise
linear homeomorphisms between polygons with holes
applies equally well to the problem when certain in-
terior points must be matched as in [8] and [9)].

We do not know whether isomorphic triangulations
using the fewest number of triangles can be con-
structed in polynomial time or whether the problem
is NP-complete. Gupta and Wenger in [3] give an
approximation algorithm for constructing isomorphic
triangulations between simple polygons which runs
in O(M logn + nlog” n) time and used O(M logn +
nlog® n) triangles, where M is the number of trian-
gles in the optimal solution. They slightly improved
this algorithm in [2] to run in O(M logn) time using
O(M logn) triangles. We know of no similar approx-
imation algorithm for polygons with holes.

2 Isomorphic Triangulations

Let P be a polygon with h holes. The boundary of
P is composed of i + 1 simple closed curves, one for
each hole and one for the outer boundary of P. ¥rom
the standpoint of topology, the outer boundary of P
is no different from the boundary of any of the holes.
There is a homeomorphism from P to itself which
maps the boundary of P to the boundary of any of
the holes in P. '

We start by describing how to connect the simple
closed curves on the boundary of P using O{n) line
segments so that these closed curves form the vertices
of a path. This path will guide the construction of the
isomorphic triangulation.

Lemma 1 Let P be e polygon with holes on n ver-
tices. In O(n) time and using at most 6n line seg-

Figure 1: T representing the tree G.

ments, the simple closed curves bounding P can be
connected by polygonal curves so that they form the
vertices of a path. Moreover, any simple closed curve
bounding P can be chosen to represent the first vertez
in the path.

Outline of proof: Triangulate P and let I); be the
set of triangulation edges. Let (1 be the multigraph
whose vertices are the simple closed curves on the
boundary of P and whose edges are the diagonals of
the triangulation. Note that graph (57 is connect. Let
(32 be a spanning subtree of G; and D5 be the diag-
onals of P which represent the edges of Gy, Let I be
the union of all the diagonals in [J; and the boundary
of P. (See Figure 1.) Note that I' is connected and
consists of at most 2n line segments.

Pick any simple closed curve on the boundary of P
and label it B;. Starting at any vertex of B;, walk
around the boundary of I', keeping the contour of T’
on the left. Label the simple closed curves Bs,. .., By
in the order they are first visited (similar to visiting
nodes of) in precrder.) Note that a simple closed
curve may be passed multiple times but receives just
one label.

We connect the simple closed curves bounding P in
the order Bi,..., B, as follows. If some diagonal in
Dy connects B; to Bs, then use that same diagonal
to connect to B; and B;4q in the path. Otherwise,
connect 5; to B;;; by a polygonal curve which traces
along the contour of I', keeping that contour on the
left. (See Figure 2.)

By following the contours, each edge in I is used or
traced at most twice and so the connecting polygonal
curves use at most 4n line segments. a

We need a variation on a theorem by Kranakis and
Urrutia from [5]. We first state and prove a slightiy

By

-
DI
[Ba\

Figure 2: Path connecting holes.

tighter version of this theorem. A reflez vertex is
a vertex whose interior angle is strictly greater than
180°.

Lemma 2 Isomorphic triangulations of simple poly-
gons P = {p1,...,pn} and Q = {q1,...,qn} match-
ing p; with ¢ can be constructed in Q(n + rprg)
time using O(n + rprg) triangles where 7p and rq
are the number of reflex vertices of P and @}, respec-
tively. Moreover, the boundary of these isomorphic
triangulations contains no new vertices other than

{_Pl,---,pn} ond {q1,....¢n}.

Proof: The algorithm we present is similar to the
one in [5] except that we use the Hertel-Mehlhorn
algorithm [4, 6] for convex partitioning instead of ray
shooting. Triangulate each polygon. For each reflex
vertex choose the one or two diagonals which break
the angle at the vertex into angles less than 180°. The
chosen diagonals partition each polygon into convex
pieces. '

Let C = {c1,..-,¢n} be a convex polygon on n
vertices. Partition C with diagonals corresponding
to the chosen diagonals in P and then overlay them
with diagonals corresponding to the chosen diagonals
in Q. Triangulate each convex cell in the overlay and
construct corresponding triangulations of P and Q).

At most 2rp and 2rg diagonals are chosen from P

and Q, respectively. The overlay of the correspond-

ing diagonals in C has at most 4rprg intersection
points and so the final triangulations have O(rprg)
iriangles. ' _ m]

We actually need the following corollary to
lemma, 2.

Corollary 1 Let {s1,...,8m} and {t1,...,tn} be
sets of m points on the boundary of simple polygons

F and Q, respectively, which include the vertex sets
of P and Q and are listed in the order they appear on
the boundary. Isomorphic triengulations of P and Q)
matching s; with t; can be constructed in O(m -+ n?)
time using O(m + n?) triangles where n is the total

- number of vertices of P and Q.. Moreover, the bound-

ary of these isomorphic triangulotions contains no
new vertices other than {s1,...,sm} and {t1,...,tm}.

Proof: Draw a slightly reduced version P' of P
within P where each s; which is not a vertex of P
is replaced by a convex vertex in P, i.e., a vertex
whose interior angle is less than 180°. Do the same
for Q constructing a polygon (' inside ¢. Triangu-
late the region between P and P’ by adding an edge
between each s; € P and the corresponding vertex
in P' and between s; and the vertex corresponding
to s;41 in P'. Construct a similar triangulation of
the region between @ and @’. Construct isomorphic -
triangulations of P’ and Q' by applying Lemma 2.
Since only reflex vertices of P and @ generate reflex
vertices of P' and ¢, the size of the triangulations

are O(m + n?). _ i

Two polygons P and @ have the same number of
holes if and only if they are homeomorphic, i.e., there
exists some homeomorphism from P to . Equiva-
lently, they have the same number of holes if and only

if P and Q have isomorphic triangulations.

If {p1,...,pn} and {gi,...,¢n} are the vertex sets
of P and @, respectively, then there is a homeomor-
phissn mapping p; to g; if and only if P and @ have
isomorphic triangulations where p; is' matched to g;.
If there is such a homeomorphism, then two vertices
on the closed curve on the boundary of P must corre-
spond to vertices on a corresponding closed curve on
the boundary of 2. Note, however, that it is possible
for one of these closed curves to bound a hole while
the other forms the outer boundary of a polygon.

Theorem 1 Let P and @ be two homevmorphic le-
belled polygons with holes with vertez sets {p1,...,Pn}
and {q1,-..,qn} such that there is ¢ homeomorphism
from P te () mapping p; to g;. Isomorphic triangula-
tions and piecewise linear homeomorphisms of P and
Q matching p; with g; can be constructed in O(n?)
using O{n?) triangles.

Outline of proof: By Lemma 1, iise at most 4n
line segments to connect the simple closed curves
bounding P by polygonal curves so that they form
the vertices of a path. Let ®F be the union of the
simple closed curves bounding P and the polygo-
nal curves connecting them: Label the simple closed

Figure 3: Partition of P by v¥, v§ and {of}.

curves bounding P in consecutive order along the
path Bf ,Bf,...,Bf. Starting at B, draw two
polygonal paths 4! and v% on the left and right of
®F and following the contour of ®F. For each i from
2 to k, draw line segments JL ; and O’R ; connecting
vertices of BF to vertices of v ¥ and +f, respectlvely
(See Figure 3.) There may be many choices for o7 ;
and ‘71%).1'-
Let BIQ,Bf, . ..,BE be the simple closed curves
bounding @ where BZ corresponds to the closed
“curve Bf in P. Again applying Lemma 1, connect
the simple closed curves bounding 7 so that they
form the vertices of a path starting at B? . Note
that these holes will not necessarily be connected in
consecutive order. Let ®¥ be the union of the simple
closed curves bounding @ and the po (\gfgonal curves
connecting them. Pick the vertex of B* correspond-
ing to the common endpoint of 7§ and fyf onn Bf
and draw two suitably short line segments 'yf and

g from this vertex. These line segments will be the
images of v} and 7. For each vertex of vf or +£
add a corresponding point on 'yf or 'yg, respectively.

In the interior of P, draw 2k polygonal contour
lines following the contour of 9. If & is the min-
imum distance between any two non-adjacent edges
of 9, then these contour lines can be spaced a dis-
tance 8/(8%) apart. Number the contour lines 1 to. 2k
starting at the closest one to &%,

For i frorn 2 to k, draw polygonal curves crg ; and
a2, from ')fR and 73 to BP as follows. Start at the
point on ')’R corresponding to the endpoint, of g 2, and
draw a polygonal curve in the (k + 1 — 7)’th contour
line around $%, keeping ®% on the right. When-
ever encountering a boundary curve BJQ where § < §

Figure 4: Polygonal curves crg’ 0 0’?’4, agj and 035-

cross over the polygonal curve connecting BQ , to

BQ trace along the i’th contour line with BQ to its
left and then cross back over the curve connectlng
BQ and BS 3 and continue. Connect this curve to

the point on Bi corresponding to the endpoint of

o}, ;. Label this polygonal curve o .

From the point on BiQ corresponding to the end-
point of O’f’i continue with a polygonal curve in the
(k +1—1)'th contour line around ®9, keeping % on
the right. As before, whenever encountering a bound-
ary curve B where J < t cross over the polygonal
curve connecting Bf_l to Bj , trace along the #’th
contour line with BQ to its left, and then cross back
over the curve connecting BQ and BY 11 and continue.
When the last closed curve 1n the path is reached and
passed, either on the left or the rlght Cross to the
{k + 1)'th contour line and return to 'yL by a polyg-
onal curve which keeps &9 on the left. Label this
polygonai curve O'L ;- (See Figure 4.) For each ver-
tex of O’L‘i or aR)i add a corresponding point on line
segments oy ; or ok ;, respectively.

The line segments of ; and of; ; together with vf
and 'yP divide P into k& simple polygons, Pl w Pr.

Slmllarly, the polygonal curves afl and ¢¥ R together

with 'yL and 'yR divide ¢} into k simple polygons,
@, ..., Qk, corresponding to the subpolygons of P.

Both v and vf have O(n) vertices, so the k sub-
polygons P;.of P have a total of O(n) vertices. Each
polygonal curve ag and aRz has O{n) vertices, so
each of the k subpolygons Q; of Q has O(n} vertices.
Note that many of the vertices of J; will correspond
to points on the boundary-of F; which are not vertices
of F;. '

Let n; be the number of vertices of subpolygon P
By Lemma. 1, isomorphic triangulations of F; and @Q;
matching corresponding points on the boundaries of
each can be constructed in O(nn;) time using O(nn;)
triangles. Only the corresponding boundary points
are used -as boundary triangulation vertices, so the
triangulations of P; and @Q; can be patched together
" to give isomorphic triangulations of P and Q. Since
the sum of the number of vertices n; is O(n), the
isomorphic triangulations use O(n?) triangles.

Partitioning P by vF, 7§, of ; and of
time. Constructing. each crfﬂ. and af’i takes O(n)
time for a total of O(n?) time to subdivide (. It takes
O(nny) time to construct isomorphic triangulations of
the subpolygons P, and @; and the sum of n; is O(n),
so the total running time is O(n?). o

Re_ferences

[1] AroNoOV, B., SEIDEL, R., AND SOUVAINE, D. .

On compatlble trlangulatlons of simple polygons.
Comput. Geom. Theory Appl. 8,1 (1993), 27-35.

[2] GupTA, H., aND WENGER, R. Constructing
pairwise dlS_]OlIlt paths with few links. Technical
Report OSU-CISRC-2/97-TR16, The Ohio State
University, Columbus, Ohio, 1997.

[3] GupTa, H., AND WENGER, R. Constructing
piecewise linear homeomorphisms of simple poly-
gons. J. Algorithms 22 (1997), 142-157.

[4] HERTEL, S., AND MEHLHORN, K. Fast triangu-
lation of simple polygons. In Proc. {th Internat.

" Conf. Found. Comput. Theory (1983), vol. 158

of Lecture Notes in Computer Science, Springer-
Verlag, pp. 207-218.

{5] KraNAKIS, E., AND URRUTIA, J. Isorhorphic tri-
angulations with small number of Steiner points.

In Proc. 7th Caned. Conf. Comput. Geomn. (1995), -

pp- 291-296.

[6] O'RoURKE, J. Computational Geometry in C. -

Cambridge University Press, 1994.

- [7] PacH, J., SHAHROKHI, F., AND SZEGEDY, M.
Applications of the crossing number. In Proc. 10th

takes O(n}

[8]

9]

10

Annu. ACM Sympos.
pp. 198-202.

Comput. Geom. (1994),

SAALFELD, A. Joint triangulations and triangu-
lation maps. In Proc. 3rd Annu. ACM Sympos.
Comput. Geomn. (1987), pp. 195-204.

SOUVAINE, D., AND WENGER, R. Constructing
piecewise linear homeomorphisms. Technical Re-
port 94-52, DIMACS, New Brunswick, New Jer-
sey, 1994.

On Folding Rulers in Regular Polygons

(extended abstract)

Naixun Pei”

and Sue Whitesides!

McGill University?

Abstract

An l-ruler is a sequence of n rigid rods lying
in the plane and joined consecutively at their
endpoints. The endpoints are joints about which
the rods may freely turn, possibly crossing over
one another. Fach rod has length [. An l-ruler
is said to be confined inside a polygon P if each
-link of the ruler must remain inside the closed,
bounded region bounded by P at all times. An
{-ruler confined inside P is said to be elways-
foldable if, for each possible initial configuration
of the ruler, the ruler can be folded onto a single
segment of length /.

A study of [-rulers confined to equilateral
triangles was carried out by van Kreveld,
Snoeyink and Whitesides, who showed that
always-foldability is a property that alternates
four times between holding and failing as ! grows
from 0 to its maximum possible value. They
asked whether this phenomenon occurs for {-
rulers confined inside other polygons.

The present paper extends their study to reg-
ular polygons. In particular, it answers their
question in the affirmative: in regular 2k-gons,
the always-foldability of I-rulers alternates be-
tween holding and failing three times as [grows
from 0 to its maximum possible value.

1 Introduction

A chain T is a sequence of n rigid rods (also
called links) joined consecutively at their end-

*pei@mufl.cs.megill.ca

fsne@cs.megill.ca Supported by FCAR and NSERC.

'School of Computer Science, 3480 University St.
#318, Montreal, Quebec H3A 2A7 CANADA

1L

Figure 1: An [-ruler confined in a regular

hexagon

points (also called joints), about which they may
freely rotate. An {-ruler L is a chain whose links
all have the same length . _

A chain T is said to be confined inside a poly-
gon P if its links must always lie inside the
closed, bounded polygonal region determined by
P. Two configurations of a chain I confined in-
side a closed polygonal region P are said to be
equivalent if one can continuously move to the
other while the links remain within P and while
the lengths of the links maintain their initial val-
ues at all times.

Suppose an l-ruler L has just one equivalence
class of configurations under the above notion of
equivalence. Then in particular, every arbitrary
configuration of L is equivalent to one in which
all the links coincide. In this case, we say that L
is’ always-foldable. Otherwise, when L has more
than one equivalence class of configurations, we
say that L is not-always-foldable.

This paper studies always-foldability for I-
rulers confined inside a regular polygon P.

Whether or not such an I-ruler is always-foldable
depends in part on the relationship between I
and w, the width of P. Here, recall that the
width of any polygon, regular or not, is the mini-

mum possible distance between two parallel lines

of support for the polygon.

1.1 Summary of Main Results

Our main results are as follows. Let L be an
[-ruler confined inside a regular 2k-gon P. Then
L is always-foldable for I < w; L is not-always-
foldable for w < ! < m, where m is the distance
between a vertex of P and the midpoint of either
of the two sides of P farthest from the vertex;
finally, L is again always-foldable form < 1 < d,
where d is the diameter of P. The paper [5]
proved that equilateral triangles exhibit more
than one alternation of the always-foldability
property and asked whether any other polygons
exhibit this phenomenon. Hence, we answer this
question in the affirmative, as we show regular
2k-gons exhibit multiple alternation. Note that
one would in general expect at least one transi-
tion, from always-foldable, for sufficiently small
values of [, to not-always-foldable for larger val-
ues of 1.

For regular {2k + 1)-gons, we show that L is
always-foldable for I < ¢, where b€ is the supre-
mum of the radii of circles that, no matter where
their centers are placed on P, cut P in exactly
two places. For w < [< d, L is always-foldable.
However, for b¢ < ! < w, we do not know for
which, if any, values L is always-foldable. We
leave this as an open problem.

1.2 Background

Reconfiguration properties of chains have been
considered for example in [1}, [2], [3], [4], [8],
and [9]. In [7], the number of equivalence classes
of unconfined closed chains (i.e., 4, = Ap) in
arbitrary dimension is determined. Chains con-
. fined inside a circle and having an extremal joint
anchored were studied in [1] and in [2]. An-
- chored and unanchored chains confined inside a
square were studied in [3] and [4]. Unanchored
~ chains whose links all have the same length (i.e.,

iz

l-rulers) and that are confined inside an equi-
lateral triangle were studied in [5]; anchored
I-rulers were studied in [10]. Chains are them-
selves special cases of planar linkages, surveyed
in [11].

1.3 Terminology

We say that a chain T is bounded by b, denoted
by I < b, if no link has length greater than b.
A convex obtuse polygon is a convex polygon

‘with all internal angles measuring 7 /2 or more.

We denote by § a square with unit side length.
We denote the distance between two points p, ¢
by |pgl.

We regard a polygon P as a closed, polygonal
curve bounding a two-dimensional, region of fi-
nite area. When we are referring to the closed
curve and not to the region it bounds, we use
the notation 3P for emphasis.

For a chain ' confined inside a polygon P,
we say that T is in Rim Normal Form (denoted
RNF), if all joints of T lie on 0P.

In addition to the width w and diameter d of
a polygon, we also make use of the lengths be
{defined for arbitrary polygons) and m (defined
for regular 2k-gons); recall the definitions for m
and b€ from section 1.1. :

2 [-Rulers in a Square

In this section, we consider the case of a square
S of unit side. For 2k-gons with &k > 2, covered
in a later section, the proofs will be essentially
the same. '

2.1 Short Links

Here we prove that any [-ruler [with [< 1
is always-foldable. The key idea is to begin by
moving L to Rim Normal Form (RNF). The fol-
lowing Fact is from [4]. -

Fact 2.1 Ifl <1, then L inside § can be moved
to RNF

Always-foldability for { < 1 is an immediate
consequence, as described below.

*A,

Figure 2: Always-foldable short-link rulers

Theorem 2.1 If I < 1, then L inside 5 is
always-foldable.

Proofi Move L to RNF in accordance with
Fact 2.1. Then fold L inductively as follows.
Fixing A, As,..., An, Totate [Ap, 4;] about
Aq until Ag and A, coincide, as Figure 2 shows.
This is possible since 8% = w = 1 and [< 1.
Continue this process until T' folds. a

2.2 Midrange Links

This subsection shows that [-rulers inside § with
1 < | € +/5/2 are not-always-foldable. Note
that v/5/2 is the distance between a vertex of §
and the midpoint of either of the two sides of §
that are non-incident with the vertex (note the
dashed line in Figure 3).

Theorem 2.2 If 1 < 1 < +/5/2, then L inside
S is not-always-foldable.

Proof: Let sy,s9,83,84 be the sides of 5,
let vy, vq,v3,v4 be the vertices of 5§, and let
uq, Uz, Us, thq be the midpoints of 8y, $9, 83, 84, Te-
spectively. Suppose that a, § are angles between
[Ao, A1, [A1, A2] and s, respectively, as shown
in Figure 3.

Initially we put L in the following configura-
tion: Ag lies at vy, Ay lies on s3, A: lies at a
point on s; but different from v;. See Figure 3.

13

v, A, s v,
1 S3
S, ;
I
g
;
u4 4 u2
;
l’f
I’ S2
A O B
s, :
v
v 2
A, i, A, :

Figure 3: Not-always-foldable rulers

We show that I cannot be folded from this con-
figuration.

Since 1 < 1 € +/5/2, initially A; lies between
v4 and uz. Therefore § > 7 /2 initially.- Clearly
a < 7/2 initially. If L is foldable, let v be the
angle between s the line through some segment
onto which L can be folded. Without loss of gen-
erality, assume r < 7/2. Since initially § > 7 /2,
there exists some intermediate configuration in
which 8 = 7/2, i.e., [41, A3] is perpendicular to
$1. This contradicts { > 1. |

2.3 Long Links

This subsection shows that any [-ruler inside §
with [> v/5/2 is always-foldable. We obtain
this by proving that such rulers initially have
to lie in “nearly-folded” configurations. In the
extreme case of [= /2, the diameter of S, L
has to exhibit an already folded configuration.

Before proceeding to the foldability result, we
give some preliminaries. Again, let $1, 82, 53,84
be the sides of S, let v, v, v3, v4 be the vertices
of 5, and let wuy,us, us, uq be the midpoints of
81,89, $3, 84, respectively. Define (' as the area
delimited by vyua, usvs, vausg, uz?1, as shown in
Figure 4. C3,C3 and C4 are similarly defined.
Then we have the following.

Lemma 2.1 Ifl > +/5/2, then L inside S falls

completely inside exzactly one of C1,C2,Cs, Cy.

i

Figure 4: L lies inside one of Cy, Cq, C3, Cy.

Proof: Since C1JC,UCsUCs = 5, L lies in-

side C11JCoUC3UC4. Next we show that L

lies inside exactly one of Cy,C3, C3, Cy.

Note that for any 7,7 with 1 < 4,7 < 4,i# 7,
¥p € C;,Vq € C;, d(p, g) achieves its- maximum
at some vertex and the midpoint of some side.
Therefore,

d(p,q) < V5/2.
Jemax,, d(p.q) <5/

Thus,

d(p,q) < V5/2. (*)

If there is a conﬁgﬁration in which L does not
~ He in any single one of Cy,Cy,C5,C4, then by
convexity there exists ¢, j with 1 < ¢, < 4,i #J

max
pEC; g€C; -0

[Ao, A1} about A; until Ag and Ay coincide, as
Figure 5 shows. We claim that Ag will not hit
the boundary 8C; of Cy during this reconfigu-

" ration.
v, Lt3 Vs
D, /A,
A,
Ci
U, u,
p
q
i
v} ” Y
1
Figure 5: Folding long-link rulers
This can be seen as follows. Suppose

that {p,¢} = C(v3,v/5/2)(10C, and note that
{us,u2} = C(ul,\/E/z)nacl. We define cone
D1 as the area delimited by vzug, U3 ly, Upvs and
cone Do as the area delimited by v1p, pg, gvg, as
shown in Figure 5. Since ! > /5/2, each joint

~of I has to lie inside Dy or Ds.

and a link of L, say L;, such that Ag lies at |

some p € C; and Ay lies at some ¢ € C; — Ci.
See Figure 4. By (*), d(p,q) < v/5/2. This
contradicts [> /5/2. SO

Now we are ready to give the following fold-
ability result.

Theorem 2.3 Ifl > \/g/Q, then I inside S is
always-foldable.

Proof: By Lemnma 2.1, L lies inside exactly one
of C1,C3,Cs, Cy. Without loss of generality, as-
~sume that L lies inside C;. We fold L induc-
tively as follows. Fixing Ay, Asg,..., Ay, rotate

14

If Ap lies in Dy, then Aj lies in D4 and A lies
in Dy. If Ap lies in Dy, then A lies in I and
As lies in D5, In both cases, Ag will not hit 8C}
before Ag and A; coincide. Hence -the claim.

Continue this process until I' folds. o

3 [-Rulers in a2 Regular 2k-gon

This section generalizes the foldability result of
an [-ruler within squares to arbitrary regular 2k-
gous.

3.1 Foldability within Regular 2k-
gons

The foldability result of an {-ruler within a-
square can be readily extended to any regular
2k-gon, based on the following results from {9].

Fact 3.1 Let T be an n-link chain confined
within a convez obtuse polygon P. IfT < b%,
then T can be moved to RNF.

Fact 3.2 Let P be a reqular 2k-gon. Then b =
w.

We thus have the following, which immed;i-
ately implies the foldability of rulers with short
links inside a regular 2k-gon.

Fact 3.3 Let P be a regular 2k-gon. Ifl < w,
then L can be moved to RNF.

Theorem 3.1 Let P be a regular 2k-gon. Ifl <
w, then L is foldable.

The foldability of rulers with midrange and
long links within a regular 2k-gon is completely
similar to that within a square. In the following,

let P be a regular 2k-gon, let v be a vertex of

P, let u be the midpoint of an opposite side of
v, and let m = |uol. '

Theorem 3.2 Let P be a regular 2k-gon. If
w < | < m, then L is not-always-foldable. Refer
to {a) of Figure 6.

Theorem 3.3 Let P be a regqular 2k-gon. Ifl >
m, then L is always-foldable. Refer to (b) of
Figure 6.

4 Regular (2k + 1)-gons

The reason that the above approach does not
apply to regular (2k + 1)-gons is due to gap be-
tween b and w > 4% in regular (2% + 1)-gons.
For b¢ < I < w, we do not know the foldability
of L. '

We observe that an [-ruler remains not-
always-foldable when ! > w, for reasons similar
to the non-foldability of rulers with midrange
links within a square. We use Figure 7 to sug-
gest the ideas. This phenomenon shows that
2k-gons and (2k + 1)-gons as confining regions
exhibit different foldability properties.

Below we give the known foldability results of
rulers within regular (2k + 1)-gons and pose the
foldability of an {-ruler with % < I < w inside
regular (2k + 1)-gons as an open problem.

i5

(a)

(b)
Figure 6: Foldability within regular 2k-gons

Theorem 4.1 Let P be a regular (2k 4+ 1)-gon.
If1 <%, then L is always-foldable.

Theorem 4.2 Let P be a regular (2k + 1)-gon..
Ifl > w, then L is not-always-foldable. Refer to
Figure 7.

5 Conclusion

As the segment length ! of an [-ruler confined
in a polygon P increases from 0 to its maxi-
mum value, one expects that for all sufficiently
small [, the ruler is always-foldable and that for
some critical value of {, the ruler become not-
always-foldable. This paper has shown that in
a regular 2k-gon P, the always-foldability prop-

"erty alternates three times, from holding, to not

Figure 7: Folda,bility within regular (2k + 1)-
gons :

holding, and finally back to holding. This an-
swers in the affirmative the question of [5] as to
whether interesting alternation phenomena oc-
cur for polygons other than equilateral triangles,
where alternation occurs four times.

For regular 2k-gons, we exhibited the criti-
cal values of { for which the transitions between
always-foldability and not-always-foldability, or
the reverse, oceur.

Tor regular (2k + 1)-gons, k > 1, we showed
that all such transitions occur between ¢ and
w. We leave as an open problem the number of
transitions that occur in this range, and their
corresponding critical values.

- References

(1] J. Hopcroft, D. Joseph and S. White-
sides. On the movement of robot arms in
2-dimensional bounded regions. SIAM J.
Comput. 14 (2), pp. 315-333 (1985).

[2] V. Kantabutra and S. R. Kosaraju. New al--

_gorithms for multilink robot arms. J. Com-
pul. Sys. Sci. 32, pp. 136-153 (1986).

[3] V. Kantabutra. Motions of a short-linked

robot arm in a square. Discrete Comput.-

Geom. T, pp. 69-76 (1992).

[4] V. Kantabutra. Reaching a point with

an unanchored robot arm in- a square.

Manuscript, accepted for publication, In-

[5]

[9]

[10}

[11]

16

ternational J. of Computational Geometry
and Applications.

M. van Kreveld, J. Snoeyink and S. White-
sides. Folding rulers inside triangles. Dis-
crete Comput. Geom. 15, pp. 265-285
(1996). A conference version appeared in
Proc. of the 5th Canadian Conference

on Computational Geometry, August 5-10
(1993), Waterloo, Canada, pp. 1-6.

Jean-Claude Latombe. Robot Motion Plan-
ning. Kluwer Academic Publishers, Boston
MA, USA (1991). '

W. Lenhart and S. Whitesides. Reconfig-
uring closed polygonal chains in Euclidean
d-space. Discrete Comput. Geom. 13, pp.
123-140 (1995).

- N. Pei and 5. Whitesides. On the Reconfig-

uration of Chains in Proceedings of Cocoon
'96, Hong Kong, June 17-19, 1996, Springer
Verlag LNCS 1090, pp. 381-390.

N. Pei. On the Reconfiguration and Reach-
ability of Chains. Ph.D. Thesis, School
of Computer Science, McGill University,
November, 1996.

I. Suzuki and M. Yamashita. Designing
multi-link robot arms in a convex polygon.
International J. of Computational Geome-
try and Applications, v. 6, no. 4, pp. 461-
486 (Dec. 1996).

S. H. Whitesides. Algorithmic issues in the
geometry of planar linkage movement. The

Australian Computer Journal, Special Issue
on Algorithms, pp. 42-50 (May 1992).

On the number of internal and external
visibility edges of polygons

Jorge Urrutia*
- Department of Computer Science
University of Ottawa, Ottawa ON Canada

Abstract

In this paper we prove that for any simple polygon P with n ver-
tices, the sum of the number of strictly internal edges and the number
of strictly external visibility edges of P is at least [3_712_,—_“ -4,

The internal visibility graph of a simple polygon P is the graph with
vertex set equal to the vertex set of P, in which two vertices are adjacent if
the line segment connecting them does not intersect the exterior of P. The
external visibility graph of P is defined in a similar way, except that the line
segments that generate its edges are not allowed to intersect the interior of P.
A visibility edge is called strictly infernal (resp. strictly external) if it is not
an edge of P. In this paper we prove the following conjecture of Bagga [1]:

For any simple polygon P with n vertices, the number of strictly
internal visibility edges plus the number of strictly external visi-
bility edges is at least |32=1] — 4.

In Figure 1 we present a family of polygons that achieve this bound. They
have exactly n — 3 strictly internal visibility edges, and ?-'—Z'ﬁ strictly external
visibility edges.

*Supporte_d by NSERC of Canada

17

Figure 1: A sequence of polygons for which the number of strictly internal -
© plus strictly external visibility edges is exactly | 221] — 4.

Let int(P) and ext(P) denote the number of strictly internal and external
visibility edges of P. Some observations will be used to prove that for any
polygon P with n vertices, int(P) + ext(P) 2 j2e=t] —4. A vertex v of P
will be called internal if it is in the interior of the convex hull Conv(P) of
P. An external vertez is a vertex of the convex hull of P.

The following result is easy to prove:

Lemma 1 Let P be a simple polygon with n vertices, k .of which are internal.
Then ext(P) is at least k.

From this we have:
Lemma 2 If P has k internal vertices, then int(P)+ ext(P) > (n —3) + k.

Proof: Observe that any triaﬁgulation of P has exactly n—3 strictly internal
‘edges. By Lemma 1, ext(P) > k. ' ' |

We now prove:

Lemma 3 If P has k internal vertices, then P can be decomposed into
ezactly k + 1 convez polygons Py, ..., Peys. Moreover this decomposition
can be achieved in such a way that if n; is the number of vertices of F;,
i=1,...,k+1, then ng + ...+ ngp =n + 3k, ' :

Proof: One at a time, and for all the internal vertices v of P, repeat the

following operation: starting at v, draw a line segment that bisects the in-
ternal angle of P at v and extend it until it hits the boundary of P, or &

18

previously drawn line segment. If this line segment hits a vertex of P, rotate
it slightly so that it ends in the middle of an edge; see Figure 2. Observe
that the endpoints of these segments, appear as vertices in exactly two of
the resulting subpolygons of P, and therefore each of them contributes four
units to ny + ... + nggr. Our result now follows. |]

Figure 2: Partitionng a polygon into convex subpolygons.

In our previous lemma, each P; has two types of vertices; those which are
vertices of P, which we call real vertices, and vertices which are endpoints
of the line segments used to partition P, and which are not vertices of P.
Let P! be the convex polygon generated by the set of real vertices of P, and
m; be the number of vertices of P/. Notice that if m; > 4, then any strictly

internal visibility edge of F; is intersected by at least m; — 3 strictly internal
visibility edges of F;. Thus we have:

Lemma 4 If P! has m; vertices, m; > 4, then any strictly internal visibility
edge of P! is intersected by af least m; — 3 strictly internal visibility edges of
P!,

We now have:

19

Theorem 1 For any szmple polygon P with n vertices, int(P) + ext(P) >
|'3ﬂ2 1'| _ 4' . . .

Proof: Suppose that P has k internal vertices. Partition it into &+ 1 convex
polygons F;, ..., Pryy as in Lemma 3. If m; > 4, select a strictly internal
visibility edge e; of P/, ¢ =1,...,k + 1. Obtain an internal triangulation T
of P such that the set of edges e; as defined before, belong to T. We now
" show that ini(P) > 2n - 2k — 6. By Lemma 4, for each m; > 4, edge e; is
intersected by at least m; — 3 strictly internal edges of F/. Since e; belongs
to T', none of these edges belongs to T'. Furthermore these edges are strictly
mternal mszbu’zty edges of P. It now follows that '

int(P) > (n—3)+ D (mi=3) > (n 3)+ Z (m,;—3)

mi>4
But

S (mi-3)=n+k-3(k+1)=n—2k=-3
i=1,..,k+1 '

(each internal vertex of P appears in two P,’s and each vertex in the convex
hull of P in one). Then we have

int(P})>2n — 2k — 6
By Lemma 1, we know that ext(P) > k, and thus we have:
| int(P) + ext(P) > 20 — b — 6
On the other ha,nd by Lemma-2 we have that |
_ ext(p) +int(P) > (n—3)+ k
Combining these equations we get that int(P) + ext(P) > 2] —4. B

References

[1] J. O’Rourke, Combinatorics of visibility and 1llu1mnat1011 problems.
' Techmcal report 1996.

20

On a partition of point sets into convex polygons

MasaTsucU URABE *

Department of Mathematics, Tokai University,
3-20-1 Orido, Shimizu, Shizuoka, 424 Japan

April 5, 1997

ABSTRACT

In this paper three partitioning concepts are introduced. A partition of point sets in the plane
is a convex partition if it separates the points into subsets such that each subset is a convex
polygon. The results concern convex partitions of points sets with various conditions on the
intersection properties. '

1 BACKGROUND

Ester Klein {K](see also [ES1]) showed that from any five points in the plane, no three collinear,
it is always possible to select four that comprise the vertices of a convex quadrilateral. She asked
what the least integer X(n) is such that from any X(n) points in the plane, no three collinear,
one can always select the vertices of a convex n-gon. That X(n) exists was proved by Erd&s and
Szekeres [ES1] using Ramsey’s theorem. A simple proof has been given by Johnson [J]. Klein
result is X(4)=5. Kalbfleisch, Kalbfieisch and Stanton [KKS] proved that X(5)=0. A short
proof was also given by Bonnice [B]. Erdés and Szekeres proved the following theorem.

Theorem (Erdots-Szekeres theorem [ES2]).

n—2 < < 2n—4
2 +1—X(n)"’(n—2

Any closing of the gap between these bounds would be significant. A conjecture is that
on—2 1 1 is the correct value. So the first unsettled case is whether X(6)=17 or not. This
conjecture can be equivalently stated as follows: every configuration of n points in the plane,
no three collinear, contains the [logy(n — 1)} + 2 vertices of a convex polygon.

Erdés [E] asked the following related question. What is the smallest integre Y(n) such that
from any Y(n) points in the plane, no three collinear, one can choose the vertices of a convex
n-gon, with none of the other points in its interior? We call a such convex polygon an empty
convex polygon. Y(4)=>5 is easy, and Harboth [H1] showed that Y(5)=10. Horton {H2] exhibited
arbitrarily large sets containing no empty convex heptagons, so that Y(n) does not exist for

* e-mail address: qzg00130@scc.u-tokal.ac.jp

21

n > 7. Thus the outstanding question is whether Y(6) exists, and if so what its value is.
With the help of a computer Avis and Rappaport [AR] have found a set of 20 points, no three
collinear, containing no empty hexagon. Moreover Fabella and O'Rourke [FO] found a similar
such set of 22 points. Hence Y(6) > 23, if it exists. ' : '
Another result concerning a convex partition is Radon’s theorem [R]: any n > d + 2 points in
"E? can be split into two subsets whose convex hulls have a common point. It is a fundamental
result concern a convex partition of point sets with the intersection properties. In the next
section we consider a related problem, namely, the partition of point sets in the plane into
convex polygons [U1]. :

2 CONVEX PARTITION

Let P be a set of n points in the plane, no three collinear. A partition of P is called a conver
partition if it separates P into k subsets S1,52,...,5; Uk;S; = P, such that each CH(S;) is
a convex polygon the number of whose vertices is |S;|, where CH(S;) refers to the convex hull
of the points set S;. Then we say that the convex partition has size k. A partition TI(P) is
disjoint if each CH(S;) is disjoint from the others; CH(S;) N CH(S;) = @ for any pair of %, .
Given a point set P, let f(P) denote the minimum size of any disjoint partition of I1(P). Define
F(n) = maz{f(P)}, over all sets P of n points in the plane. Our first problem is to determine

Theorem 1.

] sros 2]

Next, we consider a related problem. Given a point set P, let II'(P) be a convex partition
of P such that each CH(S;) is empty and let g(P) be the minimum size of any II'(P). Define
G(n) = maz{g(P)}, over all sets of n points in the plane. Then we show the following:

n—1 3n
< < | —
[4 1 <6l [11}

Theorem 2.

We think that our upper bound for G(n) is still fairly loose but we could not improve it to
n/4. In fact there exists a configuration which satisfies G(8) = 3. Note that the inequality
f(P) > g(P) holds for any set P of n points in the plane, that is, a set of disjoint convex
polygons is also a set of empty convex polygons. Hence F(n) > G(n) holds for every positive
integer n. In addition, there exist several sets for which the inequality is strict.

The third problem we consider is the follwing. Given a set P of n points in the plane, no
three collinear, estimate the minimum number of distinct convex polygons which cover P. Let
h(P) be the minimum size of any convex partition of P. Define H(n) = maz{h(P)}, over all
sets P of n points in the plane. Then we prove the following result. o

Theorem 3.
- 1 2n

— < H e
logon + 2 <Hin) < logyn —logg e

22

3 3-DIMENSIONAL CASE

In the previous section, we studied the problem of partitioning point sets in the plane so that
each equivalence class is a convex polygon disjoint from the others. We study here the case that
3-dimensional Euclidean space E® of this problem [U2].

Let P be a set of n points in E? which is in general position, no four points on a plane. A
m-polytope is a convex polytope in E2 the number of whose vertices is m. A partition of P is
called a conver partition if P is partitioned by & subsets Sy, Sz, ..., Sk such that each CH(S;) is
a convex |S;|-polytope. Let IT3(P) be a convex partition of P such that each CH(S;) is disjoint
from the others. Given a point set P, let f3(P) denote the minimum number of disjoint convex
polytopes over all convex partitions II*(P). Define F(n) = maz{ F3(n)}, over all sets P of n
points in E3. Moreover, let ¢°(P) be the minimum number of sets in any partition into empty
convex polytopes of P. Define G3(n) = maz{g3(P)}, over all sets P of n points. We now prove
the following result. ' :

Theorem 4.

. 2n
[W“ <G3(n) < F¥(n) < [?W

4 REMARKS

The upper bound for F(n) can not be improved to 3n/11. In fact, there exists a configuration
which satisfies F(11) = 4. To prove the lower bound for F(n), we constructed the 2m points
set Qm U @/, such that any polygon determined by three points of (e, contains at least one
point of @',. Then the configuration requires f’-‘-:fl] disjoint (empty) convex polygons in any
disjoint partition. For the 3-dimensional case, we conjecture that such a configuration exists;
there exists a 2m points set Qm U @), such that any 4-polytope in @, contains at least one
point of @,. Thus we conjecture that F3(n) = n/6.

- These problems can be generalized, in an obvious way, to higher dimensions. First, generaliz-
ing the definition of F3(n), let F%(n) denotes the maximum of the minimum number of disjoint
convex polytopes in E¢. Then we conjecture that for any set of n points in general position i
Ed d>3, Fén)=n/2d. '

Another interesting problem is to study a similar question for empty convex sets. Given a
point set P in B4, let g%(P) be the minimum number of sets in a partition into empty convex
polytopes of P. Define G%(n} = maz{g?(P)}, over all sets P of n points. What is the exact
value for G¢(n)? In general, the inequality Fi(n) > G%(n) holds for every positive integer n.
We know that F2(n) > G%(n) for n = 8,11,13. It would be nice to generalize to other values
of n, d.

We are also interested in the following application. Estimate the minimum number of distinct
convex polytopes which cover a given point set in E?. Let h%(P) be the minimum number of
subsets in any convex partition of a given point set P in E%. Define H%(n) =.maz{h*(P)} over
all sets P of n points in E%, An open problem is to find the exact value for H d(n).

23

ACKNOWLEDGEMENT

. The autor would like to thank Professor David Avis for his valuable suggestions..

References

[AR] D.Avis and D.Rappaport, Computing the largest empﬁy convex subset of a set of points,
Proc First ACM Symp. on Computational Geometry, Baltimore (1985) 161-167. '

[B] W.E.Bonnice, On convex polygons determined by a finite planar set, Ame. Math. M onthly,
81, (1974) 749-752.

~ [E] P.Erdé&s, Some combinatorial preblems in geometry, Geometry and Differential Geometry
(Proc. Conf. Univ. Haifa 1979), Lecture notes in Math. 792, Springer-Verlag, (1980) 46-53.

[ES1] P.Erdés and G.Szekeres, A combinatorial problem in geometry, Compositio Math., 2,
(1935) 463-470.

[ES2] P.Erdés and G.Szekeres, On some extremum problems in elementary geometry, Ann.
Univ. Sci. Budapest 3/4, (1960/61) 53-62.

[FO! G.Fabella and J.O'Rourke, Twenty—two points with no empty hexagon, Manuscript,
(1986).

[H1} H.Harborth, Konvexe Fiinfecke in ebenen Punktmenger, Elemn. Math., 33, (1978) 116-118.
[H2] J.D.Horton, Sets with no empty convex 7-gons, Caenad. Math. Bull, 26, (1983) 482-484.

[J] 8.Johnson, A new proof of the Erdés-Szekeres convex k-gon result, J. Comb. Th. (A), 42,
(1986) 318-319.

[KKS] J.D.Kalbfleisch, J.G.Kalbfleisch and R.G.Stanton, A combinatorial problem on convex

n-gons, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, Baton
Rouge, (1970} 180-188.

[K] E.Klein, see Moser Wm., Research problems in Geometry, McGill Univ. { 29, (1981).

[R] J.Radon, Mengen Konvexer Korper, die einen gemeinsamen Punkt enthalten, Math. Ann.,
- 83, (1921) 113-115.

[U1] M.Urabe, Ona partition into convex polygons, Discrete Apph:ed Math., 64, (1996) 179-191.

[U2] M.Urabe, Partitioning point sets in space into disjoint convex polytopes, to appear in’
Comput. Geom Theory Appl..

24

Domino Tilings and Two-by-Two Squares
| (Extended abstract)

Jurek Czyzowicz®!

(czyzowicz@uqah.uquebec.ca)

Abstract

We consider the graph of domino tilings of simple
polygons: two tilings are adjacent if one can be ob-
tained from the other via a flip operation of the form
A — Mor Ml — B The graph of domino tilings
of simple polygons is connected and we study the
complexity of determining adjacency in this graph.
We consider domino tilings of n X n squares. For
k = 1,2 we characterize the domino tilings of n xn
squares which. have exactly £ nonoverlapping 2 x 2
squares. We also consider combinatorial enumeration
problems related to such tilings.

1 Introduction

Polyominoes are shapes formed of equal sized squares
(e.g. unit squares). They were introduced by 5. W.
Golomb [2, 1]. Dominoes are the simplest nontrivial
polyominoes and consist of two unit squares adjacent
along an edge.

We consider domino tilings of rectangles and
squares {also known as checkerboards). Every domino
tiling of a nontrivial rectangle has two dominoes form-
ing 2 2 x 2 square of the form &5 or 0. We are
interested in the problem of characterizing domino
tilings of n X n squares with exactly k nonoverlapping
2 x 2 squares. We give such characterizations when
k = 1,2: if a domino tiling of an = X n square has
exactly k nonoverapping squares then these squares
must lie with a bounded subtiling located at the cen-
ter of the square. In particular, there is a unique {up
to rotation) domino tiling of an nxn square which has

§ Département d’Informatique, Université du Québec a Hull,
_ Hull, Québec J8X 3X7, Canada.

*Carleton University, School of Computer Science, Ottawa,
ON, K18 5B6, Canada.

TUniversity of Ottawa, Department of Computer Science,
Ottawa, ON, K1N 9B4, Canada.

tResearch supported in part by NSERC (National Science
and Engineering Research Council of Canada) grant.

Evangelos Kranakis*!

(kranakis@scs.carleton.ca)

25

Jorge Urrutiatt

(jorge@csi.uottawa.ca)

exactly one (respectively, two nonoverlapping) 2 x 2
square(s).

The graph of domino tilings of simple polygons
is connected and we study the complexity of deter-
mining adjacency in this graph. In the next sec-
tion we consider the distance function among tilings
and study the complexity of computing the distance
among tilings. For the case of n X 2,7 X 3 it is even
possible to derive recursive expressions. In the sequel
we consiser combinatorial formulas on the number of
tilings with a given number of nonoverlapping 2 X 2
squares.

A related study on polyomino tilings is in [3]. Com-
binatorial studies on domino tilings can be found in
the book [4]. Extensive studies and literature on
tilings can be found in [5]. Throughout this paper
we assume that the dominoes are located at integer
lattice points.

2 2 x 2 Squares in Rectangles

In this section we concentrate on proving that every
domino tiling of a rectangle with both sides > 1 must
have a (subtiling consisting of a) 2 x 2 square. All
definitions below refer to a domino tiling of a given
rectangle.

DEFINITION 1 An L-domino (respectively, R-
domino) configuration is o vertical domino with
o horizontal domino attached either to s right
(respectively, left) or below. The base of an L-
domino (respectively, R-domino) configuration is the
y-coordinate at the base of the horizontel domino
atteched to it

Thus among the four polyominoes iz & =8 4 the two
configurations to the left are I[-dominoes while the
two configurations to the right are R-dominoes.

DEFINITION 2 An (L, R)-domino pair is a pair con-
sisting of an L-domino configuration and an R-

domino configuration such that both configurations
have identical bases. Muoreover the configurations are
nonoeverlapping and the L-domino configuration les
to the left of the R-domino configuration.

This gives rise to four (L, R)-domino pairs (b =],
=4 B B A By rotating the configurations
90, 180, 270 degrees it is clear that we may well de-
fine four types of {L, R)-domino pairs. Results below
are valid for all four types but for convenience we
mention the proofs only for the (L, R)-domino pair
corresponding to the horizontal.

DEFINITION 3 For a given (L, R)-domino pair whose
vertical dominoes have x-coordinates 0, a respectively,
the pyramid polygon is the polygonal line delimited
by the horizontal straight line segment determined by
the points (0,0), (a,0), the points (la/2] — 1,a/2] +
2}, {la/2] +1, la/2] +2) and the line segments deter-
mined by tracing the points (see Figure 1)

(0’ U)’(01 3)’(1’3))(114)" "1(l_a/2j - 17 La’/zj + 2)

and

(a,0),(a,3),(a—1, 3}; (a-l, 4),...,(le/2]+1, a/2]+2).

The definition above can be easily adapted to any

(L, R)-domino pair as above. The following Lemma -~

will be very useful for all our subsequent considera-
tions. .

LEMMA 4 (The Pyramid Lemma) Suppose that
domino tiling of a rectangle and an (L, R)-domine
pair is given. Then there is a 2 x 2 square within the
pyramid polygon formed by an (L, R)-domino pair.

ProoF. There are two L-domino and two R-domino
configurations. This give rise to four possible (L, R)
-domino pairs. It is easy to see that it is enough
to consider only one such domiino pair, namely o
). (We leave it to the reader to find the elementary
transformations that reduce to this case.)

Starting with the dominoes L, R we search for a
2 x 2 square in the domino tiling by alternating be-
tween left and right side of the pyramid polygon de-
termined by the given (L, R)-domino pair. Look at
the “vacant” square position immediately to the right
of the vertical domino in the L-domino configuration.
If this is occupied by a horizontal domino then the
2 x 2 square has been found and the proof is com-
plete. Otherwise this square must be occupied by a
vertical domino. H the position which is below and
to the right of this domino is occupied by a vertical
domino then again the 2x 2 square has been found and
the proof is complete. Otherwise this square must

=
7"

1

1

1

1

I

1

1

1
=

=

Figure 1: The pyramid of a tiling determined by an
(L, R)-domino pair. If a is the distance of the verti-
cal dominoes of the (L, R}-domino pair then a 2 x 2
square is guaranteed to exist within the pyramid de-
picted. The height of the pyramid is at most |a/2]+2.

be occupied by a horizontal domino. Next imitate
this argument with domino R. Look at the “vacant” -
square position immediately to the left of the verti-
cal domino of the R-configuration. If this is occu-
pied by a horizontal domino then the 2 x 2 square
has been found and the proof is complete. Otherwise
this square must be occupied by a vertical domino.
If the pogition which is below and to the left of this
domino is occupied by a vertical domino then again
the 2 x 2 square has been found and the proof is com-
plete. Otherwise this square must be occupied by
a horizontal domino. This idea is illustrated in the
transformation ..ol — {2 5, which also illustrates
the step-by-step formation of the pyramid.

This gives rise to a new (L, R)-domino pair. Now
we iterate this procedure by alternating left-to-right
forming a puramide like structure within which a 2x2
square is guaranteed to exist. The pyramid struc-
ture formed is depicted in Figure 1. The proof of the
Lemma is now complete. ® _

There are several possible extensions of the proof of
the pyramid Lemma. For eaxample, starting with any .
of the configurations I= b =] d alone we can iterate
the above idea of “filling spaces”in order to gnarantee
the existence of a 2 x 2 square in the space delimited
by the domino corfiguration and the perimeter of the

rectangle. A variant of this argument will also be

used in the proof of Theorems &, 9. Details of this
are left to the reader. An interesting application is
the following Theorem.

THEOREM 5 Domino tilings of rectangles with both

sides of length > 1 must always heve o 2 X 2 square.

Proor. Let the given rectangle be of dimension
m x n. The proof is by induction ou the area mn
of the rectaugle. The result is easy to prove by in-
spection if either m or n is equal to 2. Hence we may
assume without loss of generality that hoth m,n > 2,
A simple area argument shows that either m or n is
even. Without loss of generality we may assume the
horizontal dimension m is even. If there is no hori-
zontal domino lying aloug the horizontal touching the
perimeter then we can peel off a layer from the rectan-
gle and reduce to a rectangle of dimension mx (n—1).
Since the resulting rectangle has area m(n—1) < mn,
the theorem follows by induction. Hence without loss
of generality we may assume there is a side with at
least two vertical dominoes. Choose two such adja-
cent dominoes. Then the dominces between them
and adjacent to the perimeter must be all horizontal.
Hence Lemma 4 implies the desired result. =

As a matter of fact we can give a more precise count
. of the number of 2 x 2 squares.

THEOREM 6 Domino tilings of rectangles of dimen-
sion m x n, where 1 < m < n, must always have at
least {n/{m + 1)] nonoverlapping 2 x 2 squares.

PrOOF. We use the pyramid lemma. If there is a
vertical dominc at level y = 0 then we search for a
2 x 2 square starting either with an L- or with an
R:-domino configuration. Since m < n such a 2 x
2 square must exist within ¥ < m. If there is no
vertical domino at ¥ = 0 then we look for a vertical
domino at y = 1.
then again arguing as before we find a 2 x 2 square
within ¥y < m + 1. However, if there is no vertical
domino either at level 0 or at level 1 then there is
a 2 x 2 square within ¥ < 1. In either case we cah
always find a 2 x 2 square within y < m + 1. Now
we continue this process searching for a 2 x 2 square
within m + 2 < y < 2(m + 1), and so on. Iterating
we obtain the desired result. m

As a corollary we also obtain that if the rectangle
has a domino tiling with at least k nonoverlapping
2 x 2 squares then n < (k + 1){m + 1).

The lower bound |n/{m+1}] is attdined as shown
by the following example. Tile an (3k + 1) x 2 rect-
angle iterating k& copies of a vertical domino followed
by two horizontal adjacent dominoes (i.e. of the form
() and ending in a vertical domino. The resulting
tiling has exactly k nonoverlapping 2 x 2 squares.

3 Tilings of Squares

In the sequel we consider domino tilings of n x n
squares which have a given fixed number of 2 x 2

If such a vertical domino exists -

27

sgnares. Our main theorem gives precise characteri-
zations for such tilings when the ummber of nonover-
fapping 2 x 2 squares is either 1 or 2. A feature of
our result is the existence of a “bounded” (i.e. inde-
pendent of n) subtiling of the original tiling with the
the specified number of 2 x 2 squares. In particular
we prove the following theorem.

THEOREM 7 Let T be a domino tiling of an n x n
square which has ezactly k& nonoverlapping 2 x 2
squares, For each £ < 2 there is o subtiling of T
located at the center of the n X n square end forming
a 2k x 2k square and which has exactly k nonoverlap-
ping 2 X 2 squares.

As immediate corollaries we obtain that for each n
even there is a unique (up to rotation) domino tiling
of an n x n which has a unique 2 x 2 gquare (respec-
tively, exactly two nonoverlapping 2 x 2 squares). The
two unique domine tilings for the cases £ = 1,2 are
depicted in Figure 2. In the sequel we give the proof
of the theorem by considering each of the two cases,
separately.

PrOOF {OUTLINE). of Theorem 7.

Case 1: Tilings with exactly one 2 x 2 square

Let us suppose we are given a tiling 7" which has a
unique 2 x 2 square. Following the details of the proof
it will be shown that T" must have a certain canonical
representation which is unique.

The case n = 2 is trivial. So without loss of gen-
erality we may assume that » is an even integer > 2.
The tiling covers the entire square. Moreover it is
easy to see that there must exist a side which has
dominoes adjacent and perpendicular to it. Also
is even, hence the number of such dominoes must
also be even. Consider a side of the square with ex-
actly two dominoes perpendicular to it. (See Figure
3, where we are assuming, without loss of general-
ity, that the side under consideration is horizontal.)
First of all we prove that these two dominoes cannot
be adjacent. If they were then we would have two
possibilities as depicted in parts (A) and (B) of Fig-
ure 3. All the dominoes, but two, adjacent to this side
must be horizontal. Consider the unit square above
the rightmost square position. This is covered either
by a horizontal domino (resulting in part (A) of the
Figure) or by a vertical domino (resulting in part (B)
of the Figure). In part {A) this gives rise to two 2x 2
squares, which is contradiction. In part (B) we can
use the pyramid Lemma to produce a second 2 x 2
square which gives a contradiction. It follows that
the two dominoes cannot be adjacent.

We claim that both vertical dominoes must be ad-
jacent to corners of the square. If not then at least
one of the squares is not adjacent. This gives rise to

gither of the two configurations depicted in parts (C),
(D) of Figure 3. However in both cases it is easy to
see that by using the pyramid lemma we can show
that the tiling must have at least two 2 x 2 squares,
which is a contradition. It is also straightforward to
see that there is no side of the square with more than
two vertical dominoes, since in this case the tiling
must have more than one 2 x 2 square. '

It follows easily that two opposite sides of the n x
n square have two dominoes each adjacent to their
corners while the other two sides have only dominoes
which are not perpendicular to them. Consequently,
we can peel off a layer of the n x n square to produce

a new (n — 2) x (n — 2) square which is tiled by the-

remaining dominoes of the tiling. Iterating this idea
and by peeling off dominoes one layer at a time we
reduce to a unique 2 x 2 square. This completes the
-proof of the theorem in this case.

Case 2: Tilings with exactly two nonoverla.ppmg 2x
2 squares

Let us suppose we are given a tiling T which has ex-
actly two nonoverlapping 2 x 2 squares. Following the
details of the proof it will be shown that T must have
a certain canonical representation which is unique.

The proof considers several possible configurations.
First of all consider the case where one side (say the
~ horizontal) of the square has four dominoes perpen-
dicular to it. These dominoes may be adjacent in
which case they form groups by the number of adja-
“cent dominoes in the group. If they form more than
two separate groups then the theorem is immediate
from the pyramid lemma. So consider the case they
form two groups or less. One case is when one group

has all four dominoes (depicted as parts (A} and (B)

in Figure 4). Another case is when one group has
three dominoes and the other one (depicted as parts
(C), (D), (E), (F) in Figure 4). The last case is when
there are two groups each consisting of two dominoes
(depicted as parts (G), (H), (J) in Figure 4). In all
these cases it is straightforward to see using the pyra-
mid lemma that there exist at least three nonoverlap-
ping 2 x 2 squares in the given tiling.

In particular it follows that no side of the square
can have more than two dominoes perpendicular and
adjacent to it. This reduces to either of the four con-
figurations depicted in parts (A), (B), (C),(D) of Fig-
ure 3. A careful analysis of this shows that the tiling

either will have more than two nonoverlapping 2 x 2

squares or we can peel off alayer of dominoes from the

- original square; the resulting square must be a 4 x 4
square whose domino tiling has exactly two nonover-
lapping 2 x 2 squares. (See Figure 2.} This completes
the proof of the theorem in this case. ®

‘polygon.

4 Tilings of Simple Polygons

We consider the set 7 of domino tilings of a simple
We define a graph on the set of tilings as

“follows. The set of vertices is 7 and two tilings are

adjacent if one can be obtained from the other via
a flip of the form B — D or ([0 — 5. The resulting
graph is bipartite. (To see this note that there are
two kinds of tilings depending on the parity of the
number of squares of the form &) We prove now that
the graph of tilings of a given polygon P is connected,
i.e. any given tiling of P may be obtained from any
other tiling of P via a finite sequence of flips.
Suppose that P has been embedded in a chess-
board. Obviously, if P is tilable, exactly half of the

~ ¢ells of P must have been embedded on the black cells

of the chessboard. We will suppose in the proof, that
each cell of P is either black or white, according to

. such an embedding.

28

THEOREM 8 The graph of tilings is connected.

ProoF. Let P denote a minimal polygon, and let T
and T” denote two tilings of P such that 7" cannot be
obtained via a sequence of flips starting at T'. Con-
struct a directed graph G having a vertex for each
cell of P. The edges of G are of two colors: red and
blue. For each domino piece used in T', which covers
two cells of P - a black cell ¢; and a white cell ¢,
construct a red edge of G, going from ¢; to cz. Simi-
larly, for each domino piece used in T, which covers a
black cell ¢; and a white cell ¢z, construct a blue edge
of G, going from 3 to ¢; (see Figure 5). Observe that
G is a planar, bipartite graph with vertices of degree
9. G must then be a union of disjoint, planar cycles.
Each cycle is of an even size, formed using edges of
alternate colors. _

Observe. that all the boundary cells must belong to
the same cycle. Indeed, if two boundary cells ¢; and
¢; had belonged to two disjoint cycles, the graph G
could have been partitionned into at least two planar
components, each one containing a subset of cycles of
G. Polygon P could then be divided into at least two
sub-polygons, such that the two tilings of one of these
sub-polygons are also not connected by a sequence of
flips. This would contradict assumed minimality of
P. : :

Note that all the boundary cells must be traversed
by the cycle of G containing them in the same order,
ie. either clockwise or counter-clockwise. Indeed, if

this is not the case, there exist two boundary tiles
(ie. cico and cgeq in Figure 5), one contributing a
clockwise edge to the boundary cycle, and another
one contributing a counter-clockwise edge. It is then

not possible to form a planar cycle containing them
{tudeed, it is not possible to construct two disjoint
paths within P, one from ¢ to ¢3 and another one
from ¢4 to ¢ }.

From polygon P take the bottom row of cells. Let
¢ denote the leftmost cell of this row. Observe that
the cell ¢a, right to ¢, does also belong to P. Other-
wise, the tile covering ¢; is the same in T and T and
we can eliminate from P both cells covered by it thus
contradicting minimality of P.

There are two cells adjacent toc; in P. AsT and v
must be different on boundary cells, suppose, by sym-
metry, that c; is covered by a vertical cell in T, and
by a horizontal cell in T (see Figure 6 {b)). Consider
now a tile t» of 7" covering cell ¢a. If ¢, is vertical, we
can flip ; and #;, placing both tiles in horizontal posi-
tion, one of them beeing the same as tile ¢} in T7. We
can eliminate from consideration two cells covered by
tile #{, contradicting minimality of P. Thus ¢y must
be covered in T" by a horizontal tile {,. Consider now
cell ¢z in the corner formed by ¢; and ¢y (see Figure 6
(c}). The tile t3 covering cs cannot be horizontal, oth-
erwise tp and £z could be flipped to vertical position,
then, in turn, ¢; could be flipped, again obtaining the
situation contradicting minimality of P. By induc-
tion we are forced to create an alternating sequence
of vertical and horizontal tiles in T" until we reach the
boundary of P (see Figure 6 {d)). The corner cell ¢,
belongs then to the exterior of P. Observe, that tile t;
contributes a counter-clockwise edge to the boundary
cycle, while the last tile of the alternating sequence
(tn—1 in Figure 6 (d)d) contributes a clockwise edge,
contradicting an earlier observation. m

Let w = width(P), A = height{P). Without loss
generality assume w > h. From the proof of the latest
theorem follows.

THEOREM 9 In O(wh?) time we can find a sequence
of flips which will convert one given tiling T io an-
other tiling T of a polygon P,

ProoF (OUTLINE). We subdivide P into subpoly-
gons corresponding to planar cycles of the graph G
as in the proof of the previous theorem. At each step
of the algorithm we take into consideration a bound-
ary cell ¢; (say the leftmost cell of the bottom row)
of one of such subpolygons. We traverse an alternat-
ing sequence of tiles until we detect a flipable pair.
Then we perform a sequence of flips until we obtain
the same boundary tile for both tilings T and 7. We
then remove the two cells covered by such tile from
P and we repeat the process for the remainder of the
polygon. The total complexity follows from the fact
that a removal of a pair of cells takes O(h) time, and
that there is at most O(wh) such cellsin P. ®

29

5 'Tilings of Rectangles

In this section we stndy computational and combina-
torial methods for the distance function among rect-
angular tilings.

5.1

Consider the graph of domino tilings. How do you
compute the distance of any two domino tilings in
this graph? Let d(T,7T") denote the distance between
T,T'. There are two kinds of domino tilings: those
whose two leftmost squares are occupied by a vertical
domino [J and those occupied by EH. It can now be
argued that the following theorem holds.

Distance among tilings

THEOREM 10 The distence function between any fwo
domino tilings of an i X 2 rectengle can be computed
Jrom the following recursive identities.

1. 407,01y = d(T, T").
2 dBr,B5r") = 4T, 1.
s d0r,Ery =1+ 47,00). =

Although we omit details of the proof we urge the
reader to delve into its elegant subtleties. This theo-
rem easily gives a linear algorithm for computing the
distance function. The same analysis will work for
n x 3 checkerboards except that there are more cases
to consider.

5.2 Number of tilings

In Grahamet al [4] 3., f(n)z™ = ;—-—s. is shown
to be the generating function equation for f(n} = the
number of domino tilings of an n x 2 rectangle. More-
over, the number of domino tilings of an n x 2 rect-
angle with exactly s squares of the form B3 is shown
to be equal to (*7°). In the sequel we compute the
generating functions for the number of nonoverlap-
ping 2 x 2 squares and squares of the form (1. We
can prove the following theorems.

THEOREM 11 Let f(n,s) be the number of demino
tilings of an n x 2 rectangle with ezactly s nonover-
lapping 2 x 2 squares of the form H or [Ll. Then

y(25% + 32° + 24)
1—2:1:23;——:533; '

Zf('nsscy“—

n,s>0

Moreover forn > 8 or s 2 3, f(n,s) =

3s—m g—1 s=1 s=~1))
2 ((3s—n-1)+3(33—~n>+2(35—n+1 ’

THEOREM 12 Let f(n,s) be the number of domino
tilings of an n x 2 rectangle with exactly 3 nonover-
lapping squares of the form (. Then

s z? + 2%y
Z fln,s)x™y" = 1— 22

e R

rys>0
Mareover o :
) T r—m+1Y\
Sl =" .
T—1m s
n=2(r4 14
mpeLr4l

ProoOF (QUTLINE). of Theorems 11, 12. Let t& de-
note the number of domino tilings of an m x 2 rect-
angle having exactly & nonoverlapping 2 x 2 squares.
We note that the two leftinost squares of a domino
tiling may be occupied with either of the following
three configurations B, (B, (I The remaining tiling
has exactly £ — 1 nonoverlapping squares. There-
fore this gives rlse to the following recursive formula

= Zti_é + tn_s Using the obvious initial condi-
tlonst = 0,1, = 2,t} = 3,t} = 1,t} = 0 we can
verify easﬂy the generating function in the first theo-
rem. The proof of the second theorem is similar. Let
f¥ denote the number of domino tilings of an m x 2
rectangle having exactly & nonoverlapping squares
of the form [l The resulting recursive formula is
fe=ft 4+ fF .+ f=). In both theorems it is now
easy to derive precise formukas for the coefficients of
the infinite series by expanding the generating func-
tion into infinite series [9]. We leave the details to the
reader. W

6 Conclusioﬁ and Open Prob-
lems '

It is also possible to study the case of exactly three
nonoverlapping squares but the characterizations are
not so elegant. The situation is different for the case
of tilings of an # xn square with exactly four nonover-
lapping 2 x 2 squares, becuase these need not be lo-
cated within a bounded subtiling of the-original tiling.

- An interesting question left open for further investi-

gation concerns the characterization of domino tilings
which have a given “polyomino” pattern.

A sophisticated study (using homotopy theory) on
the distance function can be found in [7}, however

no precise algorithmic analysis of the complexity of

this problem has ever been carried out for arbitrary
checkerboards.

~ Another interesting question concerns finding an
algorithm to de_termine whether a given graph G is

the bipartite graph of the set of domino tilings of an
m % 2 (or more generally, m x = rectangle).
There is a well-known formula for the number of

" domino tilings of an m x n rectangle:

. 4T 2] AN
2mn/'.2 N () Jﬂ- .
1511(?Osm+1 _+ Cosn+1 ’

1€i<n

which is derived by analyzing l-factors in rectan-
gular meshes. (see [4][Chapter 7, Exercise 51] and
[6}{Exercise 4.29]). We may consider the combinato-
rial function $Q,,x.(k) = “the number of different
domino tilings of an m x n rectangle which have ex-
actly & pairwise nonoverlapping subtilings each con-
sisting of a 2 x 2 square”. Our previous study comi-
putes SQnxa{k},5Qnxn(1):5Qnxn(2) exactly. How-
ever, in general, no combinatorial formula is known
for this function.

References

[1] s. W Golomb, “Checkerboards and Polyomi-
noes”, American Mathematical Monthly LXI,
: December 1954, 10, pp. 672 - 682.

[2] S. W. Golomb, “Polyominoes”, Princeton Sci-
ence Library, Princeton University Press, 1994.
(Original edition published by Cha.rles Scribner’s
Sons, 1965.

[3] S. W. Golomb, “Polyominoes which tile rectan-
gles™, Journal of Combinatorial Theory, Series A
51, no 1 (1989), pp- 117 - 124.

[4] R. L. Graham, D. E. Knuth, and O. Patashnik,
“Concrete Mathematics”, Addison-Wesley, 2nd
edition, 1994. '

[5] B. Griinbaum and G.C. S.hephard “Tilings and
Patterns”, W. H. Freeman and Company, New
York, 1987. :

{6} L. Lovasz, “Combinatorial Problems and Exer-
cises”, North-Holland, 1979.

[7] N. C. Saldhana, C. Tomei, M. A. Casarin, D.
' Romnualdo, “Spaces of Domino Tilings”, Discrete
Computational Geometry, 14:207-233 (1995).

[8] W. P. Thurston, “Conway's Tiling Group”,
American Mathematical Monthly, pp. 757-773,
QOctober, 1990. :

[9] H. S. Wilf, “Generatingfunctionology”, Aca-
demic Press, 2nd edition, 1994.

30

Figure 2: The two leftmost squares depict a 4 x 4 and a 6 x 6 tiling with a unique 2 x 2 square and the two
rightmost a 4 x 4 and a 6 x 6 tiling with exactly two nonoverlapping 2 x 2 squares. These figures can be used to
generate for each even n an n X n square with a unique (respectively, exactly two nonoverlapping) 2 x 2 square(s)
by “surrounding” the 4 x 4 squares with a layer of dominoes, and so on recursively.

Dmﬂ N I R

Figure'3: The characterization of domino tilings with one or two nonoverlapping 2 x 2 squares.

e me -

L] [D

1
1
(A) (B) ©
1 , ! . ! 1
! ! g ! 1
i Lo L :
1 I
L. I T I R I A Lo L
(D} (E) 3]
: o oo .
1 vt 1
! Lo Do !
]
: ' 1
..... L oo I L. R L)
i 1
——_—— JERUEIT T S EE S H. —— _t
{G) (H} (44)

Figure 4: The characterization of domino tilings with exactly two nonoverlapping 2 x 2 squares.

31

B B
B| |B B
B B B B
B B| |B
P T
|
l
E
-

Figure 5: A simple polygon and two different domino tilings T, T"’. Black cells are labeled B. These two tilings
give rise to the corresponding directed graph (not depicted here). The right bottom picture depicts two boundary
dominos of the polygon: the vertical with cells c1, ¢z and the horizontal with cells c3,cq.

@ . (®) © @

Figure 6: Moving from one tiling to the next by flipping dominoes.

32

Covering a set of points by two axis-parallel boxes
Sergei Bes.pa.myatnjkh* and Michael] Segal'

April 25, 1997

Abstract

We present an efficient algorithm for solving the following clustering problem: Given
a set S of n points in d-dimensional space, d > 2, find two axis-parallel boxes b; and b
that together cover the set S and minimize the expression: maz(u(b;), p(b2)), where
is a monotone function of the box, i.e. by C by implies u(by) < p(by).

1 Introduction

We consider the following min-max two box problem: Given a set S of n points in d-
dimensional space, d > 2, find two axis-parallel boxes b, and b, that together cover the set
S and minimize the expression: .maz(,u(bl), p(b2)), where p is a monotone function of the
box, i.e. by C b, implies u(d) < p(bh). Examples of box measure y are the volume of the
boxes, their perimeter or the length of their diagonal. This problem is closely related to
the rectilinear p-center problems (and in particular to the 2-center i)roblem). The p-center
problem is defined as follows. Let R be the set of compact convex regions with nonempty
interior in the plane, where every region r € R is assigned a scaling point ¢, in its interior.
‘For r € R and a real number A > 0, let r()} be the homeothetic copy of r obtained by
scaling r by the factor A about ¢, (i.e., »(A) = {¢; + A(a — ¢)|a € r}). Finally, R{(}) = {
r(A)] r € R}. The p-center problem for R looks for
Ar = min{ A\|R(A) is p-pierceable }.
We call set R p-pierceable if there exist a set of p points that intersects each member of R.

If R is a set of translates of a square and the scaling points are the respective centers, then

*Department of Methematics and Mechanics, Ural State University, Ekaterinburg 620083, Russia

'Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva
284105, Israel.

33

we talk about the rectilinear p-center problefn. If the squares are still axis-parallel but of
possible different siées, then we have the weighted rectilinear p-center problem, and if R is a
set of arbitrary axis-parallel rectangles -(aﬁd the scaling points are also arbitrary), then we
- face the general rectilinear p-center problem. _ |

Results for the above defined pr‘obllems, for p = 2 and d = 2, were obtained by [4, 1, 7].
Hershberger and Suri (4] solve the following clustering problem: Given a planar set of points
S, a rectangular measure y acting on S and a pair of va.lués g1 and g2, does there exist a
bipartition § = §;U.S; satisfying u(S;) < i fori = (1,2)? They present an algorithm which
solves this problem in O(n log rij time. Based on this algorithm and using the sorted rﬁatrix
technique of Frederickson and Johnson [2], Glozman et.al [1] obtained an O(nlogn) tirﬁe |
algorithm that solves min-max box problem in the plane. In a very recent paper Sharir and
Welzl [T} using LP-type framework and Helly-type results obtained an O(n) expected time
algorithm for the general rectilinéa,r_ 2-center problem, where d = 2. The paper of Segal [5]
solves the same broblem as this paper but only in the case where d = 3. The runtime of the
algorithm in [5] is O(n? logn).

TIn this paper we present an Efﬁcient_a,lgorith.m for solving the min-max two box problem
in arbitrary dimension d > 2. The runtime of the algorithm is Oldnlogn +d(2dd) n%1). This
paper is orga._nized as follows. In Section 2 we present our algorithm for dimensibn d > 3.

The p'lé.ne' case will be described in full version of the paper. We conclude in Section 3.

2 The algorithm

Given a set S = {py,...,pa} of n points in d,d > 2, find two axis-parallel boxes b, and b,
that together cover the set S and minimize the expression: max(pu(b), u#(8;)), where p is a
monotone function of the box, i.e. p(b) < u(by) if by C b;. For simplicity we consider the
general case of distinct coordinates, i.e. the projection S onto any coordinate axis is.a set
of n ciistiﬁct points. Initially we sort the points of S according to each of the coordinates.
We start with some notations and observations. Given a set of points S, the bounding
boz of S, denoted by bb(S), is the smallest axis-parallel box that contains S. The bounding

.box of S is determined by 2d points, two from each axis ¢, +=1,...,d: the leftmost point

34

1:(S) of S, and the rightmost point r;(S). We call these points the determinators of 5. For
a box b = [lj,r] x ... x [lg,r4] we also call §;,r; the determinatc-)rs of b. For a point p, the
values z(p), y(p) denote the coordinates of p in the first and the second axes respectively.

The main idea of the algorithm is the reduction of the dimension. We assume that the
dimension d is greater than two and reduce it to two. Let the boxes & and b, be the solution
of the min-max two box problem. Then there is a box which has at least d determinators
coinciding with the corresponding determinators of 5. We can assume that it is 4. It is
easy to see that the boxes b; and b; that solve the min-max problem are the ones that solve
the following problem. 7 |

Problem P1. Given a set S of n points and d determinators of the box b, and denote
by b2 = bb{(S \ b1). Find the remaining d determinators of & such that the expression
max(p(b1), p#(b2)) is minimized.

There are (2:) problems P1. We solve all these problems. The solution of the min-max
two box problem can be chosen from (2:) pairs of boxes b; and b,.
| Now we show how to solve problem P1. Since the dimension d is greater than 2, there
are at least two determinators of by which are not equal to the determinators of S in the
corresponding axes. Assume wlog that they are ry(S) and r3{S). We still have to find the
other d — 2 determinators of b;. We can assume that they are determined by other points
of S (for example the determinator ;(b;) is determined by point p = (p1,...,p4) € S if
1:(b1) = p;). Let us consider all the (d — 2)-tuples of points S. The algorithm scans all these

tuples and finds the combination that attains the required minimum.

It is clear that the number of tuples is nd=2

. Note that some tuples cannot give the
solution because the determinators of & have to satisfy I; < r;,i =1,...,d.

The 2-dimensional problem can be now formulated as

Problem P2. Given a set S of n points and 2d ~ 2 determinators of the box b
l,...,1a,73,...,rq. Find the two determinators r, and ry of the box b, that minimize the

expression
max(p(b), p(55(S \ b1))).

We show that this problem can be solved in O(dn) time. The determinators r; and

72 can be chosen from the sets {z(p;),...,z(pn)} and {y(p1),...,y(pa)} respectively. Let

35

b(z,y) denote the box [l1, 2] x [f2, y] x [lg,rg] X ...X[la,7q], where z € {.7:()y, 2(pn)} and:
y c {y(p1),-.., y(pn)} Let S denote the set of points of S in the box b(m y) and 5; = S\ 5.

For each z € {z(p1),...,2(pn)}, our algorithm finds the largest y € {y(p1)s. -, y(pn)} such
that ,u(b(_:cl, y)) < u(bb(S\ b(z,y))). Denote it by ¥;(z). We observe that Yi(z) s monotone.

Observation 2.1 Y;(z) is nonincreasing function.

For each z € .{.x(m), .-+, 2{pa)} our algorithm (for Problem P2) finds the smallest y €
{y(p1).. .. y(pa)} such that u(b(z,y)) > p(bb(S \ b(z,y))). Denote it by Ya(z).

Observation 2.2 There erists a solution of problem P2 such that ry = Yl(rl) orry = Ya(ry).

For eachz € {z(p1),...,z(pn)} and y € {Yl(a:),l/;(m)}, we compute max{g(b(z,y)), u(bb{S\
b(z, yj))). Then we compute minimum value of these numbers. It gives the solution of prob-
lem P2. | _ | _

Now we explain how to achieve O(dn) running time. Let us consider the moment when
we have computed Y;(z) and ¥z(z) for some z. Using the fact that the points of S are sorted
sperately in each of the coordinates we get the next value ' >rin this order. For the point
p of S with z-coordinate z/, we perform the following operations.

| First we check whether p can 1ie in 6. If p cannot lie in b; (the i-th coordinate of p.is |
less than I; for some 1, or the i-th coordinate of p is greater than r;, for some 7 > 2) then
P femains in §; and we pass it. Otherwise compare y(p) and Yi(z). If y(p) > Yi(z) then
p remains in 5; {by monotonicity of ¥]) and we pass it. Otherwise we delete p from S,
and insert it into S;. For the determinators rn = 2’ and 1o = Y;(:z:) of the box b, compute
pcl = p(by) and gy = p(bb(S2)). There are two possible cases.
Case 1: g1 < 2. In this case Yi(z') = Yi(z) and Y5(z') = Ys(z) by monotonicity of ¥;. It
should be noted that we do not need to compute the rectangular measure p for the pair z’
and Yg(z) since it is greater or equal than the measure of the boxes b; and b, determined by
the pair z and Ya(z). We only have to compute the rectangular measure max(i, y2) for the
pair ' and Y1(z) and update the current solution if its measure is greater than max(uy, ga).
Case 2: y; > pa- In this case ¥;(2") < Yi(z) and Yi(z') < Yz(:z:) Let y = Y1(). In order
to find Yj(z’) and Y2(:z:’) we perform the following operatlons as long as g > Ha-

36

Proof. We spend O(dnlogn time in sorting S according to all its coordinates. As was
pointed above, we solve (2:) problems P1 in order to obtain a solution for the min-max two
box problem. Each P1 problem is solved by considering all the (d — 2)-tuples of points S.
There are n®~2 such tuples. ‘For each such a tuple related to the problem P2 which we solve

in O(dn) time. W

3 Conclusions

In this paper we present an efficient algorithm for solving min-max two box problem. The
efficiency of the algorithm is based on the nionotonicity of the evaluated function in the
' problem. It would be interesting to find some connection between this problem and the
problems considered by Jaromezyk and Kowaluk [3] and Segal [6]. Computing lower bounds

for this problem and problems in {3, 6} are still open questions.

References

(1] A. Glozman, K. Kedem, G. Shpitalnik “On some geometric selection and optimization
problems via sorted matrices”, WADS’95, 1995, pp.26-37.

[2] G. N. Frederickson, D. B. Johnson “The complexity of selection and ranking in X +Y
and matrices with sorted columns”, J. Comput. Syst. Sci., 24 (1982), pp- 197-208.

~ [3] J. W. Jaromeczyk, M. Kowaluk “Orientation independent covering of point sets in R?
with pairs of rectangles or optimal squares”, European Workshop on Comp. Geometry,
Muenster, Germany, 1996.

[4] J. Heshberger, S. Surl “Finding tailored partitions”, J. Algorithms, 12 (1991), pp. 431-
463. -

[5] M. Segal unpublished manuscript.

[6] M. Segal “Covering the set of points by two shapes under different constraints”, in
preparation. - :

[7] M. Sharir, E. Welzl “Rectilinear and polygonal p-piercing and p-center problems”, In
Proc. 12th ACM Symp. on Computational Geometry, 1996.

38

e If there is a point p € 5; with y(p) = y then move the point p from 5; to S,.

¢ Using the sorted order of S points according to the y-coordinate we move to the next

point whose y coordinate is smaller than the one we currently have.

. Compute new_gy = p(b(z',y)) and new_po = p(bb(S,)). Update #1 to be new_g, and
;Jl -

ft2 to be new_y, if max(p1, p2) > max(new_yiy, new_gz).

After these operations we have Yi(z')} = y and Ya2(z’) is the previous value of y. Now we
finish processmg the coordinate ', | |

We start the algorithm at a point z that is less than the z- coordmate of all the points
of S, for example z = min{z(p;),...,z(pn)} — 1. We set Yi(z) = mm{y(pl),...,y(pn)}.
Initially we have Sy =0, gy =0, S, = S and p; = p#(bb(S)), Y, can have any value because
it is used only after S; becomes non-empty.

Ignoﬂng the time spent on computing u; and g, the algorithm takes O(dn) time. It

remains to show how to compute ps.

Computing ps

Recall that p; = u(S;). The set S, undergoes both i-'nsertior-xs. and deletions of points
throughout the algorithm, but one point can be deleted from and inserted to S, only once.
- Initially .51 = 0 and S; = S. We partition S, into two subsets S and 55 defined below:

¢ 5 contains the points that were not deleted from S,

e Sy =5\ Si. _

The set 53 is updated only by deletion of points. The set S is updated only by insertion
of points. It is easy to majntain the box 5b(S5%). Using presorting we can maintain the box

bb(.S3) in O(d) time. The box bb(S2) can be computed in O(d) time using the boxes b5(S3)

~and bb(.S'”)

We summarize with the following theorem

Theorem 2.3 The min-maz two box problem in d dimensional space, d > 2, can be solved

in time O(dnlogn + d(zf) nd-1). |

37

- Encoding a triangulation as

Markus O. Denny
1Y 14 Informakik
Universitit des Saarlandes
D-66123 Saarbriicken
FAX:+49-681-302-5576
mdenny@cs.uni-sb.de

Abstract

We present algorithms that given a straight edge tri-
angulation of n points in the plane encode a triangu-
lation as a permutation ol the points, A first algo-
rithm, of rather theoretical interest, realizes the en-
coding and decoding in Ofn) time. We also present a
more practical algorithm consuming O(nlogn} time.
As a byproduct of this work we get a new upper
bound on the munber of triangulations of planar
point sets of at most 2827 F0Uos=)

1 Introduction

It is well known that the number of triangulations
of # points in the plane is bounded [rom above by
20} [1]. Siuce there are approximately 27" differ-
ent permutations of a point set of size n, it is obvious
that it is possible to encode a triangulation as a per-
mutation of the input data.

" In the case of canonicel geometric structures re-
lated ¢ Delaunay triangulations Snoeyink and van
Kreveld [2] alveady introduced & linear time algo-
rithm and listed & mumber of advantages. The graphs
are still readable by many other applications and
transmission overhead is reduced.

However our approach is a more general one. We
show that it is possible to efficiently encode any
straight edge triangulation as a permutation of its
point set. Inspired by the planar point location
method of Kirkpatrick [3] we present an algorithm
that encodes and decodes every triangulation of suf-
ficiently large size in O(n) time. Since this algorithm
only works for relatively large triangulations we also
present a more practical approach based on the sweep
line paradigm which encodes and decodes a triangu-
lation in O(nlogn) time. From this algorithm we also
obtain a new upper bound on the number of straight
line triangulations.

Let T denote the triangulation under consideration
given as a set V' of n points together with the set &

39

a permutation of its point set

Christian A. Sohler
F13 14 Informatik
Universitit des Saarlandes
D-66123 Saarbriicken
FAX:+49-681-302-5576
csohler@cs.uni-sh.de

of the corresponding edges. We assume w.l.o.g. that
it is always possible to add two points to the trian-
gulation such that the new convex hull forms a tri-
angle around the original triangulation {for instance
the virtual points (Tmaz + 1,00) and (@, + 1, —00)
will suffice our conditions where z,,.. denotes the
maximum z-coordinate of all points in).

2 Encoding a triangulation as a
permutation

At first we provide generic algorithms for encoding
and decoding.

Each generic algorithm consists of O(log n} phases.
In the first part of each phase of the encoding algo-
rithm a constant fraction of points with low degree is
removed from the current triangulation and put into
an imtially empty set W. (For the sake of simplicity
we never remove any of the 3 points of the convex
hull of V.) Next we retriangulate the created holes
retrieving a new triangulation 7. In the second part
we encode the information needed to reconstruct the
original triangulation from T’ into a permutation of
the points of W.

The decoding algorithm works in a reverse man-
ner. Having read a bunch of points we insert them
in the right place into the current triangulation T
meanwhile computing their permutation. With the
corresponding information we can now determine the
appearance of the former triangulation and finally
restore the original triangulation.

ParT 1 OF generic ENCODING:

¢ pick a constant fraction W of n points with low
degree

e remove W from the triangulation

e retriangulate

PaArT 2:

¢ compute and output the permutation of W

Parr 1 oF generic DECODING:
o read the next permutation of points
o find the right places to ingert them

e regain the information from the permutation

Panr 2:

o delete the superfluous edges and retriangulate

3 A linear time algorithm

3.1 The algorithm

We now specify how a phase of the linear time
algorithm locks like:

PART 1 OF ENGODING:

s compute a maximal iﬁdependent set I of vertices
with degree at most 6

s remove I from the triangulation

» retriangulate

ParT 2:

o visit all triangles of the new triangulatior in a
canonical way (DFS, BFS) to order I (cf. [2])

e partition [into sets A4; of constant size

s store the information needed for the reconstruc-
tion by permutating cach of these 4;

e Output A;

Parr 1 oF DECODING:
¢ read I from the input

e visit all triangles in the same manner as in part
2 of ENCODING to order T and to determine the
enclosing triangle for each v € I (see figure 1.a)

¢ obtain the information needed to recomstruct
the trianguliation from the pernmtation

ParT 2¢

o use the infornation pained in part 1 to restore
the triangulation {see figure 1.b-d)

40

3.2 Correctness

First of all we show that we can compute the size of
I in each phase of DECODING and also the number of
points that have been removed in part 2 of ENCOD-
ING. But this proves to be easy since we know n and
we can simply restrict the size of the maximal inde-
pendent set T in ENCODING to a constant fraction of
V and thus immediately determine the sizes of I and
the A;’s. W.l.o.g. we can assume an order on the in-
put to ensure the same enumeration of the triangles
for hoth ENconING and DRconINg induced by DFS
or BFS respectively (e.g. ccw-ordering of the edges).
"It is easy to verify that the algorithm will always
terminate because in sach phase the number of points
is always reduced by a constant fraction.

3.3 Running time

To obtain a maximal independent set I we use the
greedy algorithm presented by Snoeyink and van
Kreveld {2] with the difference that our maximal al-
lowed degree d is 6. The linear time algorithm re- -
moves at first all points with degree at least d + 1.
Then the point with lowest deégree is put into the set
I and itg neighbours are deleted. This procedure is
repeated until no point remains. Analyzing the be-
haviour of the algorithm leads to a linear program the
optimum of which turns out to be 5 for the minimal
size of I.. The deletion of the points and the retrian-
gulation can be done on the fly. This gives a running
time of O(n) for the first phase of ENCODING.

In the second phase we can establish an ordering of
the points in linear time since we know which new tri-
angle contains the deleted point (cf. {2]). Since each.
A; liss constant size the running time for both phases
is O(n). Thus the overall running time for ENCODING
as well as DECODING is O(n) since the DECODING is
essentially the reverse of the ENCODING.

3.4 How reconstruction works

Consider a triangulation T'. If a point p with degree d
is removed the originated hole forms a polygon. The
triangulation of this polygon is dual to a tree b with
the following properties (sec igure 2). The root of b
(representing the p-enclosing triangle) has degree at
most 3, the inner nodes have degree at most 2 and
the sum of all edges is d — 3. The number h{d) of
such trees is given by: ' '

hd) =%, (210G -

ig—3

< (-0) with $d; = d - 3.

Figure 1: Reconstruction of a triangulation: a) deter-
mine the enclosing triangle and draw the first three
edges (dotted lines) b)-d) According to the dual tree
(see figure 2) choose the next edges to be flipped
(dashed lines)

3 46

Figure 2: The dual tree (dotted lines) which describes
the retriangulation to be performed

41

3.5 Analysis

Since we limited the degree of each removed vertex
to 6, we get exactly Eg<i<oh(i) = 41 possibilities to
insert a point. Thus we need [nlog,(41}] bits for
the encoding. The size of the independent set has
to be large enongh to encode this information. Sinee
109! > 41'" it suffices to have at least 109 points to
build a block. Therefore the triangulation must have
at least 10 * 109 = 1000 points at the beginning of a
phase. If during the course of the algorithm we arrive
at a triangulation with fewer points, we have to use
another algorithm to encode this triangulation, e.g.
the one stated below. :

4 An O(nlogn) time‘alg'orithm

4.1 A sweep line algorithm

- The algorithm we present in this section is based on

the sweep line paradigm. We show that it is possible
to remove a much bigger fraction of vertices with
minimum degree 6 if we do not need an independent
set, In a precomputing step we sort the point set of
the triangulation. Now we specify how a phase of
the second algorithm looks like.

PART 1 OF ENCODING:

e initialize the set of removed nodes I with &

e sweep over the triangulation from left to right
and stop at each vertex v

e if deg{v) < 6 then remove v from the triangula-
tion, retriangulate and add v to

ParT 2 oF ENCODING:

e store the information needed for reconstruction
by permutating I

e output

PART 1 OF DECODING:
s read I from input
e sort I lexicographically

s sweep over the triangulation from right to left
and stop at eachwv € I

s search the enclosing triangle

¢ retrieve the information needed to reconstruct
the triangulation from the permutation

PART 2 OF DECODING: -

o use the information gained in Part 1 to insert v

4,2 Correctness

We sweep from right to left in the DECODING algo-
rithm. Thus DECODING does exactly the same as
ENCODING but in reversed direction. We use com-
mon sweep line techniques to maintain an order of
the triangles that intersect the sweep line. Using this
order, we can vasily find the enclosing triangle. All
other steps are either already discussed or trivial.

4.3 Running time

We have to spend Of{nlogn) time for sorting. All
steps of part one and two need a constant amount
of time except the search for the enclosing triangle
which needs O(logn) time for each vertex and the
sarting of I which needs (nlogn) time. To maintain
the lexicographical order during DECODING we also
need ((logn) time for each inserted point. Overall,
we have a running time of Q(nlogn) for ENCODING
and DECODING.

4.4 Analysis

As one can easily see the degrees of the three vertices
of the convex hull sum up to at least 10 (if T con-
sists of more than 4 vertices). Let n denote |V, n/
the vertices that remain after the sweep line phase
{excluding the 3 points of the convex hull), and r the
number of removed vertices. Each point at the left of
the sweep line must have at first a minimal degree of
7 since it was not removed. For each removed vertex
the total degree of all vertices on the left of the sweep
line decreases at most by 2 (see figure 3).

Sweep line direction
—_———

Figure 3: a worst case situation

At the end of each phase the remaining n'+3 points
form a complete triangulation. Thus the following
inequalities describing the sum of degrees hold:

' —2r 4+ 10

ni

6(n' +3) — 12, and hence

<
< 2r—4

By definition »' and » sum up to nn—3. That yickls
the desired result of r > | 4] immediately. From the
analysis of the first algorithin it follows that at least
109 points are necessary to encode the information
for reconstruction. This makes it possible to execute
a phase of the second algorithm for triangulations

with at least 326 points. As soon as fewer than 326

* points remain we cannot store enough information

in the permutation. Provided a sufficiently large tri-
angulation we encode this information in previously
computed permutations. Owverall, we have to store.
[nlog, 41] bits. Thus we need at least approx. 750
points to store all the information.

4.5 A more practical point of view

If we had two more bits for each vertex we could en-
code any triangulation independent of the size of its
point set. A practical way to get these two hits is to
translate all points to reside in the upper right quad-
rant. The two additional bits for each point can now
be stored as the sign of the coordinates. We now have
to encode [n((log, 41) — 2)] bits resulting in a mini-
mal size of approx. 190 points for the triangulation.

5 New upper bounds

5.1 Idea

To derive an upper bound on the number of triangu-
lations we slightly change the algorithm presented in
the previous section. Instead of coding the iforma-
tion needed for reconstruction into a permutation we
now encede it as a binary steing w{T). If cvory pos-
sible encoding string has length f(n), then clearly V
cannot have more than 2f(®)different, triangulations.
When encoding with a binary string, we loose the
implicit information about the insertion order that
was stored in the permutation. Thus we need the
additional information which points were removed in
each phase of the algorithm. :

5.2 Analysis

For the sake of simplicity we assume that the output
is ordered such that the first part of w(T) represents
the encoding for the local changes of each vertex at
the time of its deletion. Let ¢(F) denote this part
of w(T'). The rest of the binary string o (V'} contains

42

the information whicls vertices were removed at each References

part. Thus we have:

w(T) =<(E)o (V)

(V' = ¢(W)a(V'\ W)

It |V'] = 3 there is ouly one possible triangulation
and we encode it as the empty string. To encode W,
we proceed as foilows (cf. [4]). As a first step we use
the characteristic vector representation for ¢(W).
That’s a binary string s of length |V'| with s; = 1iff
w; € V', This can then be slightly improved by using
2 better encoding for ¢(W). Since W is a subset
of size exactly |%] there are only b(n) = (rgs;i)
choices for W, Hence W can be encoded by a
string of length log, b(n). Since (7)< 27#(®), where
H(z) = —zlogyz — (1 — z)logy(1 — =} we get that
W can be encoded by a binary string of length
H(1/3)n < 0.9183n The impact of this fact will be
stated in the following theorem.

Theorem

The number of triangulations is bounded from
above by 27 (") with f(n} < (log,(41) +3 H(3))n <
8.12 n + Oflogn).

Taking into account that every crossing free
subgraph G of K" can be encoded in the same way
as a triangulation in combination with a binary
vector of size 3n coding the added edges, the follow-
ing corollary is an direct consequence of the above
Theorem.

Corollary 1:
The number of undirected crossing free subgraphs

. of the complete graph I{™is bounded from above by
2f(n+2)+3n.

We can also derive an upper bound on the number of
directed crossing free subgraphs since every edge of
the triangulation can either be deleted, replaced by
a single one-directional arc or by two arcs for each
direction.

Corollary 2:
The number of directed crossing free subgraphs

of the complete graph K™is bounded from above by
of{n+2)+6n

6 Acknowledgements

We would like to thank Raimund Seidel for the in-
spiring discussions and his support of this work.

(1]

(2l

3]

[4]

43

M. Atjai, V. Chvatal, M. Newborn, E. Sze-
merédi, Crossing-free Subyraphs, Annals of Dis-
crete Math. 12 (1082), 9-12

J. Snoeyink, M. van Kreveld, Good orders for in-
cremental (re)constructions, 13th Annual ACM
Symposium on Computational Geometry 97

D. Kirkpatrick, Optimnal search in pluner subdi-
visions, SIAM Journal on Computing, 12:28-35,
1983 '

R. Seidel, On the number of triangulations of
planar point sets, to appear in Combinatorica

Recognizing the Trivial Knot by Planar Diagrams.

Wolfgang Haken
University of Illinois

A solution of the so-called Knot Problem, i.e., an algorithm to recognize the trivial knot was
published in 1961, [1]. This algorithm entirely avoided the use of “higher” algebra and proceeded
by elementary geometric topology and integer programming. The method became known as the
method of normal-surfaces which can be used to algorithmically determine 1nc0mpress1ble surfaces
in compact 3-manifolds with or without boundaries.

Although the equations and inequalities to be solved are all linear the algonthm is extremely
time consuming. This is since it requires to find all non-negative integral fundamental solutions of
a linear system - and those are exponentially many.

Attempts to reduce the time demand of the algorithm have been at least partially successful:

1) The complement of the given (slightly thickened) knot is a compact 3-dimensional manifold
whose boundary is a torus. This 3-manifold can be presented by a so-called normal-partition (very
similar to a handle partition). The normal-partition can again be conveniently presented by a planar
diagram which is a cell-partition of the plane with labeled elements. A polynomial time-demand
method to reduce the so-called KF-complexity of the normal-partition was developed. This method
‘uses simplification procedures of the planar diagram and it can be applied to normal-partitions of
arbitrary (compact) 3-dimensional manifolds with or without boundaries.

2) The reduction method (1) alone turned out to be a very effective partial algorithm: It can
be carried out for given knot projections of more than thousand overcrossings on a home computer
and if the given knot is trivial then it usually recognizes this by reducing the KF-complexity to
zero. But it does not appear to be reasonable to speculate that this method always recognizes the
trivial knot - although so far no counter-examples could be found. -

3) Thus, in order to obtain an algorithm of which one can prove that it is both polynomial
and complete, we must find an effective procedure for treating the case that the reduction method
(1) reduces the KF-complexity to a value greater than zero. But this procedure must avoid the
necessity to find all the fundamental solutions of a linear system and should be restricted to the
tools of linear programming.

A promising attempt to find such a procedure is as follows:

3.a) In the given normal-partition, one can construct, in polynomial time, a so-called normal-
surface, N1, which is orientable, non-separating, and has exactly one boundary curve. That curve
is then parallel to the originally given knot. _

3.b} If N1 happens to be a disk then it exhlblts the given knot as trivial and the procedure
halts.

Otherwise, N1 is a surface of genus > 0. Then we have to find out whether N1 is compresmble
(i.e., its genus can be reduced by replacing an annulus in N1 by two disks in the complement of

N1) or incompressible. (That test is described in 3.c below.)
' If N1 is incompressible then its genus is the genus of the knot, i.e. the knot is non-trivial and
the procedure halts.

Otherwise, we replace N1 by a surface of smaller genus and we repeat (3.b} with the new NI1.

44

3.c) The surface N1 cuts the normal-partition up, producing another normal-partition with a
larger number of elements but fortunately, with smaller KF-complexity. Thus the new normal-
partition can then be simplified, by the method (1}, so that it has finally fewer elements than the
old cne.

H the KF-complexity of the new normal-partition is 0 then we have a normal-partition of a
handlebody (the boundary of which contains the two sides of N1). Then we use the obvious
meridian disks for cutting the handlebody up into a 3-cell. The boundary of that 3-cell is then a
planar diagram which shows the sides of the meridian disks, parts of the sides of N1, and parts of
the boundary torus of the knot complement. That diagram permits an easy test whether or not
N1 is compressible,

Otherwise, if the new normal-partition still has KF-complexity > 0, we construct a second
normal-surface, N2, and use it for further cutting up the normal-partition (again lowering the KF-
complexity), etc, etc, until we obtain a hierarchy of orientable normal-surfaces, N1, N2, ..., and
meridian disks, which cut the knot complement up into one 3-cell. Then the boundary diagram of
that 3-cell permits to determine whether or not all the surfaces in the hierarchy are incompressible
(and boundary-incompressible). In the positive case, the knot is not trivial and the procedure
halts. In the negative case, one can replace one of those hierarchy surfaces which are compressible
(or boundary-compressible) by one of lower genus and use this to construct an improved hierarchy.
- Only a limited number of such hierarchy improvements can occur. But the question still open
at this time is: Can we refine the procedure so far that the limit for the number of hierarchy
improvements can be proved to be polynomial (in the number of overcrossings of the given knot
projection)? '

References

[1] W. Haken, Theorie der Normalflaechen, Acta Mathematica, 1961.

45

A Note on the Tree Graph of a Set of Points in the Plane
Extended Abstract

Eduardo Rivera-Campo

Instituto de Matemdticas, Universidad Nacional Autonoma de México!

Virginia Urrutia-Galicia

Departamento de Matemdticas, Universidad Auténoma Metropolitana-Iztapalapa

1.- Introduction

The iree graph of an abstract graph G is the graph T(G) that has a vertex for each spanning tree of G and
an edge joining two trees S and R whenever R is obtained from § by replacing an edge s in § with an
edge r in R. R. Cummins proved in [2] (sec also {3]) that if G is connected and has more two vertices,

then 7(G) contains a Hamilton cycle, that is a cycle which includes every vertex of G.

T.et P be a set of # points in general position in the Euclidean plane E'. A geometric graph . with
vertex set £ is a graph G, drawn in E* in such a way that every edge is a straight-line segment with ends

in P. A spanning tree of P is a spanning tree of the complete geometric graph K {P) with vertex set P.

The tree graph of a set P of n points in the plane is the graph T(P) with a vertex for each non-
selfintersecting spanning.tree of P;two trees are adjacent in T{P) if and only if they are adjacent in the
tree graph of the complete graph K, with vertex set P. In this note we prove that T{P) is always
connected and give bounds for its diameter and for its minimum and maximum degrees. For graph

theoretical concepts we refer to [1].
2.- Connectivity of T{(P)

For any vertices « and v of a connected graph G, we denote by dg (i, v) the distance between u and v in
G, that is the minimum number of edges ina path joining ¥ and v in G. In this section we show that if P
contains at least two points, then there is a non-selfintersecting spanning tree of P which is at distance at

most #—2 in T{P} from any other non-selfintersecting spanning tree of P.

1 On sabbatical leave from Universidad Auténoma Metropelitana-Iztapalapa

46

For the remaining of this note we identify the non-selfintersecting spanning trees of P with the plane
trees of the complete geometric graph K(P). The following lemma is used in the proof of the main result.;

it is presented here without proof.

Lemma 2.1.- Let L be a collection of straight line segments in the plane with pairwise disjoint relative

interiors and such that their endpoints are in general position. For any point v outside the convex clousure

of L, there is a line segment xy in L such that the triangle xvy does not intersect the relative interior of

any segment in L other than xy. *

Theorem 2.2.- Let P = {vo,vl v,,_l} be a set of n =2 points in general position in the plane with vy in
the convex hull of P. Let § be the plane spanning tree of K(P) with edge set given by E(S)=
{v(,v,;.:k =12,..n— 1}. For any plane spanning tree Q of K(P) there is a path in T(P), joining Q and S
and with length at most |E(Q)\ E(S).

Proof.- If |E(Q) \ E(S)| =0, then Q=5 and the result holds. We assume that the resuit is valid whenever
Risa plane spanning tree of P with |[E(R)\ E(S)|=m and let Q be a plane spanning tree of K{P} with
|E(@)\VE(S)|=m+1.

Let L= E(Q)\ E(S); since v, is outside the convex clousure of L, then by Lemma 2.1, there is an edge
xy of @ notin S such that the triangle xvyy does not meet the relative interior of any edge in E(Q}\ E(S)
other than xy. Since € is a plane spanning tree of K{P}, then at most one of the edges vox and vpy is an
edge of Q; without loss of generality we assume v,y & E(Q) and that xy is in the unique path in @ joining
vy and y. Since vyy does not intersect the relative interior of any edge of @, then R= (Q+ voy) —xyisa

plane spanning tree of P adjacentto Q in T{P}.

Since voy € E(S)\ E(Q). then |E(R)\ E(S)| = m. By induction there is a path in T(P), with length at
most m1, joining R and §. Since R is adjacentto @ in T(P), then T{P) contains a path, joining ¢ and S,

with length at most m+1, *

Corollary 2.3.- If P is a set of nz 2 points in general position in the plane, then dT(P)(Q, R}< 2(n- 2).
for any plane spanning trees Q and R of K(P). .

Let P= {ul,uz,...,um,v, ,vz,...,v,,,} be the set of vertices of a regular 2m - gonordered as usual. Let @
and R be the plane spanning trees of K(P) with edge sets E(Q)={wvyv...otyVy Vitty...., i, } and
E(R)={tyVyee sty Vs Viylly s Vgt g . We claim that every path joining @ and R in T(P) has length

at least 3m—4.

47

3.- Minimum degree and maximum degree of T(P)

For a graph G and a vertex u of G, we denote by dg(u) the degree of » in G and by 3(G) and A(G)
the minimum and maximum degree of &, respe_ctively. In this section we give a lower bound for 6(T (P))

and an upper bound for A(T(P)).

Let S be a plane spanning tree of K{P). For every edge ee E(K(P)}\ E(S), there is a unique cycle S,
of K(P) contained in S+e; clearly (S+e)—x is a spanning tree of K(P) for each edge x€S,. If

(S+¢)=x is a plane tree and ¢ # x, then (S+e)—x is adjacent to § in T{P).
Theorem 3.1 S(T(Pj) >2(n—2) for any set P of n=2 poinis in general position in the plane.

Proof.- Let S be a plane spanning tree of K (P) and D be a triangulation of P that includes every edge of
S. Let ee E(DY\E(S): since S+e is a plane subgraph of K(P), then for each edge e# x€ S,

(S +e)— x is a plane spanning tree of K(P), adjacentto S in T{P); therefore
drpy(S)z Y |E(S)] -1
ecE(D)VE(S)
> (|0 1E(5)
22((2n-3)~(n-1))
=2(rn-2)

Let P= {vo,vl ,...,v,,_l} be the set of vertices of a convex n-gon , ordered as usual, and let R be the
plane spanning tree of K(P) with edge set given by E(RY= {vovi:k= 1,2,...n—1}. We claim that R is-

adjacent to exactly 2(n —2) trees in T(P}. This shows that the bound in Theorem 3.1 is tight. *

An upper bound for the maximum degree in T{P) is given here without proof.

~1)(n=2)n+
Theorem 3.2.- A(T(P))< (= 1)(n : Mo +3) for any set P of n22 points in general position in the

plane. *

Let P= {vo, Vi, .,vn_,} be the set of vertices of a convex n-gon, ordered as usual, and let S be the plane
spanning tree of K(P) with edge set E(S)= {vovl,v,vz,...,vn_zvn_l}. In this case S+e is a plane
subgraph of K(P) for every edge e E(K(P))\ E(S). We claim that the tree S is adjacent to exactly

—1){n- +3 '
(1) 5 2)(n+3) trees in T(P). This shows that the bound in Theorem 3.2 is also tight. +

48

4.- Final remarks

Let T"(P) be the spanning subgraph of T(P) in which two trees are adjacent if and only if one is obtained
from the other by interchanging two edges with disjoint relative interiors. All results and examples in this

note remain valid for 7°(P).

Acknowledgments

We thank Jorge Urrutia for his suggestions and for providing us with the example in section 2.
References

[1]]. A.Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, 1981.

[2]1 R. L. Cummins, Hamikton Circuits in Tree Graphs, IEEE Trans. on Circuit Theory, CT-13 (1966),
82-90.

{3} H. Shank, A Note on Bamilton Circuits in Tree Graphs, JEEE Trans. on Circuit Theory, CT-15
{1568), 36-.

49

A straight-line embedding of two or more
rooted trees in the plane

M. Kano

Department of Computer and Information Sciences
Ibaraki University, = Hitachi 316 Japan
e-mail: kano@cis.ibaraki.ac.jp

1 Results

We consider finite planar graphs without loops or multiple edges. Let G be a planar
graph with vertex set V/(G) and edge set E(G). We denote by |G| the order of G, that’
is, |G| = |V(G)|. Given a planar graph G, let P be a set of |G| points in the plane
(2-dimentional Euclidean space) in general position (i.e., no three of them are collinear).
Then ¢ is said to be line embedded onto P or stright-line embedded onto P if G can be
embedded in the plane so that every vertex of G corresponds to a point of P, every edge
corresponds to a straight-line segment, and no two straight-line segments intersect except
their common end-point. Namely, G is line embedded onto P if there exists a bijection
¢ : V(@) — P such that two points ¢(z) and ¢(y) are joined by a straight-line segment
if and only if z and y are joined by an edge of G and all two distinct open straight-
line segments have no point in common. We call such a bijection a line embedding or a
straight-line embedding of G onto P.

In this paper we consider a line embedding having one more property. Let G be a planar
graph with n specified viertices vy, vs,...,vs, and P a set of |G| points in the plane in
general position containing n specified points py, pa, . .. ,Pn- Then we say that G is strongly
line embedded onto P or strongly straight-line embedded onto P if G can be line embedded
onto P so that for every 1 < i < m, v; corrresponds to p;, that is, if there exists a line
embedding ¢ : V(G) — P such that ¢(v;) = p; for all 1 < i < n. The line embedding
mentioned above is called a strong line embedding or a strong straight-line embedding of
G onto P. A tree with one specified vertex v is usually called a rooted tree with root v.
Given n disjoint rooted trees T; with root v;, 1 < i < n, the union Ty UT2U---UT,, whose
vertex set is V(T,)UV(Ty)U- - -UV(T,) and whose edge set is E(T})U E(T3)U- - -U B(T,),
is called a rooted forest with roots vy, vs,. .., s, Which are specified vertices of it.

We begin with the following theorem, which was conjectured by Perles [6] and par-
tially solved by Pach and TérScsik [7], and whose another simpler proof can be found in
Togunaga [8].

Theorem A (Ikebe, Perles, Tamura, and Tokunaga [3]) A rooted trec T' can be

50

J b e
on Uy ‘ -)

Figure 1: A rooted forest F' and its strong line embedding onto P.

o
.a/___,, P?
I] I . e Beoep
n Va U3 'U'? .. | . L4

Figure 2: A rooted forest F' which cannot be strongly line embedded onto P.

strongly line embedded onto every set of |T| points in the plane in general position con-
taining o specified point.

The next theorem gives an algorithm for finding a strong line embedding mentioned in
the above theorem.

Theorem B (Bose, McAllister and Snoeyink [1]) Let T be a rooted tree of order
n and P a set of |T| points in the plane in general position containing a specified point.
Then we can strongly embed T onto P in O(nlogn) time.

Our first result is the following.

Theorem 1 {Kaneko and Kano [4]) A rooted forest F' consisting of two rooted trees
can be strongly line embedded onto every set of |F| points in the plane in general position
containing two specified points (see Figure 1).

Moreover, our proof of the above theorem gives a O(|F|?log|F|) time algorithm for
finding such a strong line embedding. We mention that there exist root forests consisting
of four rooted trees which cannot be strongly line embedded onto certain sets of points in
the plane in general position containing four specified points. An example of such a forest
and a set of points are given in Figure 2. However, we propose the following conjecture.

Conjecture 2 (Kaneko and Kano) A rooted forest F' consisting of three rooted trees
can be strongly line embedded onto every set of |F| points in the plane in general position
containing three specified pomts

A complete bipartite graph K(1, k) is called a star, which is a tree and has one central
vertex and k end-vertices. A star with one specified vertex v, which may be an end-
vetex, is called a rooted star with root v. Our next theorem guarantees the existence of a
straight-line embedding of rooted forest consisting of many rooted stars.

l\hlz}/ ‘ F%/m

v Vo

Figure 3: A rooted forest F' and its strong line embedding onto P.

-B_ tﬂ. ne .D
. - . c
:3 ‘:/'rq-
1111, s kPR Ty
V=W .
'V| VL'U3 ') n :
. % '_§, . €

Figure 4: A rooted forest F which cannot be strongly line embedded onto P.

Theorem 3 (Kaneko and Kano [5]) Let n > 1 be an integer, and for every 1 <
i <n, T: be a rooted star with root v;. Then a rooted forest F' := TyUT, V... UT, with
r00ts vy, Vo, . ., Un can be strongly line embedded onto every set of |F| pomts in the plane
in general posztzon containing n specified points. :

Let us give an example which shows the necessity of the condltlon that every T; 1s a
star. For two distinct points = and y in the plane, we denote by L(z,y) the line passing
through z and y. Let Ty, T, T3 be rooted stars K(1,1), and let Ty be a rooted tree which
is obtained from the star K(1,8) by adding one new edge together with its new end-vertex
u to an end-vertex and whose root is the new end-vertex u (see Figure 4). We define a
rooted forest F as F := T) UT, UT3 UTy, whose order is 16. Let P be a set of 20 points in
the plane in general position containing four specified points p1, p2, p3, p4 given in Figure 4
that satisfy the following condisiton: (i) p;,p2,p3 are the vertices of a equilateral traingle
A(p1paps), and pg is its center; (i) 16 non-specified points of P lie on the same circle
of center py; (iii) a line L(p;,ps) passes between g and f, (iv) two points a and A lie to
the left of L(py,ps); (v) p2 lies to the left of L(a,g) and of L(b,h); (vi) the above two
statements (iv) and (v) symmetricaly hold for all the other points. Then F' cannot be
strongly line embedded onto P.

Conjecture 4 (Kaneko and Kano) Let F:=T1UTyU---UT, a rooted ‘tree with
roots vy, va, ...,V such that [Ti| > |Ty| > -+ 2 |Tal, and let P be a set of |F| points
in the plane in general position containing n specified points pi,ps,...,pn. If for every

1< i<n,p; is d vertex of con({pi, Pis1,--:,Pn}), then F can be strongly line embedded
onto P. ' I

52

2 Sketch of Proof of Theorem 1

For a set X of points in the plane, we denote by conv(X) the convex hull of X, which is
the smallest convex set containing X. In order to prove our Theorem 1, we first show the
following lemmas.

Lemma 5 A tree T has a vertez v such that every component of T — v has order less
than or equal to [T|/2.

Proof Choose a vetex v of T so that the maximum order of the components of T' — v
is minimum among all vertices of T. Then v satisfies the condition of this lemma. U

Lemma 6 Let T be a tree with two specified vertices vy and vq, and P a set of |T| points
in the plane in general position containing two specified points p; and ps. If py and py are
consecutive vertices of conyP), then T' can be strongly line embedded onto P.

Proof We prove the lemma by induction on |T|. By a suitable rotation of the plane
and by the symmetry of p and p,, we may assume that p; lies on the bottom of conv(P)
and that po lies to the left of p;. Suppose first degp(v1) = 1. In this case, we take a vertex
g of conv(P \ {p,}) such that a straight-line segment g7; is an edge of conv(P\ {p}) and
71q intersects conv(P \ {p;}) at only ¢. Let u be the vertex of T adjacent to v;. Then
by induction, a tree T — v; with two specified vertices u and v is strongly line embedded
onto P\ {p1} with specified points g and p,. By adding pig to this embedding, we can
get a desired strong line embedding of T'.

We next assume degr(v;) > 2. Let D be a component of T' — vy not containing v;.
Then |D] < |T| -2 = [P| ~2, and so there exists a line I passing through p; such that the
number of usual points of P lying on or to the right of [is equal to [D|. We denote the
set of these usaul points of P by Q. Then by Theorem A, a rooted tree (D U {v;})r with
root v is strongly line embedded onto Q U {p;} with specified point p;. Furthermore, it
follows from the inductive hypothesis that T' — V(D;) with specified vertices v; and vo
is strongly line embedded onto P \ @ with specified points p; and p;. By combining the
above two embedding, we can obtain a desired strong line embedding of 7" onto P. O

By the following lemma, when we prove Theorem 1, we may assume that the two roots
of T, UT, lie inside of con(P). Namely, the case where one of roots lies on the boundary
of con{P) is easy to prove.

Lemma 7 Let Ty UT, be a rooted forest with roots vy and ve, and P a set of |11 U To|
points in the plane in general position containing two specified points py and po. If py is
a vertez of conv(P), then Ty U T can be strongly line embedded onto P.

Proof We prove the lemma by induction on [T} U T2|. Suppose first degy, (v1) = 1.
We take a vertex g of conv(P \ {p;}) such that g # p; and 57 intersects conv{P \ {p1})
at only g. Let u be the vertex of T} adjacent to v;. Then by induction, a rooted forest
(Ty — v1) U Ty with roots u and v, can be strongly line embedded onto P\ {p;} with

53

specified points ¢ and ps. By adding P1q to this embedding, we get a desired embedding
of Ty UT5 onto P. ‘ _ _

We next assume degg, (v1) = 2. Let D be one of the smallest components of Ty — v1.
Then |D] € (IT1| = 1)/2 < ([P} — 2)/2, and so at least one of regions detemined by a
line passing through p; and p contains at lest |D| usual points of P. Thus there exists
a line | passing through p; such that an open region R determined by | contains exactly
|D| usual points of P and does not contain p;. Then by Theorem A, (DU {p1})7, with
root vy is strongly line embedded onto (RN U(P))U {p:} with specified point p;. By the
inductive hypothesis, (T3 — V(D)) U Ty with roots v; and v, is strongly line embedded
onto P\ (RNU(P)) with specified points p; and ps. By these embeddings, we can obtain
a desired strong line embedding of Ty UT5 onto P. O

Lemma 8 Let F := T, UTy, UT; be a rooted forest with roots vy, v, v3, end P a set of
|F| points in the plane in general position containing three specified points py,p2,p3. If pi
and py are consecutive vertices of con(P), then F' can be strongly line embedded onto P.

Proof Without loss of generality, we may assume that p; lies on the bottom of conv(P)
and that p, lies to the left of p;. We consider only rays r emanating from p; and going
upward, and so a ray means such a ray. Given aray r, let P(r) denote the set of points of P
lying on or to the right of 7. Then p; € P(r) for every ray r, and there exists a ray r; such
that either (i) |P(ri)| = |Ti| and P(r1) does not contain ps; or (i) |P(ri)| =|Ta| +|T5|
and P(r;) contains p3. If r, satisfies (i), then Ty and T U T3 are strongly line embedded
onto P(ry) and onto P \ P(ry), respectively, by Theorem A and by Lemma 7. Similarly,
if r, satisfies (ii), then 73y U T3 and T are strongly line embedded onto P(r;) and onto
P\ P(ry), respectively. Therefore T3 UT>UT3 can be strongly line embedded onto P O

Sketch of Proof of Theorem 1 ~ When we prove the theorem, we prove the following
calims and some other calimes, and consider two cases.

Claim 1. We may assume that for every line l passing through py, the number () of
usual points of P lying on or to the left of I is less than ny. '

Define an integer M by
M = max{f(1)}, |
where maximum is taken over all the lines [passing through p; except the horizontal line
passing through p; and pe, and f(!) is defined as in Claim 1. Then (n; +n9)}/2 < M <y
by Claim 1. Let Dy, Ds,..., D, be the components of T} — v; such that |Dh] = |Dof 2
.o+ > |Dyl. o
Claim 2. We may assume [D1| > M.

By Lemma 5, D; has a vetex wy such that each component of Ij — w; has order less
than or equal to |Dy|/2. Let Ay, A,.. ., A: be the components of Dy —w; such that A, is
the component containing the vertex adjacent to v; in 77 and Aj is a largest component
among As, As, ..., A, Note that Ay = 0 if v; and w; are adjacent in T3. Let wp € Aj be
the vertex adjacent to w;. Define By := Ay and

By = A1 U (U A) if t2> 3., and otherwise Bj := A,
i=3 '

54

where an integer r, 3 < r < t, is chosen as large as possible subject to |Baf < M, in
particular, if r < t, then |By U A.41| > M. Note that [A;] < M as |4 < |Di]/2 <
(ny—1)/2<{ny+ny)/2-1< M —1. We define

By:i= A U---UA, if r<t, and otherwise Bj:=0.
Moreover, put :
B]_ = D2 u..-u Dm = T1 - (V(Dl) U {'Ul}).

Then V(TI) = V(Bl) U V(Dl) U {'Ul}, V(D1) = V(Bz) U V(B3) U V(B4) U {wl} and
wo € B4.

Claim 8. We may assume that for every line | passing through p;, the number f(I) of
usual points of P lying on or to the left of | is greater than or equal to |Ba| + 2.

Claim /. We may assume B # 0.

References

[1] P. Bose, M. McAllister and J. Snoeyink, Optimal Algorithms to embed trees in a
point set, Graph drawing (Proceedings of Symposium on Graph Drawding, GD'95),
1027 Lecture Notes in Computer Science. '

[2] H. de Fraysseix, P. Pach and R. Pollack, How to draw a planar graph on a grid,
Combinatorica, 10 (1990) 41-51.

[3] Y. Ikeba, M. Perles, A.Tamura and S. Tokunaga, The rooted tree embedding problem
into points on the plane, Discrte Comput. Geom. 11 (1994) 51-63.

[4] A. Kaneko and M. Kano, A straight-line embedding of two rooted trees in the plane,
In preparation.

[5] A. Kaneko and M. Kano, Straight line embeddings of star forests in the plane, In
preparation. '

[6] M. Perles, Open problem proposed at the DIMACS Workshop on Arrangements,
Rutgers University, 1990.

[7] J. Pach and J. Torécsik, Layout of rooted tree, Planar Graphs (DIMACS Series in
Discrete Math. and Theoritical Comput. Sci.) 9 (1993) 131- 137.

[8] S.Tokunaga, On a straight-line embedding problem of graphs, Discrete Math. 150
(1996) 371-378. ‘ o

55

‘A balanced partitidn of points in the plane and
| tree embedding problems
(Extended abstract)

Atsushi Kaneko
Department of Electronic Engineering
Kogakuin University |
Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-91 Japan
e-mail: kaneko@ee.kogakuin.ac.jp

1 Introduction

Let G = (V, E) be a graph and let P be a set of points in the plane in general position (no
three points collinear). We denote by |G| the order of G and by conv(FP) the convex hull
of P. We say that G can be straight-line embedded onto P, if there exists a one-to-onc
mapping ¢ : V — P such that two points ¢(z) and ¢(y) are joined by a straight line
segment if and only if zy € F and such that any two distinct open straight line segments
have no point in common. Furthermore, let G be a planar graph with n specified vertices
vy, Uz, -, Un, and P a set of |G| points in the plane in general position containing n
specified points p1,pa,* -+, Pn. Then we say that G can be strongly line embedded onto P
if G can be straight-line embedded onto P so that v; corresponds to p;, 1 < i < n. Let
Ty, %, -+, Ty be n disjoint rooted trees such that v; is the root of T;, 1 < ¢ < n. Then the
union T, UTy U---- U T, is called a rooted forest with roots vy, vz, "+ VUn. ({v1, v, *,Un}
are specified vertices of the forest.)

Tkebe et al. solved the rooted tree embedding problem, which was originally posed by
Perles at the 1990 DIMACS workshop on arrangements. Short proofs of this theorem
have been given in [1} and [4]. _

Theorem A (Ikebe, Perles, Tamura,and Tokunaga [3]) A rooted tree can be strongly
line embedded onto any set of |T| points in the plane in general position containing a spec-
ified point.

56

2 Thorems
In this paper, we prove the following theorems.

Theorem 1 (Kaneko and Kano) Let 71,73, - -, T, be m disjoint rooted trees such that
Tl — T3]l < 1 foranyl < i< j < mand let v; be the root of T;, 1 < i < m. Let
R and S be two disjoint sets of points in the plane such that [RU S| = Yo, |Til and
S = {p1,p2, -, Pm}- Then the rooted forest T; UTo U - U T, with roots vy,va, -, Um
can be strongly line embedded onto RU S with S being specified points.

In order to prove Theorem 1 we need the next theorem, which is of some general interest.

Theorem 2 (Kaneko and Kano) Let S, S; and R be three disjoint sets of points in
the plane such that no three points of S1 U S2 U R are collinear and |S; U Sp| = q. Let m
be a positive integer. If |T'| = (m — 1)|St| + m[Ss|, then Sy U S; U R is partitioned into g
sets Py, P, .-+, P, such that

(1) IP ﬂ(SIUSz)I =1, forall 1 <z<q,

(2) conv (F;) Nconv (P) ¢ foralll<i<j<gq, and

(B)|\P|=m i |P,NSi| =1, and |[Pj=m+1i|ANS =1

Combining Theorem 2 with Theorem A, we deduce Theorem 1. It seems that we
can essily prove Theorem 2 by using the ham-sandwich theorem (see, for example {2}).
However, it may happen that g is odd and the non-trivial part of the proof of Theorem 2
is to deal with this case.

3 Conjectures

In view of Theorem 2 we give the following conjectures.

Conjecture B (Kaneko and Kano) Let S and R be two disjoint sets of points in the
plane such that no three points of S U R are collinear and |S| = 2q9. Let m > 2 be an
integer. If |T'| = myq, then S U R is partitioned into q sets Py, Py, -+, Py such that

(1} |PnS{=2foralll <i<yq,

(2} conv(F)Nconv(P;) =¢ foralll<i<j<gq, and

(8) |1Pil=m+2 foralll £i<q.

Conjecture C (Kaneko and Kano) Let m and n be two integers such that m > n >
2. Let S and R be two disjoint sets of points in the plane such that no three points of
S U R are collinear and |S| = ng. If |T| = mq, then S U R is partitioned info q sets
P, Py, -+, P, such that

(1) IP,NSl=mnforalll <i<g,

(2) conv(P;)Nconv (P;) = ¢ foralll <i< j<gq, and

(8) |Pl=m+nforalll <i<gq.

57

Conjecture D (Kaneko and Kano) Let Sy, Sz, S3 and R be four disjoint sets of points
in the plane such that no three points of S;US:USsUR are collinear and |S;US2USs| = ¢.
Let m be a positive integer. If |T| = (m—1)|S;| +m|S2|+ (m+1)|Ss|, then S;US;US3UR
is partitioned into q sets P, P, -, P, such that
(1) |PBn(S1USUSs) =1, foralll <i<yg,
(2) conv (P;) Nconv(P;) =¢ for all1 <i<j < g, and
(3) |B|=m fIRNS[=1,
|P| =m-+1i|P.NS,y| =1, and
[Pl =m+2if|[FNSs| =1

If conjecture D is true, it is easy to see that we get an extension of Theorem 1 by the
same argument.

References

[1] P. Bose, M. McAllister and J. Snoeyink, Optimal algorithms to embed trees in a point
set, Proc. Graph Drowing (G’D’95) Lecture Notes in Comp. Science 1190 Springer
Verlag (1995), pp. 64-75.

| [2] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Verlag, Berlin,
1987. _

[3] Y. Ikebe, M. Perles, A. Tamura and S. Tokunaga, The rooted tree embedding problem
into points on the plane, Discrete Comput. Geom. 11 (1994}, pp. 51-63.

[4] S. Tokunaga, On a straight-line embeddmg problem of graphs, Discrete Mathematics
150 (1996) pp. 371-378.

58

Parallel Algorithms for Longest Increasing Chains
in the Plane and Related Problems

Mikhail J. Atallah*

Abstract

Given a set S of n points in the plane such that each
point in S is associated with a nonnegative weight,
we consider the problem of computing the single-
source longest increasing chains among the points
in S. This problem is a generalization of the planar
maximal layers problem. In this paper, we present a
parallel algorithm that computes the smgle—source
longest increasing chams in the plane in O(log? n)
time using O(n?/log® n) processors in the CREW
PRAM computational model. We also solve a re-
lated problem of computing the all-pairs longest
paths in an n-node weighted planar st-graph, in
Oflog? n) time using O(n*/logn) CREW PRAM
processors. Both of our parallel algorithms are im-
provement over the previously best known results.

1 Introduction

A point p in the plane is said to dominate another
point q if and only if x(p) > x(q) and y(p) > y(q),
where x(p’) and y(p') respectively denote the x-
and y-coordinates of a point p’. Let S be a set of
n points in the plane such that each point p in 5
is associated with a nonnegative weight w{p], and

*Dept. of Computer Sciences, Purdue University, West
Lafayette, IN 47907, USA, E-mail: mja®cs.purdue.edu.
This author gratefully acknowledges the support of the
COAST Project at Purdue University and its sponsors, in
particular Hewlett Packard, DARPA, and the National Se-
curity Agency.

tDept. of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN 46556-5637, USA, E-mail:
chen@cse.nd_edu. This research of this author was sup-
ported in part by the National Science Foundation under
Grant CCR-9623585.

*Dept. of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN 46556-5637, USA, E-mail:
kklenk@cse.nd.edu. This research of this author was sup-
ported in part by the Nationai Science Foundation under
Grant CCR-9623585.

Danny Z. Chent

59

Kevin S. Klenk?

let 0 = (p1,p2,---,Px) be a sequence of distinct
points in S. The sequence o is increasing if and
only if p; dominates pi— for alli, 1 <i < k. We
also call ¢ an increasing chain. The length of o is
the sum of the weights of the points in 0. The chain

o between py and vy is longest if no other py-to-

pi increasing chain passing through the points in
S has a length greater than o. In this paper, we
study the problem of computing in paraliel longest
increasing chains in S and some related problems.

The notions of dominance between points and of
increasing chains are useful in many problems in
computational geometry, graph theory, scheduling,
and economics, including problems on independent -
dominating sets in permutation graphs and prob-
lems on increasing subsequences of a sequence of
numbers (cf. [5] for more on these). The problem
of computing a longest increasing subsequence of a
number sequence, for instance, has appeared in a
number of areas, and there are Q(nlogn) time se-
quential algorithms for this problem (see [10-12]
among others). In particular, increasing subse-
quence problems occur in the context of circle
graphs, circular-arc graphs, interval graphs, and
permutation graphs (see [3} for references). In this
paper, we shall also exploit a connection between
increasing chains and paths in st-graphs.

For sake of simplicity, we shall henceforth refer
to all increasing chains simply as chains.

Some interesting work has been done on solving
various chain problems. Atallah and Kosaraju {5}
presented optimal sequential O{nlogn) time al-
gorithms for several problems related to planar
chains. Atallah and Chen [3] gave a sequential
O(n?) time algorithm for the unweighted planar
all-pairs longest chains and a parallel algonthm for
the weighted planar all-pairs version in O(log? n)
time using O(n?/logn) CREW PRAM processors.

The single-source longest chains problem is that

of finding longest chains from a fixed source point
of § to all other points of 5. The single-source prob-
lem is in fact a generalization of the maximal lay-
ers problem, which computes the mazimal layers
of the points in S as follows: find all the points
of § that are not dominated by any other point of
S, call these layer-1 points, and remove them from
S; produce points of subsequent layers by repeat-
ing this process on S, until S becomes empty. It
is easy to reduce the maximal layers problem to
the unweighted single-source longest chains prob-
lem (i.e., by letting the weight of each point be
one unit). Optimal sequential O(n logn) time solu-
tions for the planar maximal layers problem easily
follow from the known algorithms for the longest
increasing subsequence [10-12); an O(nlogn) time
algorithm for the 3-D version of the problem was
recently given by Atallah, Goodrich, and Ramaiyer
[4]. Aggarwal and Park [1] gave a parallel algorithm
for the planar maximal layers problem that takes
O(log2 n) time and O(n%/logn) CREW PRAM
Processors. '

This péper extends Atallah and Chen’s parallel
approach [3] to computing the planar single-source
longest chains. One of the ways in which this ex-

tension differs from [3} is that it involves a new.

tmplicit spreading idea (to be described in Section
2) that helps us overcome the difficulty of extend-
ing the solution for a smaller size problem to one
for a larger size problem (this need did not occur
in [3]). Another idea involves a different kind of
partitioning scheme, leading to a logarithmic num-
ber of iterations that, while performed in sequence,
individually involve parallelism in the way they are
performed. Qur parallel single-source algorithm
takes Oflog’n) time using O(n? /log® n) proces-
sors. Our solution, when applied to the (simpler)
planar maximal layers problem, improves the pro-
cessor bound of Aggarwal and Park [1] by a log?n
factor while retaining the same time bound.

We also show a new application of the parallel
all-pairs longest chains algorithm by Atallah and
Chen {3], to computing the all-pairs longest paths
in weighted planar st-graphs. Briefly, a planar st-
graph is a planar directed acyclic graph with ex-
actly one source s and exactly one sink t that is
embedded in the plane such that s and t are both
on the boundary of the outer face i18,19]. Pla-
‘nar st-graphs have been used in many applications
such as: computational geometry, graph drawing,
motion planning, partial orders, planar graph em-
bedding, and VLSI layout (see {19] for references).

60

We are not aware of any previous parallel al-
gorithm for computing the all-pairs longest paths
in weighted planar st-graphs. But, one could at-
tempt to apply known parallel algorithms for short-
est poths in directed graphs to solve this st-graph
problem. Han, Pan, and Reif {13] presented an
algorithm that computes all-pairs shortest paths
in general directed graphs in O(log?n) time us-
ing o{n3/log?n) EREW PRAM processors. Co-
hen [8] gave algorithms that compute shortest paths
in planar directed graphs, in O(lcog4 n) time and
0O{n?/log* n) CREW PRAM processors.

Our algorithm takes advantage of the underly-
ing geometry of a planar st-graph to enable us to
compute the all-pairs longest paths in an n-node
weighted planar st-graph in O(log?n) time using
O(n?/logn) CREW PRAM processors. Specifi-
cally, our computation is performed by reducing the
all-pairs longest paths in a planar st-graph to that
of the all-pairs longest chains in the plane. Due to
the space limit, we leave the st-graph algorithm to
the full paper. '

In the rest of this paper, we will focus on co_m_—'
puting the lengths of the longest chains/paths. Our
algorithms can be easily modified to generate the
actual longest chains/paths as well as their lengths,
by using the techniques for finding actual paths
in [3].

2 Preliminaries

As in [3], our solution is based on fast matrix mul-
tiplications of particular types of matrices (specif-
ically, monotone matrices) in the (max,+) closed
semi-ring, i.e., (M’ x M"}{i,j) = max; {M'(i, k) +
M*{k,i)}. All of our matrix multiplications are of
this form.

Atallah and Chen [3] considered the problem of
computing an . X 1 matrix D of the lengths of
the longest chains between each pair of points in S.
Thus, D(p, q) gives the length of a longest p-to-q
chain, for any p,q € §. The computation of D is
based on the following observation.

Lemma 1 ([3]) Let Vi, Vi, and V. be three ver-
tical lines with x{Vy) < x{(Vm) < x(V:). Let
Sv (resp., S;) be the set of points in S whose x-
coordinates are > x(V1) (resp., > x(Vy)) and <
X(Vin) (resp., < x(V.)). Let the set Xy (resp., Xi)
contain the horizonial projections of the points of 51
(resp., 5:) onto Vi (resp., V;), and X, contain the
horizontal projections of the points of S; U S, onto

V.. Let the weights of the points in Xy (resp., Xm,
X,) be all zero, Let () = SLUSUX 1 UXmUX,. Then
for every increasing chain C through the points in 0
from a point p € Xy to a point § € X, y(p) < ula)l,
there is a p-to-q increasing chein C' through Q
such that C' is at least as long as C end C' goes
through some point w € Xn,.

Let MIA,B] denote a matrix that contains the
lengths of longest chains starting from a point in
the set A, ending at a point in the set B, and pass-
ing through a particular set of points. Lemma 1
. implies that M{Xg, X;] = MIXg, Xl x M X, X+l
Atallah and Chen [3] also showed that the matri-
ces M[X1, Xy], M[Xy, Xml, and M[Xn, X;] have spe-
cial properties that enable fast matrix multiplica-
tions (by using the monotone matrix searching al-
gorithms in [1,2]). This is summarized in the next
lerama.

Lemma 2 ({ {3] } Let Vi, Vi, Vi, Xi, Xm, Xr,
and Q be defined as in Lemma 1. Let the poini
set X1 (resp., Xm, X:) be ordered by increasing Y-
‘coordinates along Vi (resp., Vi, Vi). Assume that
the size |X1| of Xu is proportional to X;|. Then,
given the maetrices M[X1, Xm] and M[Xm, X;], the
matriz MIX(, X, can be computed in OflogXi)
time and O(1X;|%/log|X\|} CREW PRAM proces-
sors. :

Lemma 2 was the basis for a two-phase algorithm
for computing the all-pairs planar longest chains
in [3]. Our algorithm uses one phase of this algo-
rithm. Hence, we sketch the necessary portions of
this two-phase algorithm.

Let § = {p1,Pz,...,Pn) Without loss of gener-
ality (WLOG), we assume that x(p1) < x(pz2) <
-+ < x(pn). Let Vo, Vi,...,Vy be vertical lines
such that x(Vp) < x(p1),x(pn}) < x{Vn), and

x(p;) < x(Vi) < x(piq1) foraliie 1,2,...,n—1}.

Let T be a complete n-leaf binary tree. For the i-th
leaf v of T in the left-to-right order, associate with
v the region I, of the plane that is between Vi
and Vi. For each internal node v of T, associate
with v the region 1, consisting of the union of the
regions of its children. That is, if v has children u
and w, then I, = I, UL,. The tree T is called the
computation tree on the point set 5.

- Let v be a node of T. Suppose that the left (resp.,
right) boundary of I, is Vi (resp., V;), and let S, =
$ N1, that is, S, is the subset of the points of
S that lie in the region I,. Let L, (resp., Ry) be
the set consisting of the horizontal projections of
S, onto V; (resp., V). If v is an internal node of T

with left (resp., right) child u {resp., w), thenlet Y,
denote Ry U Ly, i.e., the horizontal projections of
the points of S, onto the vertical line that separates
the region I, from the region l,. The weights of
all projection points are zero.

Atallah and Chen’s algorithm proceeds in the fol-
lowing two phases. In Phase 1, start at the leaves
and go up the tree T level by level, computing, at
each level, the M[L,,R,] matrices for nodes v of
T, which contain the lengths of all the L,-to-R,
longest chains (these chains begin on L, and end
on R, possibly going through points in S, along
the way). For an internal node v of T, MI[L,, Ry)
is computed from the two matrices MIL,,Y.] and
MI[Y,,R,] based on Lemma 2. Note that when ‘the
computation reaches v, only the matrix MLy, Ryl
(resp., M[Lw, Ry]) is available from its left child u
(resp., right child w). The matrices MIL,,Y;] and
MIY,, R,] need to be obtained from MLy, Rl and
ML, Rwl, respectively. M[L,,Y,] is computed, in
O(logn) time and 0O(|Sy|?/logn) processors, from
MLy, Ry] by the following spreading procedure (the
computation of M{Y,, R,] is similar}:

1. Perform a parallel prefix along L, (resp., Yy),
in decreasing (resp., increasing) y-coordinates,
to compute, for every point z € L, (resp., Yy),
the lowest (resp., highest) point l(z} (resp.,

" h{z)) such that U(z) € Ly (resp. h{z) € Ru)
and that y(U{z)) > u(z) (resp., y(h(z)) <
ulz}).

2. For every pair of points p and g such that
p € L, and g € Y,, do the follow-
ing: If y(p) < villp)} £ ulq), then let
MIL,, Y;)(p, d) = M[Ly, Rul{l{p), hiq)). Oth-
erwise, let MIL,, Y. J{p,q) =0

The matrices M[L,, Y], M[Y,,R,], and M[L,, R,]
are stored at v (even after the computation has
reached higher level nodes of T); these matrices
are useful in Phase 2. Phase 1 is accomplished
in O(log?n) time, O(n?/log?n) processors, and
O(n?) space.

Phase 2 is a top-down computation, starting at
the root of T and going downward to the leaves,
one level at a time. This phase uses the information
produced in Phase 1 to obtain the lengths of the all-
pairs longest chains. In particular, for every pair of
nodes u,w at the same level of T such that u is to
the left of w, it computes the matrix M[R,, Lu].
This phase takes O[log2 n) time, Q(n?/logn) pro-
cessors, and O(n?) space.

61

Observe that, although the above spreading pro-
cedure ezplicitly obtains the matrix MiLy, Y,] from
the matrix M[L,,Ry] in [3], it is possible to rep-
resent MI[L,,Y,] émplicitly. That is, the matrix

MIL,,Y,) can be fully described by M[L,,,Ry] and

the two sorted lists L, and Y,. To obtain this
representation of MIL,;Y,}, we only need to per-
form Step 1 of the spreading procedure (but not
Step 2). This takes O(log(|L,| + {Y,])) time and
O((ILy] + [Yul)/ log(ILy] + [Yul}) processors.” After
that, useful information about the matzix M[L,, Y]
is readily available. For example, every entry
MI[L,, Y.l (psq) can be computed in O(1) time and
one processor from M[L,, Ry}, as in Step 2 of the
above spreading procedure. We call this the im-
plieit spreading procedure. Although it would not
make much difference in the overall algorithm of [3],
the implicit spreading procedure is important to
our single-source algorithm in the next section.
Specifically, the implicit spreading procedure is use-
ful when {Lu! + [Ry] = of|Ly} + [Yi]) {i.e., when
|L.|+ Ryl is asymptotically smaller than |L,|+[Y,[}.

3 Single-source longest chain
algorithm

This section presents the Oflog?n) time,
O(n2/log®n) processor algorithm for com-
puting the single-source longest chains in the
plane. WLOG, we assume that the source point p*

‘dominates all other peints in S. We also assume

that we have already sorted the points in § by
their x-coordinates and by their y-coordinates, in
O(logn} time and O(n} processors [9].

The all-pairs longest chain algorithm in 3] re-
lies heavily on the multiplication of two m x m
matrices via monotone matrix searching. For our
single-source computation, we often rely on multi-
plying an m x m matrix with an m x 1 matrix. The
following lemma, is for this purpose:

Lemma 3 Let V) and V; be two vertical lines such
that x(V1} < x(V,).. Let §' be the set of points of
S that are between Vi and V., with m = |S'|. Let
Xt {resp., X;) be the set of horizontel projection
points of 8’ onto Vi (resp., V.} that are ordered
by increasing y-coordinates and whose weights are
all zero. Then, given the m x m matriz M[Xy, Xy]
and the m x 1 matriz M[X.,p*] (for lengths of the
longest chdains through the points of $), the m x 1
matris M{Xy, p*] can be computed in O{logm) time
and O(m) EREW PRAM processors.

Sk—1, Sk—2 So e P

Vi Vi-1 Viz Vi Vg

Iterations

Figure 1: Tlustrating the single-source longest
chain algorithm,

Proof: This is a straightforward adaptation of
Lemma 2 to the single-source situation (one could
consider the source point p* being also on a ver-
tical line}. In this case, multiplying an m x m
length matrix by an m x 1 matrix is the main
operation, which can be done by using Atallah
and Kosaraju’s O(logm) time, O{m) processor al-
gorithm for searching an m X m monotone ma-
trix [6)].]

QOur algorithm for computing the single-source
longest chains in the plane works in an itera-
tive fashion, taking advantage of the monotonicity
shown in Lemmas 1 and 3. The main steps of the
algorithm are as follows:

1. Partition the set S —{p*} of n — 1 points into

" k subsets of (roughly) size n/logn each, by
using k = log n vertical lines Vg, V5, ..., Vi, in
the right-to-left order (see Figure 1}). WLOG, -
we assume that no point of S is on any line V;
and that the source point p* is the only point
of § to the right of the line V.

2. Let $; be the subset of the points in S that lie
between the vertical lines V; and V. Project -
horizontally the points of 5; onto V; and Vi
(we call these projection points the boundary
points for S;). Let the weights of all the pro-
jection points be zero.

3. Compute the lengths of the longest chains from
the projection points on V; to the projection
points on Vit (through the points of S;).

4. Fori=0,1,..., k—1, iteratively compute the
lengths of the longest chains from the source
point p* to the boundary points on each ver-
tical line V;.

5. Compute the lengths of the longest chains from
p* to the points in every subset S;.

62

We now discuss the details of the steps of the
above algorithm. Steps 1 and 2 can be done easily
in O(logn) time using O(n} processors. Hence we
only need to focus on Steps 3, 4, and 5.

The computation of the longest chain lengths in
Step 3 from the projection points on V; to the pro-
jection points on Vi4; can be performed in parallel
for every i = 0,1, ..., k— 1, by using Phase 1
of the algorithm in [3]. We run Phase 1 of [3]
on each point set S;, generating and maintaining
a |S;|-leaf computation tree T; on Sy, together with
all the length matrices produced during this pro-
cess. Let R(S;) (resp., L(S:i}) be the set of pro-
jection points of S; onto V; (resp., Viy1). Then
after Step 3, the length matrix MIL(S;}, R(S:)] is
available at the root node of the tree T;. Each
tree T; and the length matrices stored at its nodes
are useful in the subsequent steps of the algorithm.
Phase 1 of the algorithm in [3] takes O(log” m)
time, O(m?/ log2 m) processors, and O(m?) space
on a set of m points. Thus, the computation on
each point set S; (whose size is O{n/logn)) in
Step 3 takes O(log® n) time, O(n?/log* n) proces-
sors, and O(Tszlog2 1) space. Summing over all
the k = log n sets Sy, this step takes O(lorg2) time,
0(n2/log> n) processors, and O{n?/logn) space.

Step 4 computes the longest chain lengths from
the boundary points of each point set S; to the
source point p*. This computation is done éfera-
tively, as follows. Let Pi be the set of the hori-
zontal projection points of all the points in S onto
the vertical line V; (thus |P;] = n). Then for ev-
eryi=0,1,...,k— 1, compute, by using the im-
plicit spreading procedure in Section 2, the {(im-
plicitly represented) length matrix M[Pi4q, Pi] of
size 1 x 1. from the [(n/logn) x {n/logn) ma-
trix M[L(S:},R(Si)] (from Step 3, MIL{S;),R(S:)]
is already available). This takes Ologn) time and
O(n/logn) processors for each 1; and O(logn) time
and O{n) processors for all the k =log n instances.
(Note that, if we had used an explicit representation
for every 1 x n matrix M[P.q, Pil, then it would
have taken O(logn) time and O(n?/logn) proces-
sors 0 obtain each such matrix, and Q(logn) time
and O(n?)} processors to obtain all the logn such
matrices, clearly too expensive an approach!) Next,
the following iterative procedure is performed:

First, let the length matrix M{Pg,p*] be
such that every entry M[Po, p*Hp,p*) =
w(p*), where w(p*) is the weight of p*.
This is because there is no point of § —
{p*} to the right of the line V; (see Fig-

63

ure 1). For any 1 € {0,1,...,k — 2}, once
the matrix M[P;, p*] is available, compute
MIP;.1,p"] by multiplying the n x n ma-
trix M[Pi41,Pi] with the n x 1 matrix
MIP;, p*], in O(logn) time and O(n] pro-
cessors based on Lemma 3.

Finally, extract the matrix M[R(S;},p*] from
M[P;i,p*], for every i € {0,1,...,k—1}. Since there
are k — 1 = O(logn) iterations to perform, Step 4
takes altogether O(log?n) time and O(n) proces-
S0TS. '

For Step 5, recall that for every i € {0,1,...,k—
1}, we have maintained (in Step 3) the computa-
tion tree T; on the point set 5; together with a
collection of length matrices stored at the nodes of
Ti. These length matrices were computed on 5; by
using Phase 1 of the algorithm in [3]. Step 5 uses
these matrices to compute the longest chain lengths
from p* to all the points in every 5;.

In Step 5, a top-down computation is performed
on each tree Ti. For an internal node v of T, let v
be associated with the region I, of the plane that
is between the vertical lines Hy{v) and H,(v). For
example, the root of Ty is associated with the re-
gion bounded by the vertical lines Vi and Vi.j.
Let L, (resp., Ry) be the set consisting of the hor-
izontal projections of § N I, onto H(v) (resp.,
H,(v)). Let Hm(v) be the vertical line separating
the regions I, and L., where u {resp., w) is the
left {resp., right) child of v, and let Y, be the set
consisting of the horizontal projections of 5 N 1,
onto Hqy, (v). Suppose that the top-down computa-
tion now reaches the node v and assume that the
length matrix M[R,, p*] is already available (note
that, initially, the matrix M[R{S;), p*] is available
from Step 4). At v, the matrix MIY,,p*] is first
computed; this is done by multiplying the matrix
MIYy, R,] {available from Step 3) with the matrix
M[R,,p*], in O(log|R,|} time and O(IR,|) proces-
sors based on Lemma 3. The matrix M[R,,p*]
is then extracted from MIY,,p*] and the matrix
MI[R,,, p*] is extracted from M[R,,p*]. After that,
the computation is carried out recursively at each
child of v. Step 5 takes Olog?n) time and O(n)
Processors.

Summing over all the five steps, our paral-
lel single-source algorithm presented above takes
O(log® n) time, O(n?/log® n) CREW PRAM pro-
cessors, and O{n?/logn) space. As we mentioned
before, this algorithm also solves the maximal lay-
ers problem in the same complexity bounds (by
letting the weights of all the points of § be a

unit). In comparison, Aggarwal and Park’s CREW
PRAM - algorithm for the maximal layers prob-
lem [1] takes O(log”n) time, O(n?/logn) proces-
sors, and O(n?) space: :

Remark: We should point out that there is a
trade-off between the time and processor/space
bounds in our parallel single-source algorithm. The
trade-off is determined by the value of the param-
eter k. By using a larger value of k, one can re-
duce the processor/space bounds at the expense
of having a larger time bound. For example, if
we choose k = logZn (instead of logn), then the
time bound increases to O(log3 1.} while the proces-
sor (resp., space) bound decreases to O(n?/ log5)

(resp., O(n?/log* n)). This is mainly due to Step 3

of the algorithm. The #ime X processors product
~of the algorithm with k = log;2 1 is hence a factor
of logm smaller than the one with k = logn.

References

[1] A. Aggarwal and J. Park. Notes on search-
ing in multidimensional monotone arrays. In
Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, pages 497—
512. IEEE, 24-26 Oct. 1988.

[2] A. Apostolico, M. J. Atallah, L. L. Larmore,

* and S. McFaddin. Efficient parallel algorithms
for string editing and related problems. STAM
J. Comput., 19(5):968-988, Oct. 1990.

[3] M. J. Atallah and D. Z. Chen. Computing the
all-pairs longest chains in the plane. Interne-

tional Journal of Computational Geometry &

Applications, 5(3):257-271, 1995.

[4] M. J. Atallah, M. T. Goodrich, and K. Ra-
malyer. Biased finger trees and three-
dimensional layers of maxima. In Proceedings
of the Tenth Annual Symposiuin on Compu-
tational Geometry, pages 150-159. ACM, 6-8
June 1994, :

[5] M. J. Atallah and S. R. Kosaraju. An effi-
cient algorithm for maxdominance, with ap-
plications. Algorithmica, 4:221-236, 1989.

[6] M. J. Atallah and S. R. Kosaraju. An efficient

parallel algorithm for the row minima of a to- |

tally monotone matrix. Journal of Algorithms,
13(3):394-413, Sept. 1992.

[7] G. Birkhoff. Lattice theory. American Math-
ematical Society Colloguium Publications, 25,
1979.

'[8] E. Cohen. Efficient parallel shortest-paths
in digraphs with a separator decomposition.
Journal of Algorithms, 21(2):331-357, Sept.
1996.

[9) R. Cole. Parallel merge sort. SIAM J. Com-
put., 1(4):770-785, Aug. 1988.

[10] R. B. K. Dewar, S. M. Merritt, - and
M. Sharir. Some modified algorithms for Dijk-
stra’s longest upsequence problem. Acta Inf.,
18(1):1-15, 1982.

[11] E. W. Dijkstra. Some beautiful arguments
using mathematical induction. Acta Inf.,
13(1):1-8, 1980.

12] M. L. Fredman. On computing the length
of longest increasing subsequences. Discrete
Mathematics, pages 29-35, 1975. '

[13] Y. Han, V. Y. Pan, and J. H. Reif. Effi-
cient parallel algorithms for computing all pair-
shortest paths in directed graphs. Algorith-
mica, 17(4):399-415, Apr. 1997.

[14] J. J&J4. An Introduction to Parallel Al-
gorithms. Addison-Wesley, Reading, Mas-
sachusetts, 1992.

i15] T. Kameda. On the vector representation of
the reachability in planar directed graphs. Inf.
Process. Lett., 3(3):75-77, Jan. 1975. -

[16] D. Kelly and I Rival. Planar lattices. Cana-
dian Journal of Mathematics, 27(3):636-665,
June 1975.

[17] P. N. Klein and S. Subramanian. A linear-
processor polylog-time algorithm for shortest
paths in planar graphs. In Proceedings of the
34th Annual Symposium on Foundations of
Computer Science, pages 259-270. IEEE, 3-5
Nov. 1993. '

[18] A. Lempel, E. S., and I. Cederbaum. An al-
gorithm for planarity testing of graphs. In
Theory of Graphs, International Symposium,
pages 215-232, 1966.

[19] R. Tamassia and J. S. Vitter. Parallel transi-
tive closure and point location in planar struc-
tures. SIAM J. Comput., 20(4):708-725, Aug.
1991.

64

Planar Segment Visibility Graphs

H. Everett®

Abstract

Given a set of n disjoint line segments in the plane,
the segment visibility graph is the graph whose 2n
vertices correspond to the endpoints of the line seg-
ments and whose edges connect every pair of vertices
whose corresponding endpoints can see each other. In
this paper we characterize and provide a polynomial
time recognition algorithm for planar segment visi-
bility graphs. We use and prove the fact that every
segment visibility graph contains K4 as a subgraph.
In fact, we prove a stronger result: every set of n line
segments admits at least n — 3 empty convex quadri-
laterals.

1 Introduction

Visibility graphs have been defined for many classes
of objects and types of visibility [12]. In this paper we
consider the visibility graphs of line segments in the
plane. Given a set S of n disjoint line segments in the
plane, the segment visibility graph of S, denoted G,
is the graph whose 2n vertices correspond to the end-
points of the line segments and whose edges connect
every pair of vertices whose corresponding endpoints
can see each other; two segment endpoints can see
" each other if they form a segment or if the line seg-
ment connecting them intersects no other segment.

*Département d’Informatique, Université du Québec Y
Montréal, Case postale 8888, Succ. Centre-Ville, Montréal,
Québec, H3C 3P8, Canada, everett@lacim.ugam.ca. This re-
search partially supported by NSERC and FCAR.

{Department of Mathematical Sciences, Lakehead Univer-
sity, 955 Oliver Road, Thunder Bay, P78 5El, Canada,
chinh.hoang@lakeheadu.ca.

{Department of Mathematics, London School of Eco-
nomics, Houghton Street, London, WC2A 2AE, England,
kyriakos@winston.lse.ac.uk.

iDepartament de Matematica Aplicada II, Universitat
Politécnica de Catalunya, 5 Pau Gargallo, 08028 Barcelona,
Spain, noy@ma2.upc.es.

C. T. Hoang!

K. Kilakos? M. Noy!

Efficient algorithms exist for constructing such visi-
bility graphs [6]. On the other hand, despite much
effort, no efficient algorithms are known for recogniz-
ing segment visibility graphs; that is, for determining
whether or not a given graph is a segment visibility
graph [11]. The problem has been solved for certain
special cases including that of whole segment visibil-
ity graphs with uni-directional visibility in which two
segments are visible if there is some point on one seg-
ment that can see some point on the other segment in
the given direction [1, 13, 14].

In this paper we determine which segment visibility
graphs are planar graphs. Our characterization leads
to a polynomial-time recognition algorithm for this
class. This is not the first time that the restriction
to planar graphs has yielded interesting results; see
[10] for results on planar visibility. graphs of simple
polygons.

The key point in proving our characterization is
that planar segment visibility graphs cannot be 4-
connected. To prove this claim, we show that every
configuration of n > 3 disjoint line segments in gen-
eral position contains K4 as a subgraph. Actually,
we prove a stronger result of independent interest,
namely that the 2n endpoints determine at least nn—3
empty convex quadrilaterals, where empty means not
containing any portion of a segment. It is worth men-
tioning that this problem has been studied previously
for configurations of point sets instead of segments.
Harborth showed [7] that every set of 10 points con-
tains an empty convex pentagon, and Horton [8} con-
structed for every n a set of n points without empty
convex heptagons. The situation for hexagons has not
been settled.

Throughout the paper we will consider sets of line
segments in general position; that is, no three segment
endpoints are collinear. Note that this implies that no
two endpoints are coincident. The reader is referred
to {4} for standard graph theory definitions.

65

2 Empty convex quadrilaterals

Let S be a set of n disjoint line segments. By an empty
convez quadrilateral in S we mean four endpoints of S
that are the vertices of a convex quadrilateral € such
that no segment intersects the interior of C. The next
result, besides its application to the next section, is
of independent interest.

Theorem 2.1 A set of n disjoint line segments al-
ways conteins at least n — 3 empty convex guadrilat-
erals. :

Proof Construct a partition of the plane as fol-
lows. Extend every segment in both directions until it
hits another segment or a previously drawn extension.
The resulting partition depends of course on the or-
der in which the segments have been extended but, as
Figure 1 illustrates, the plane is decomposed into ex-
actly n + 1 convex regions, some of them unbounded,
with disjoint interiors (see [11][p. 259] for a different
use of this construction).

-
—————— -

Figure 1: A partition into n 4 1 regions.

Let my,Ma,...,Myy1 be the number of points in
each of these regions. Observe that since the regions
are convex and empty, every four points in any of
them define an empty convex quadrilateral. Because
of the assumption of non-collinearity, every endpoint
belongs to exactly two regions. Since there are 2n
points we have ' ' :

dn=my +mg+ - +Mp41.

The number of empty quadrilaterals is at least

(3)+7)

and it is easy to see that this quantity is minimum,
and equal to n — 3, when four of the m; are equal to
3 and the remaining m; equal to 4. o

The example in Figure 2(a) shows 3 segments with-
out empty convex quadrilaterals, and the example in
Figure 2(b) shows that the above bound cannot be im-
proved. It also shows that for every n there are sets
of n segments containing no empty convex pentagon.

(@ ®)

Figure 2: (a) A set of 3 segments; (b) Only n — 3
empty convex quadrilaterals.

To conclude this section, we strengthen the last re-
sult by showing that the number of empty quadri-
laterals is proportional to the size of the visibility
graph. Qur proof is an adaptation of an argument
from Béardny and Fiiredi [3].

Theorem 2.2 Let S be a collection of n disjoint line
segments, and let Gg = (V, E) be its visibility graph.
Then among the 2n endpoints of S there are at least
1(|E| — 6n + 6) empty convex guadrilaterals.

Proof. Let zy be any edge of G not a segment. If

‘zy is crossed by another edge zw of G's, then we can

guarantee that zy is a diagonal of an empty convex
quadrilateral. Just take the points z' and w' respec-
tively in the triangles zyz and zyw, and closest to
zy. Then the convex quadrilateral zz'yw’ is empty.
This implies that the number of empty convex quadri-
laterals is at least half the number of visibility edges
crossed by another edge. But the set of non-crossed
edges is obviously a plane graph on 2n vertices and it -
has at most 6n — 6 edges; the result follows. D

66

3 Planar visibility graphs

This section is organized as follows. First we prove
some key lemmas regarding the cutsets in segment
visibility graphs. In particular, we show that no 4-
connected graph is a planar segment visibility graph,
with only one exception, and then prove some prop-
erties of the 2 and 3-cuts. Next we define a class of
planar graphs D which can be recognized in polyno-
mial time and are segment visibility graphs. Finally
we show, using the results on cutsets, that all planar
segment visibility graphs belong to D.

We recall that according to Kuratowski’s Theorem
a graph is planar if, and only if, it does not contain a
subdivision of K3 or K33 [4]. However, in our proof
we only use a much simpler fact, namely that a planar
graph cannot contain a subdivision of Kj.

3.1 Cutsets

Our first result is that segment visibility graphs can-
not be planar and 4-connected, with the only excep-
tion of the visibility graph corresponding to the set
F of 3 segments shown in Figure 2(a) (note that Gp
is the graph of the octahedron). We remark that the
same result has also been shown to hold for visibility
graphs of simple polygons [2, 10].

Lemmia 3.1 The only {-connected planar segment
visibility graph is Gp.

Proof. We make use of a corollary of Menger’s Theo-
rem [4], the so called Fan Lemma: if a given graph is
k-connected and X is a proper subset of its vertices
with {X| > k, then for any vertex v not in X, there
are k internally disjoint paths that link v to distinct
vertices of X.

If now S is a set of more than 3 segments, by Theo-
rem 2.1, G5 has a subgraph H isomorphic to K4. Ap-
plying the Fan Lemma to X = V(H) and any vertex
v of V(Gg)~V(H), we obtain a graph homeomorphic
to K, showing that G g is non planar. When [S[<3
the result can be checked by inspection. |

Recall that a cutset in a graph is a minimal set of
vertices whose removal disconnects the graph. A k-
cut is a cutset of size k. The previous lemma tells
us that if a segment visibility graph is planar then it
has no cutset of size 4 or greater. To characterize the

cutsets of size less than 4 we make use of a triangu-
lation of the line segments: a triangulation of S is a
planar graph whose vertices are the endpoints of the
segments of S and whose edges consist of S plus a set
of non-crossing visibility edges, which, when added to
S, partition the interior of the convex hull of S into
triangles. Every set of disjoint line segments admits
such a triangulation.

Now, a cutset of G's must also be a cutset of any
triangulation of S {although the converse is not neces-
sarily true). Since triangulations are 2-connected, G's
contains no cut vertex. Laumond has characterized
the cutsets of size less than 4 in a plane triangulation
[9]; we follow the description in [5]. A chord of a tri-
angulation is an edge connecting two nonconsecutive
vertices of the outer face. A eomplez triangle is a tri-
angle that does not form the boundary of a face. A
path consisting of an interior vertex connected to two
non-consecutive vertices on the exterior face is called
a separating path of length 3.

Lemma 3.2 ([9]) A triangulation is

1. 3-connected if and only if it does not have o
chord, '

2. {-connected if and omly if it does not have e
chord, ¢ complez triangle or o separating path of
length 3.

We now show that in a segment visibility graph, a
2-cut must be a chord which is also a segment.

Lemma 3.3 A 2-cut of a segment visibility graph is
a segment whose endpoints are nonconsecutive on the
convez hull.

Proof. Clearly, a segment whose endpoints are non-
consecutive on the convex hull is a 2-cut. Let {u,v}
be a 2-cut of a segment visibility graph Gg and sup-
pose uv is not a segment. By Lemma 3.2, uv is an
edge of s and u and v are nonconsecutive on the
convex hull of S. Let a and b be the two vertices ad-
jacent to u and v in some triangulation of S.. Notice
that ¢ and b are in different connected components
of G5 — {u,v}. Now aubv is a convex quadrilateral
with no segment endpoint in its interior. No segment
intersects au, ub, bv or av since these are visibility
edges. Thus no segment intersects ab, so a and b are
visible which is a contradiction. uf

67

Qur last lemma shows that a separating path in a
triangulation of a set of segments necessarily contains

" one of the segments.

Lemma 3.4 Let |S| > 3 and let Q be o separating '

path of length 3 in a triangulation T of S. Then the
subgraph of G induced by Q contains a segment of
s, '

Proof. Let Q@ = {u,w,v} be a separating path of T
with w the interior vertex. Both {u,w} and {w, v} are

edges of Gg and we need to prove that one of these is -

a segment; suppose this is not the case. Since Ggis 2-
connected, by Lemma 3.3, uv is not a segment. Gs—0Q
consists of exactly two components, say C; and Co.
Consider the face f created by the deletion of w from
T. Let u,Q1,. .., 0k, ¥, D1, ..., by be the vertices of f, in
counterclockwise order where {a1,...,ax} € C1 and
{b1,...,bs} € Co. Huvwis afaceof T then one of
{a1,...,ax} and {b1,...,b;} is empty; if {a1,...,0x}
is empty then take a; to be the vertex adjacent to
wy in C; and if {b1,...,b} is empty then take b; to
be the vertex adjacent to wv in Cp. Excatly one of
ww', w € {a1,..., e, b1,...,b}, is a segment. The

interior of f contains no segment endpoint except w -

and no segment crosses any of its edges. Now it’s
easy to see that some vertex of {a1;...,ax} sees some
vertex of {b1, ..., b} which is a contradiction. O

3.2 The class D

The members of D are precisely the special graph Gr
plus those graphs & that can be obtained from a set
of edges {v1t1, -, vawy} as follows. Each v, wi,
1<i < n,is joined to vi41 and wiy;. In addition, if
vi_1vip1 € E{G), vivit2 could be an edge of G and
if w;_jwi1 € E(G), wiwiy2 could be an edge of G,
1 < i < n—1. However, it cannot be that both v;viya
and w;wiys are edges of G. The edges of the form
vyw; are the links of G. The edges vywn and vpwy
are its end links. Two links vw;, v;w; are adjecent if
fi - g} = 1. |

Note that each 3-connected member of D\{Gr} on
9n vertices is isomorphic to the graph shown in Figure
3. This graph is maximal planar (i.e. a triangulation)
for one can embed triangle v;wywy on the plane, then
v, inside this triangle, v inside triangle vjvawe and
so on. Now, since the only 2-cuts in a member of D
are links, D consists entirely of planar graphs.

68

Note also that every graph in D is actually a seg-
ment visibility graph; the 3-connected components
can be embedded much like in Figure 3.

Figure 3: A 3-connected member of D.

3.3 'The Main Theorem

Theorem 3.5 D is the class of planar segment visi-
bility grephs.

Proof. Let S be a set of line segments. We shall show
by induction on |S| that G's belongs to D and that
its links correspond to segments of S, like in Figure 3.
The case in which G is not 3-connected, and there-
fore 2-connected, can be easily handled with a de-
composition argument based on the separating edge
described in Lemma 3.3. So we assume that Ggs is
3-connected.

Let + be the number of points in the convex huil
CH of the 2n endpoints and let T be a triangulation
of S. By Euler’s formula, T has 6n — 3 — 7 edges.
Now by Theorem 2.1, S contains at least n — 3 empty
convex quadrilaterals. Since the two diagonals of 2 '
convex quadrilateral cannot both be in T, this gives
n—23 additional edges not in T. Hence G g has at least
7n—6 —r edges. But since the graph is planar it must
be Tn — 6 —r < 6n— 6, that is r > n. Then either (1)
a segment s = uv has its two endpoints in CH, or (2)
every segment has one endpoint in CH. We treat the
two cases separately.

(1) In this case s has to be an edge of the convex
hull, otherwise it would be a 2-cut. Then Gg\, is
planar and 3-connected and by induction Gs\, is in
D. Considering the different positions where s can be
placed and still produce a planar graph it is clear that
G, is also in D and that s is an end link of Gs.

(2) Since Gs is 3-connected there is a 3-cut Q= [2] J. Abello, H. Lin and S. Pisupati, On visibility
{a,b,c}. It has to be also a cut of the triangulation, graphs of simple polygons, Congressus Numeran-
but since every segment has one endpoint in the con- tium 90 (1992), 119-128.
vex hull, it cannot be a separating triangle, hence it
has to be a separating path. (It is worth noticing
at this point that not all 3-cuts in visibility graphs

(3] 1. Barany and Z. Fiiredi, Empty simplices in Eu-
clidean space, Canad. Math. Bull. 30 (1987), 436-

contain a segment: one can place segments inside the 445.

triangle uvw in Figure 2(a) so that {u,v,w} becomes [4] 1.A. Bondy and U.S.R. Murty, Graph Theory
a 3-cut.) with Applications, MacMillan Co., New York
. By Lemma 3.4, @ contains a segment. Say s = ab (1976).

is the segment, a and ¢ are in CH, and d is the other

endpoint in the segment containing ¢. Let {5 be the [5] T.K. Dey, M.B. Dillencourt and 5.K. Ghosh, Tri-
line thorugh a and b. Then I, cannot be intersected angulating with High Connectivity, in Proc. of
by any segment but ed, since otherwise @ would not the 6th Canadian Conf. on Computational Ge-
be a cut. If I, intersects cd, it can be shown that G omelry (199x), 339-343.

contains a subdivision of Ky {an example is shown in
Figure 4). Thus I, divides the set of segments into
two disjoint sets S’ and S”, one including ab and the
other including e¢d. By induction both G5 and Ggn

[6] S.K. Ghosh and D.M. Mount, An output-
sensitive algorithm for computing visibility
graphs, STAM J. Comput. 20 (1991), 888-910.

are in ,D’ and a discussion of how they can be g!ua?d (7] H. Harborth, Konvexe Fiinfecke in ebenen Punk-
and still produce a planar graph shows that Gs is in tmengen, Elem. Math. 33 (1978), 116-118.
D.] ! .
[8] J.D. Horton, Sets with no empty convex 7-gon,
a Canad. Math. Bull. 26 (1983), 482-484.

[9] J.-P. Laumond, Connectivity of plane triangula-
tions, Information Processing Letters 34 (1990),
87-96.

[10} S.-Y. Lin and C. Chen, Planar visibility graphs,
in Proc. of the 6th Canadian Conf. on Computa-
tional Geometry (1994), 30-35.

[11] J. O’Rourke, Art Gallery Theorems and Al
gorithms, Oxford University Press, New York
(1987).

Figure 4: Vertices abczy produce a subdivision of K. [L2] J. O'Rourke, Computational Geometry Column
18, SIGACT News 24 (1993), 20-25.

It is easy to see that the class D can be recognized [13] R. Tamassia and I Tollis, A Unified Approach
 in polynomial time. Thus we have the following: to Visibility Representations of Planar Graphs,
Discrete and Computational Geometry 1 (1986),

Coroll 3.6 Plana t visibdlit h.
orollary anar segment visibility graphs can 991-341.

be recagnized in polynomial time.
[14] S. Wismath, Characterizing bar line-of-sight
graphs, in Proc. Ist ACM Symp. on Computs-

r
References tional Geometry (1985) 147-152.

{1) T. Andreae, Some results on visibility graphs,
Discrete Applied Math. 40 {1992), 5-18.

69

The Visibility Graph Contains a Bounded-Degree Spanner

Gautam Das*

Abstract

Given a collection of polygonal obstacles with n-
vertices on the place, and any ¢ > 1, we present
an O{nlogn) time algorithm that constructs a
bounded-degree t-spanner of the visibility graph,
without first having to construct the visibility
graph.

1 Introduction

An Euelidean graph 1s defined as a graph whose
‘vertices are points in k-dimensional space, edges
are line segments joining pairs of points, and edge
weights are from the underlying distance metric,
typically the Lo metric. If all edges are present,
the graph is a complete Euclidean graph, otherwise
it is a non-complete Euclidean graph. A well-known
example of a non-complete Euclidean graph is the
msiblity graph, defined as follows. Consider a sce-
naric where we are given a collection of pairwise
disjoint polygons on the plane. This frequently
- arises in motion planning problems, where the poly-
gons represent obstacles in a cluttered workspace
within which a point robot has to navigate. Con-
. sider a graph over the polygon vertices, where an
edge (u,v} belongs to the graph if the correspond-
ing line segment does not intersect the interior of
any obstacle. Such a graph 1s known as the visibilify
graph. This graph is useful because it contains the
shortest obstacle-avoiding path between any pair of
vertices. . Visibility graphs have been the subject
of a great deal of recent research, from both com-
putational and combinatorial aspects (for example,
see [14, 16, 17, 22]). It is known that while visi-
bility graphs are not necessarily complete, they can
be quite dense, with as many as (n®) edges and
2(n) degree. It is of interest to investigate whether
a visibility graph contains a sparse subgraph which
“approximates” shortest paths between all pairs of

vertices. Such a subgraph would be a more com- -

pact structure in motion planning applications, or
in applications where a communication network is

*Dept. of Mathematical Sci., The Univ. of Memphis,
Memphis, TN 38152, USA, dasg@nextl.msci.memphis.edu

being designed (for example, a road network linking
all the vertices).

We make this notion of “approximate” shortest -
paths more precise. Let G = (V, E} be a n-vertex
connected graph with positive edge weights. A sub-
graph G’ is a t-spanner if for all u,v € V, the dis-
tance between » and v in the subgraph is at most ¢
times the corresponding distance in . The value ¢
is known as the streich factor of the spanner. Span-
ners are important structures since they represent
the original graph more compactly, albeit approx-
imately. In constructing spanners, it is frequently
necessary to endow them with additional properties,
such as few edges, small total weight, small degree,
small diameter, etc. Spanners of arbitrary weighted
graphs as well as special classes of graphs such as
complete Euclidean graphs have been the subject of
much recent research. Spanners find applications in
a variety of areas: communication network design,
disiributed algorithms, network routing, computa-
tional geometry and robotics. They are also fasci-
nating from a theoretical point of view, and possess
many interesting combinatorial and geometric prop-
erties. A good bibliography of past spanner research
may be found in [5]. Additionally, in this paper we
list several recent references.

While spanners of complete Euclidean graphs
have been well studied, relatively little work
has beén accomplished on non-complete Euclidean
graphs, such as for example, visibility graphs. An
early result 1s by Clarkson ([6]) who showed how to
construct, for any £ > 1, a linear-sized {-spanner of
the visibility graph in O(nlogn) time without hav-
ing to first construct the visibility graph. Clark-
son (and later Chen, [7]) applied this spanner to
solving approximate shortest path problems. In [8],
Chew shows that the constrained Delaunay trian-
gulation is a planar O(1)-spanner of the visibility
graph, and can be constructed in O(nlogn) time
(however, in this result the stretch factor cannot
be arbitrarily close to 1). Recently an O(nlogn)
time algorithm has been designed by Arikati et. al.
([2]) to construct, for any ¢ > 1, a Steiner t-spanner
(here the spanmer is not strictly a subgraph of the
visibility graph because it may contain additional
Steiner vertices and edges, however distances be-

70

tween obstacle vertices still stretch by at most ¢).
These Steiner spanners find applications in answer-
ing all-pairs shortest path queries amidst obstacles.

But suppose we are interested in constructing a
t-spanner such that, {a) it is a subgraph of the vis-
ibility graph, and (b) it has bounded degree? The
problem is interesting from a theoretical standpoint,
because we are trying to discover new combinato-
rial and geometric properties of visibility graphs and
their subgraphs. From a practical standpoint, such
a spanner may be used in the design of a road net-
work linking all obstacle vertices, where the objec-
tive is to decrease congestion by only allowing a few
links to be incident to any vertex. We mention that
the corresponding bounded-degree spanner prob-
lem for complete Euclidean graphs in k-dimensional
space has attracted considerable attention recently
(for example, see {3, 5, 9, 20]). However bounded-
degree spanners of visibility graphs seem harder
to construct, mainly because previously developed

techniques for complete Euclidean graphs cannot be ’

immediately used (such techniques rely on the fact
that “any vertex can be joined with any other ver-
tex”, which is not true when there are obstacles).

1

In this paper we have developed an algorithm for
constructing bounded-degree spanners of visibility
graphs. Our algorithm combines a few old tech-
niques with several new techniques. For example,
the algorithm is loosely based on the “covering by
cones” paradigm, which in the past has been very
useful in spanner construction (see {1, 6, 18]}. What
is interesting is that we extend the idea much be-
yond its earlier scope, for example when we have to
deal with the special geometric constraints that the
polygonal obstacles pose. The following theorem
summarizes our result.

Theorem 1.1 Given a set of polygonal obstacles
with n vertices in the plane, and any t > 1, a
bounded-degree t-spanner of the visibility graph cz-
ists, and can be constructed in O(nlogn) time. The
constants implicit i the big-O depend on i,

The rest of the paper is organized as follows. In
Section 2 we review Clarkson’s spanner (see {6]),
because it provides the foundation for our spanner
algorithmm. In Section 3 we show how to construct
a bounded-degree spanmner, thereby proving Theo-
rem 1.1. We present some open problems in Sec-
tion 4.

2 Clarkson’s Spanner

In this section we start by reviewing Clarkson’s
spanner (see [6}), which has linear size, but may
not have bounded degree. {In our presentation, we
retain the main ideas, but present the algorithm
somewhat differently. For example, we use a plane
sweep, and also use the concept of projected dis-
tences).

Consider an infinite horizontal line passing
through an arbitrary point z. Let # be a small con-
stant angle (its actual value depends on the given
t) and let Lq,La, ..., Lxjos—1 be semi-infinite rays
radiating downward from z such that the angle be-
tween adjacent rays is f. This partitions the lower
half-plane into a constant number of unbounded
triangles called cones, C1,C2,...,Cx2¢. For each
cone (G, define the ezis R; as the semi-infinite ray
from z which angularly bisects the cone. Let y be
any other point in the interior of C;. The projected
distance between z and y, prej(z,y), is defined to
be the distance between z and the projection of y
on R;. For a small 8, clearly the projected dis-
tance is almost equal to the actual distance, d(z,y).
(Projected distances were first used in [18] for con-
structing spanners).

The algorithm sweeps the plane in a particu-
lar direction (say from bottom to top, to be con-
sistent with the diagrams to be introduced later),
and on encountering a vertex v, decides to select
only some of the visibility graph edges that connect
it to the vertices below. The selection of visibil-
ity graph edges is simple. Translate all the cones
C1,Ca, ..., Cryag such that their apexes become v.
For every cone C;, of all the visibility graph edges
incident to ¢ and contained within (;, the algorithm
selects the edge with the shortest projected length.
Once the sweep is over, the selected edges represent
the spanner, G.

It is easy to see that the output has a linear
number of edges, since at every vertex at most a
constant number of edges are selected (at most one
per cone). However, the degree may not be a con-
stant. To see this, imagine that the algorithm is
actually creating a directed graph; at vertex v the
edges that are selected are given downward direc-
tions {from v to the other endpoints below). While
the output graph has a bounded out-degree, it may
have an unbounded in-degree. The output is also
a t-spanner of the visibility graph; for a proof we
refer the reader to [6]. The algorithm can be im-
plemented to run in O{nlogn) time without having
to first create the visibility graph, using techniques
such as planar point location and conical Verono:

71

diagrams, the details are in [6].

3 Bounding the Degree

In this section we describe our more complex algo-
rithm, which produces a bounded-degree spanmer.
The algorithm consists of four steps. -

Step 1: Construction of a linear-sized spanner:

Select numbers ¢ and {s such that ;. 1» > 1, %1
is very close to 1, t» is somewhat bigger but still
small enough so that t; - {3 is closer to 1 than to
t.! Create a t;-spanner of the visibility graph,
using Clarkson’s algorithm. Let this spanner
be G.

Step 2: Partition into forests:

Recall that we had used O(1) cones Cy,Cs,

.., Cry2e in the previous algorithm. We are
going to refine this even further. Select an an-
gle @ to be much smaller than 6 but which di-
vides # evenly (some intuition about its value is
given in Step 3). We partition each cone C; into
O(1) subcones Ci1,Cigz,-..,Cipta, such that
the angle of each subcone is @. The following
terms will be useful in our explanations: the
subcones in the central region of C; are known
as central subcones. while the subcones to the
far left or far right of C; are known as periph-
eral subcones. Notice that the total number of
subcones over all the cones is 7/2a, which is a
constant.

We partition G into a constant number of sub-
graphs (actually forests) as follows. Consider
(G as a directed graph, and let (v, u) be any di-
rected edge of G (i.e. directed downwards from
v to u). If it lies inside the subcone Cj; (with
apex at v), then (v,u) belongs to the graph
G; ;. It is easy to see that each G ; has an out-
degree of one, but may have an unbounded in-
degree. Clearly the undirected version of G ;
is a forest.

Step 3: Remouval of more edges:

In this step, the algorithm performs a down-
ward sweep of G (actually over all the Gy ;'s
simultaneously), and at each vertex possibly

1Due to lack of space, we will avoid deriving the exact
values of the various constants used in this version of the
paper

removes some of the incoming edges. The out-
put graph, G, will be a spanner of the visibility
graph. It will have a smaller, though still not
constant, in-degree. The stretch factor will be .
larger than that of G. The logic for selection or
removal of edges of G; ; is as follows.” Let ¢ be a
constant (approximately) equal to £-£2=2 (the
exact value of ¢ is somewhat different; it also
depends on « and 8, but we omit details from
this version). Notice that 0 < ¢ < 1. Since #;
is selected very close to 1, ¢ is very close to 0.
Suppose the downward sweep visits a vertex v.
Sort the incoming edges of G, ; at v by increas-
ing length. Select the shortest, whose length is
say l;. Remove all edges of length at most {3 /c.
Select the smallest of the remaining, say I». Re-
move ali edges of length at most /»/c. Repeat .
this process until all incoming edges are either
selected or removed. Do this for all the forests,
“then sweep downwards to the next vertex.

Once the sweep is over, each forest G;; has
been reduced to a sparser forest, say (7} ;. The
union of these forests, ', is the output of
Step 3. '

Before we describe Step 4, let us analyze G, the
output of Step 3. Clearly the in-degree of any G'i-'j
may not be bounded. However if two incoming
edges of G} ; meet at a common vertex, then one
edge is much longer than the other. In addition,
the following lemima shows that G’ is a spanner.

Lemma 3.1 G'isa (t1-t2)-spanner of the vistbility
graph.

Proof : In this version we use very rough calcu-
lations and simply skeich the proof. Essentially we
have to show that G is a f3-spanner of G. Sup-
pose an edge of G, say (v, v), is removed while the
algorithm 1s visiting v. There should be an alter-
nate path in G’ of length at most t2 - d{u,v). Sup-
pose (u,v) originally belonged to some G; ;. Then
some other edge, (w,v} belongs to Gj ; such that
d(u,v) < d(w,v)/c. Let us use Figure 1 as an illus-
tration. For both u and w, the position of their C;
cone is shown, where the right ray of u’s cone in-
tersects the left ray of v’s cone at &. It is not hard
to see that the line segments (u,x) and (z,w) do
not intersect other obstacles, We also observe that
the two edges (u,v) and (w,v) are almost parallel,
since a is very small. Finally the angle uzw is 8,
and since o is much smaller than 6, the length of
(z,w) is negligible compared to the length of (v, w).
Define cv(w, 2, 1) to be the convex chain obtained
by placing a stretched rubber band from w to x to

12

edge removed

edge retained

Jess than o

Figure 1: Analysis of Step 3

u, anchoring it at w and u and releasing it at z. It
will assume a convex shape because the shrinkage
will be halted by various obstacles. The chain is
confined within the triangle wzu, where {w,u) is
defined as the base boundary and (w,z) and (z,u)
are defined as the side boundaries of the chain. Note
that this chain is a path from w to u in the original
visibility graph. By an induction argument which
we omit, it can be assumed that there is a path P
from w to v in ' of length at most #; - {2 times
the length of cv(w, r,u). We thus have an alternate
path Q from v to u in G’ as follows: go from v to w,
then go along P from w to v. The length of Q) 1s at
most d{v, w) +1; -1 - (d(w, &) + d(x, u)). But since
(v,u) and {v,w) are almost parallel, and d(z,w)
is negligible compared to (v, w}, the length of @ 1s
maximized when d{u, w) is the smallest possible, L.e.
when d(u, w) = ¢-d(v, v). In this situation d(u, r)+
d(z,v) is approximately equal to (I — ¢} - d{u, v}
Substituting these quantities in, we get the length
of @ to be approximately at most ¢- d{v, u} +11 2"
(1—¢)-d(v,u). Substituting for ¢, this simplifies to
at most 5 - d(u,v). Thus we can conclude that G’
is a fp-spanner of G| hence a (t1 - to}-spanner of the
visibility graph. _ B

At this stage we can make some more observa-
tions. Consider a G; ; whose corresponding subcone
is Ci ;. Let v be a vertex with a large in-degree.
If C;; is a central subcone, then all the incoming
edges at v will be approximately of the same length
(since « is much smaller than 8). In this case, Step 3
will remove all but the shortest edge. On the other
hand, if C;; is a peripheral subcone, then the in-
coming edges at v could be of all possible lengths.

ug,

)
Uz
/—CU(Uhﬂfl,uz)
T
U
v

Figure 2: Constructing the bounded-degree spanner

Though Step 3 prunes some of them, an unbounded
number could be left over. We can only guarantee
that for any pair of left over edges, the shorter edge
is much shorter (at most ¢ times) than the longer
edge. Figure 2 (or a symimetric equivalent) correctly
describes the geometry of all incoming edges of G ;
at v. Notice that the order of these edges by length
is the same as their order by slope.

Step 4: Achieving bounded degree:

This final step is different from the others be-
cause here we remove more edges, and also add
back some edges. The idea Is to consider each
G ;, and create another forest Gy'; which has
bounded degree. However, G}/, is not necessar-
ily a subgraph of Gj ;. The union of all G;.
defined as (7, is the final output of our algo-
rithm.

The details of the construction of G" are sim-
ple. For all G} ;, for all vertex v of Gy ;, perform
the following operation. Let (ug,v), {u2, v},
..., (ug,v) be the incoming edges at v in
increasing length (see Figure 2). Retain
{u1, v} Remove (ua, v}, (ua, v}, ..., (ur, v).
Add the chains ev{ui,z1, ug), cv{us, &g, us),
coev(ug_g, Bret, Uk

This completes the description of the algorithm.
We now analyze the algorithm and its output G".

Lemma 3.2 G is a i-spanner of the visibility
graph.

Proof : We sketch the proof. Consider any edge
(4m,v) of G’ that got removed. Consider the al-
ternate path in G": go from v to u;, then along
cv(uy,z1,ug), then along cv(ug, £z, us). and so on

73

unti! you reach um. Since a is small, and the con-
stant ¢ (used in Step 3) is small, from the geometry
of the situation it can be shown that this path is
not much longer than d{um,v). In fact, by select-
ing smaller & and smaller ¢ (which can be achieved
by selecting) closer to 1), we can make this path
length as close to d(um,,v) as we like. Since G' is
a (1 - tz)-spanner of the visibility graph, it follows
that G is also a spanner of the visibility graph, but
with a slightly larger stretch factor. Since ¢; {2 has
been selected to be closer to 1 than to ¢, we can
make sure that the stretch factor of G is no more
than £.]

The next two lemmas eventually show that the
degree of G" is bounded. In the construction of GY;,
recall that at a vertex v, all incoming edges except
the shortest are removed, and several convex chains
are added instead. For each such convex chain, we
define its base verter to be v.

Lemma 3.3 If we start with the empty plane, and
draw on it all the convez chains of G} ; and their re-
spective side boundaries, all the line segments in the
arrangement will be pairwise disjoint, except possi-
bly for sharing common endpoints.

Proof : Let cvqy = cvlup, Tm, Umgy) and cuy =
cv(up, &p, Up41) be any two convex chains of Gi; I
they have the same base vertex, v, then the lemma
is clearly trué (as Figure 2 shows). On the other
hand, suppose the two chains have different base
vertices, say v; and vy respectively. This involves
a detailed case analysis, which we omit. Instead,
consider Figure 3 which shows the most “crowded”
situation where we try and make the two chains in-
tersect each other. However, since vy is an obstacle
vertex, the convex chain cvy either includes v; or is
below it. Thus it neither intersects cvy nor the side
boundaries of ev;. . [|

Lemma 3.4 G has bounded degree.

Proof : Since there a constant number of G,
it will suffice to prove that each of the latter has
bounded degree. Consider any GY;. It has two
kinds of edges, the convex chains, and the shortest
edges retained from G} ; at every vertex. Consider
the subgraph consisting of the convex chains. Due
to Lemma 3.3, its degree is at most 2. Next con-
sider the subgraph consisting of the shortest edges.
The degree of this subgraph is at most 2, because at
any vertex there is at most one incoming edge and
at most one outgoing edge. Thus the degree of G ;
is bounded, which implies that the degree of G" is
also bounded. _]

CU9a

Figure 3: Convex chains and side boundaries are
disjoint

We now present an efficient implementation of
the algorithm. Step 1 takes O(nlogn) time. Step 2
takes O(n) time since there are O(n) edges in G
and assigning an edge to its respective forest takes
O(1) time. Step 3 involves sorting and thus takes
O{nlogn) time per G; ;, thus O(nlogn) time over-
all.

Implementing Step 4 is nontrivial. For each for-
est G} ; the main task is to compute several convex
chains. Let the complete set of convex chains to
be constructed for G ; be CV;;. First start with
the empty plane, and lay out the convex hull of
the original set of obstacles. Then for each chain
in CV;;, lay out its two side boundaries on the

" plane (the two side boundaries are known, even. if

the chain is not yet computed). This will result in
a collection of line segments in the interior of the
hull, pairwise disjoint except at endpoints (this 1s
due to Lemma 3.3). Treat these line segments as
edge obstacles, and compute a trapezoidal decom-
position of the interior of the hull, where the parallel
boundaries of the trapezoids are parallel to the axis
of the cone C;. Using planar point location, assign
each original obstacle vertex to the trapezoid that
contains it. For each chain cuv,, let the set of obsta-
cle vertices inside the trapezoids immediately above

_the chain’s side boundaries be V;.. Using an opti-

mal convex hull algorithm, compute v, using only
V. as input. It should be clear that for two different

- chains cvr and cv,, the corresponding sets V. and Vi

are disjoint. Thus computing G{/; takes O(nlogn)
time, and therefore Step 4 takes O(nlogn) time.
Thus the entire algorithm runs in O{nlogn) time.

74

4 Open Problems

We conclude this paper with some open problems.
The foremost open problem is, are there are span-
ners of the visibility graph with a maximum degree
of 37 Notice that the spanner in Theorem 1.1 has
O(1) degree, but that sheds no light on whether a
degree-4 (or even a degree-3) spanner of the visibil-
ity graph exists. We mention that degree-3 span-
ners exist for the case of complete Euclidean graphs
without obstacles ([9]}. That paper also shows that
3 is a lower bound on the degree. It would be in-
teresting to extend this to the case with obstacles,
however we feel this may require considerably more
complicated techniques than used in 19].

For complete Buclidean graphs, spanners are
known with several sparseness properties, in addi-
tion to small degree. Some examples are low weight,
and small diameter {[4]). Extending these results to
“the case of spanners of visibility graphs is a challeng-
ing problem. _

In general, the problem of constructing spanners
of non-complete Euclidean graphs (not just visibil-
ity graphs) in both two as well as higher dimensions
needs to be studied.

References

[t] I. Althsfer and G. Das and D. P. Dobkin and D. A.
Joseph and J. Soares: On sparse spanners of weighted
graphs: Discrete Comput. Geomn., Vol 9, 1893, pp 81—
100. -

[2) S. Arikati, D. Chen, L. P. Chew, G. Das, M. Smid, C.
D, Zaroliagis: Planar spanners and approximate short-
est path queries among obstacles in the plane: Proc.
Eurcpean Symp. on Algorithms (ESA}, 1996

[3] S. Arya and M. Smid: Efficient construction of a
bounded degree spanner with low weight: Proc. 2nd
Annu. European Sympos. Algorithms {ESA}, Lecture
Notes in Computer Science, Vol 855, 1994, pp 48-59.

[4] S. Arya and G. Das and D. M. Mount and J. S, Sa-
lowe and M. Smid: Euclidean spanners: short, thin
and lanky: Proc. ACM Sympos. Theory of Comput.
{STOC), 1995.

[5] B. Chandra and G. Das and G. Narasimhan and J.
Soares: New sparseness results on graph spanners:
Proc. 8th Annu. ACM Sympos. Comput. Geom., 1992,
pp 192-201.

[6] K. L. Clarkson: Approximation algorithms for shortest
path motion planning: Proc. ACM Sympos. Theory of
Comput. {(STOC), 1987, pp 56-56.

[7) D). Z. Chen: On the all pairs Euclidean short path prob-
lem: Proc. SIAM-ACM Sympos. on Discrete Algorithms
(SODA), 1995.

[8] L. P. Chew: There are planar graphs almost as gaod as
the complete graph: J. of Computer and System Sci-
ences, 39, 1989, 205-219.

[8] G. Das and P. Heffernan: Constructing degree-3 span-
ners with other sparseness properties: Intl. Sympos. Al-
gorithms and Comput. (ISAAG), 1993,

[10] G.Das and P. Heffernan and G. Narasimban: Optimally
" sparse spanners in 3-dimensional Euclidean space: Proc.
9th Anmu. ACM Sympos. Comput. Geom., 1993, pp 53—

52,

[11] G. Das and G. Narasimhan and J. 8. Salowe: A new .
way to weigh malnourished Euclidean graphs: Froc.
6th STAM-ACM Sympos. Discrete Algorithms (SODA), .
1995.

[12] G. Das and G. Narasimhan: A fast algorithm for con-
structing sparse Euclidean spanners: Proc. 10th Annu.
ACM Sympos. Comput. Geom., 1994.

[13] D. Eppstein: Spanning Trees and Spanners: Tech. Re-
port 96-16, Dept. of ICS, UC Irvine, 1996,

[14] S. K. Ghosh and D. M. Mount: An output-sensitive al-
gorithm for Computing visibility graphs: S81AM I. Com-
put. 20, 1991, pp 888-910.

[15] K.Mehlhorn: Data structures and algorithms 1: sorting
and searching: Springer-Verlag, 1984, pp 290-296.

[16] M. H. Overmars and E. Wetzel: New methods for com-
puting visibility graphs: Proc. 4th Annu, ACM Sympos.
Comput. Geom., 1988, pp 164-171.

[17] M. Pocchiola and G. Vegter: The visibility complex:
Proc. 9th Annu. ACM Sympos. Comput. Geom., 1993,
pp 328-337.

[18} J. Ruppert and R. Seidel: Approximating the d-
dimensional complete Euclidean graph: Proc, 3rd
Canad. Conf. Comput. Geom., 1991, pp 207-210.

[19] J. 8. Salowe: Construction of multidimensional spanner
graphs with applications to minimum spanning trees:
Proc. 8th Annu. ACM Sympos. Comput. Geom., 1991,
pp 256-261.

[20] 1. 8. Salowe: On Euclidean spanner graphs with
small degree: Proc. 8th Annu. ACM Sympos. Comput.
Geom., 1992, pp 186-191.

[21] P. M. Vaidya: A sparse graph almost as good as the
complete graph on points in K dimensions: Discrete
and Comput. Geom., 6, 1991, pp 369-381.

{22] E. Welzl: Constructing the visibility graph for n line
segments in O(n?) time: Inform. Process. Letters, 20.
1985, pp 167171,

75

Cont_rat:ted Vis_ibilii_:y Graphs of Line Segments

. Ba.gga1 S.Dey? L.Gewali® J.Emert! J. McGrew!

1. Introduction

Problems dealing with the visibility and connectivity properties of disjoint line segments have
been explored by several researchers in recent years [SE87, LM*87, R89, CHI1, R92, BE*94].
Tight bounds have been established for the size of the visibility graph induced by line segments
in the plane [SE87, CH91]. The (weak) visibility graph induced by a set of vertical line segments
is known to be ipo-triangular. Algorithms dealing with the connectivity of line segments can be
found in [R89). In fact, it has been established that the problem of finding a Hamiltonian cycle in
the visibility graph of disjoint line segments is NP-hard [R89]. Results dealing with the existence
of a Hamiltonian cycle in restricted classes of disjoint line segments are reported in [R92], where
it is established that a Hamiltonian cycle always exists in hulled, independent, and unit segments.
Very recently, it was demonstrated that the notion of weak visibility is powerful in capturing
the geometric information associated with simple polygons [0S97]. Specifically, O'Rourke and
Streinu [0S97] have shown that a vertex-edge visibility graph, defined by incorporating weak
visibility notion, can be used to construct shortest path trees, visibility polygon, and reflex ver-
tices of a simple polygons. Other interesting results on weak visibility can be found in [W89, S96].

Motivated by the promising usefulness of weak visibility representation, we introduce a new
class of visibility graphs, called the contracted visibility graphs (CVG). Contracted visibility
graphs are the visibility graphs of disjoint line segments, where visibility edges are formed by using
weak visibility between line segments. We establish several properties of CVG which include the
following.

»

If segments are strongly hulled, then each block in the CVG is complete.

The neighborhood of degree d > 2 vertex in a CVG induces at most two components.

e CVG is a tree if and only if it is a path.
o For n > 4, there can be at most { 3] vertices of degree 1.

o Given an integer k, n — 1 < k < (3), a CVG is realizable with k e&ges and n vertices. .

2. Preliminaries

Consider a set of line segments S = {s1, 82, ..., 5n} in the plane. The segment endpoint visibility
graph (SEVG) of S is the graph whose vertex set V' consist of the endpoints of line segments and
two vertices are connected to form an edge if the corresponding points are visible to each other
(i.e., the line segment connecting them does not intersect with any other segment.)

! Department of Computer Science, Ball State University, Muncie, Indiana. email: jay@bsu-cs.bsu.edu,
emert@bsu-cs.bsu.edu, megrew@bsu-cs.bsu.edu

2 Gisco Systems Inc CA. email: sdey@sisco.com _

3 Department of Computer Science, University of Nevada, Las Vegas, Nevada. e-mail: laxmi@cs.unlv.edu.

76

Figure la illustrates a SEVG, where solid lines are the line segments and the dashed lines are
visibility edges. Note that the line segment themselves are also visibility edges. It has been
established that the number of visibility edges in a SEVG induced by n disjoint line segments in
at least 5n — 4 {[SE87).

Notions of ‘extreme’ and ‘chordal’ line segments have been used to characterize restricted
classes of polygons admitting ‘nice’ connectivity properties [R89,R92]. It may be remarked that
a line segment s; € S is called extreme if it lies on the boundary of the convex hull of 5; and it is
called chordal if it is not extreme and no endpoint in its left half plane is visible to any endpoints
in its right half plane. A set of line segments is completely hulled if all segments in it are extreme
segments. On the other hand, the set S is strongly hulled if all line segments in it are not extreme
but all endpoints lie on the hull boundary. Similarly, if at least one endpoint of each segment lies
on the hull then we get weakly hulled segments. Construction of “ordered Hamiltonian circuit”
and “half-ordered Hamiltonian circuit” in weakly hulled line segments are considered in [R92].

It is straightforward to show that each segment induces a K3 (complete graph with three
nodes) in SEVG. This is stated in the following observation.

Observation 1: For n > 1, each segment is an edge of at least one K3 in SEVG.
The following lemma about SEVG can be verified easily.

Lemma 1: The degree of every vertex in a SEVG is at least three.

(®)

Figure 1: Hiustrating SEVG and CVG

2. Contracted Visibilily Graphs

These graphs are defined by using weak visibility between line segments to form edges. Two
line segments s; and s; are said to be weakly-visible to each other if one endpoint of s; is visible to
an endpoint of s;. (Now onward we will simply use the term ‘visible’ to indicate ‘weakly-visible’.)
The contracted visibility graph (CVG) of n disjoint line segments S = {s1,52,...,8,} consist of
vertex set V and edge set E such that corresponding to each s;, a vertex v; in included in V and
two vertices v; and v; are connected to form an edge if the corresponding segments s; and s; are
visible. Figure 1b is the contracted visibility graph of the segments shown in Figure la. The term
contracted refers to the fact that in order to study the visibility representation, two endpoints of
a segment are collapsed or contracted to a point.

Lemma 2: If the segments are strongly hulled then each block in the CV G is complete.

Proof: Suppose not. Let us consider a block G in the CVG. In the corresponding set of
segments there exists at Jeast one missing edge xy where x and y denote the vertices. Thus in the
corresponding set of segments there must exist at least a segment K which blocks the visibility of
the segments X and Y. That means the endpoints of X and Y must lie on different half planes

77

induced by K. However, since the segment K is hulled, its two endpoints lie nonadjacently on
the hull and it is thus a chordal segment and is represented by a cut vertex in the corresponding
CVG. Hence we get a contradiction that G is not a block. : O

Theorem 1: The open neighborhood of any vertex z in a CVG G induces a subgraph with at
most two components. In other words, G — v consists of at most two connected components.

Proof: Let d(z) denote the degree of a vertex ¢ in CVG. If d(z) = 1 then the theorem is
. trivially true. : _

If possible let there be at least three components induced by the neighborhood of any vertex
z {d{z) > 2) in a CVG. In the corresponding arrangement of line segments in the plane {Figure
2) let z,, and z4 be the endpoints of the segment represented by & in the CVG. Without loss of
generality we might assume that the line segment z is vertical. Since we have assumed that there
are at least three components induced by the neighborhood of z in the CV G, the arrangement of
‘segments in the Euclidean plane consists of at least three mutually disjoint sets of line segments
51, S5, and S3 such that any two points o, 3; are visible to each other if and only if either of them
is x, OT T4, or o, J; are in the same component. We can view this as the distribution of three
disjoint sets in two half planes induced by segment z. By the pigeon hole principle, no matter
how we distribute the sets, one of the half planes must contain parts or whole of at least two sets. -
Without loss of generality assume that right half plane contains parts of 51 and S2. Now it is
a simple matter to verify that at least one line segment in S is visible to a line segment in 53,
implying that $; and Sz are not disjoint - a contradiction. : jul

Figure 2: Nlustrating the Proof of Theorem 1

Corollary 1: Every cut vertex in a CV G lies in exactly two blocks.

Segments can be arranged so that the CVG becomes & path. However it turns out that if a
CVG contains a node with degree three then it can not be a tree. This is stated in the following
lemma.

Lemma 3: A CVG is a tree if and only if it is a path.

Proof: Assume to the contrary that CVG can be a tree which is not a path. Hence there
exists a vertex v whose degree is 3 or more. Let the vertices adjacent to v be z1,xs2,...z; where
i > 3. However in the CVG, v becomes a cut vertex which lies in 3 or more blocks giving us a
contradiction to Corollary 1. Hence if CV G is a tree it must be a path. The converse is trivial. O

Lemma 4: A CVG is either a path or contains at least one Ks.
Proof: If CVG is a path, then we are done. If it is not a path then surely there exists a

78

segment z which sees more than one segments in one of its half planes (say the left half plane).
In such a case if we sweep the left half plane of the segment by a visibility ray originating at one
of the endpoints of z, we are guaranteed to find two points a and b which belong to two different
segments and are consecutively swept. This implies the existence of a K3 in the CVG. u

The next lemma establishes the upper bound of the number of degree 1 vertices in a CVG. An
example of line segment arrangement can be constructed to show that the stated bound is sharp.

Lemma 5: For n > 4, there can be at most |n/2] vertices of degree 1 in CVG.
(Proof omitted due to space limitation)

Since CV G is a connected graph it must contain at least n — 1 edges. Also, the upper bound
on the number of edges in CVG 1s (). Line segment arrangement examples exist to show that
these bounds are tight. In this context it would be interesting to investigate the existence of CVG
with the number of edges between the lower bound n — 1 and the upper bound (3).

Theorem 2: Given a positive integer k, n — 1 < k < (}), a CV G is realizable with k edges and
n vertices.

Proof: The proof is by construction and follows an approach similar to the one used in
[BE*94]. All segments in the construction are assumed to lie vertically on a horizontal line
and are ordered in increasing length from left to right. Also the projection of each (except the
rightmost) segment is contained in the segment to its right. We use an induction on n.

Basis: When n =2, n — 1= 1= (}) and we have only two segments.

Let us assume that the result holds good for n — 1 segments. Thus a CV G is realizable having
number of edges between n — 2 and (";?). Let {u;,};} denote the two endpoints of segment s;.
We place a vertical line L to the right of the segment s,,—;. For each u;, 1 <1 < (n—2), we draw
a supporting half-line originating at u; and passing through u. (r > i) such that the half-line does
not intersect with any other segments. Let these half-lines meet L at points labeled 1, z2,...2n—2
where z; is above ;41 for 1 < i < n — 3. Let zg be a point on L such that zg is above z1. Let
the horizontal lines drawn from -1 and l,—1 meet L at z,—1 and yg respectively. Also let the
line between l,_; and l,_» meet L in y;. Any point between z,_2 and z,_; will not be visible
to any other endpoint apart from u,_1 and l,—1. We now add a segment s, to the arrangement
having endpoints u, and [, such that u, is between z; and z;1 where 0 < i < n—2andl,
is between y; and yp. Clearly the point I, is visible only to u,.1 and I,—1. It is not difficult
to see that for some choice of u, we can add i 4 1 visibility edges to E(CVG)n—1. Therefore
LE(CV Q)| = tB(CVG)n1| + 1 + i where 0 < i < n — 2. Hence it follows that |[E(CVG)x| can
range between n — 241 (ie. n— 1) to (";1) +n-2+1 (ie (3)). O

3. Classes of Graphs Representable as CVG

We now consider the classes of graphs that can be {or can not be) represented by a CVG. Simple
paths can be realized by vertical segments whose convex hull boundary contains all endpoints
(Figure 3a). Similarly, any complete graph K, can be realized by considering n completely hulled
segments. Other configurations can be drawn to realize K, (Figure 3b).

A wheel W, is defined as Ky + Cn—1 where the + indicates that we add an edge between the
vertex in K and each of the vertices in Cp,—;. Figure 3c shows configurations of a set of segments
which realizes W1y as a CVG. The configuration can be generalized for any n.

A fon F, is defined as K1 + P,_1 where P,_; stands for a path on n — 1 vertices and the +
indicates that we add an edge between the vertex in K3 and each of the vertices in P, (Figure
3d).

It is clear that if a configuration of segments contains a chord then the resulting CVG is
non-Hamiltonian. A logical question might be whether a block in a CV G is Hamiltonian. Segment
configuration examples exist where each block is non-Hamiltonian. Also the neighborhood of a

79

vertex in a CV G need not induce a Hamiltonian path.
From Lemma 3 and Lemma 4, we can easily see that for n > 3, a cycle C,, cannot be realized

as a CVG.
Lemma 4 implies that the only bipartite graph which is realizable as a CVG is a path Any

other CV @G would contain K3 (an odd cycle) making it non-blpa.rtite

oo ||

(a): Simple Path

(b): Cornplete Graph Ks

@
=

(c): Wheel Graph W,

e

{d): Fan Graph F;

Figure 3: Classes of Graphs Realizabie as CVG

80

4. Concluding Remarks

We establish some properties of contracted visibility graphs (CVG) of disjoint line segments.
There are several issues that need to be considered. For example, it would be interesting to deter-
mine the lower bound for the number of vertices in a block. Preliminary analysis shows that any
block must have at least 2n — 3 edges. However, we have not been able to establish this bound
formally. We therefore state it as a conjecture.

Conjecture 1: The number of edges in a block in a CVG containing n vertices is greater than
or equal to 2n — 3.

One of the issues worth exploring would be to characterize the classes of graphs that can be
represented by unit disjoint line segments.

Pocchiola and Vegter [PV94] define a weak visibility graph of the disjoint set of convex obsta-
cles as one whose nodes are the obstacles and whose edges are pairs of obstacles such that there
is a free line segment (bitangents) with endpoints lying on the obstacles. If the convex obstacles
are replaced by straight line segments, then it is not difficult to observe that the bitangents are
visibility edges between the endpoints of a pair of segments. From the definition of a weak visi-
bility graph as introduced in [PV94] it is clear that what the authors call a weak visibility graph
translates to a C'V G when the obstacles are line segments.

We can introduce another class of visibility graph called condensed visibility graph (DVG) of
disjoint line segments. In a DVG, two line segments are visible if all of their four endpoints are
mutually visible. It is clear that DVG can be a proper subset of CVG but not the vice-versa. We
have established some properties of DVG and these results will be reported in the future.

References

[BE*94 | J. Bagga, J. Emert, M. Mcgrew, and W. Toll, “On the Sizes of Some Classes of Visibility
Graphs”, Congressus Numerantium, 104, (1994), pp. 25-31.

[CHO1] D. Campbell and J. Higgins, “Minimal Visibility Graphs”, Information Processing Letters,
Vol. 37, (1991), pp. 49-53.

[LM*87] F. Luccio, S. Mazzone, and C. K. Wong, “A Note on Visibility Graphs”, Discrete Mathe-
matics, (1987}, pp. 209-219.

[0S97 | J. O’'Rourke and Ileana Streinu, “The Vertex Edge Visibility Graph of Polygons”, To
appear in Computational Geometry: Theory and Applications, 1997.

[PV94 | M. Pocchiola and G. Vegter, “Minimal Tangent Visibility Graphs”, Proceedings of the Sizth
Canadian Conference in Computational Geometry, 1994, pp. 24-29.

R86] D. Rappaport, “The Complexity of Computing Simple Circuits in the Plane”, PhD Thesis,
McG@Gill University, 1986.

{R92] J. Rippel, “Segment Visibility Graphs”, Bachelor of Arts Thesis, Smith College, 1992.

[S96] T. Shermer, “On Rectangle Visibility Graphs”, Proceedings of the Eighth Canadian Con-
ference on Computational Geometry, 1996, pp. 234-239,

[SE87] X. Shen and H. Edelsbrunner, “A Tight Lower Bound on the Size of the Visibility Graphs”,
Information Processing Letters, Vol. 26, (1987/88), pp. 61-64.

[W89 | S. Wismath, “Bar-Representable Visibility Graphs and a Related Network Flow Problem”,
Ph.D. Thesis, Department of Computer Science, University of British Columbia, 1989.

Geometric matching problem of disjoint compact
convex sets by line segments

KryosH! HOSONO*

Department of Mathematics, Tokai University;
3-20-1 Orido, Shimizu, Shizuoka, 424 Japan

KaTsuMi MATSUDA

Department of Mathematics, Tokai University,
916 Nishino, Numazu, Shizuoka, 410-03 Japan

~ April 5, 1997

1 Intrd duction

It is well known that any finite set of even points in the n-dimensional Euclidean space R™
admits a perfect matching by line segments. What is a suitable generalization of this fact from
" points to disjoint compact sets 7 The case of disjoint line segments in the plane is treated in
[1). In this article, we survey some new results discussed in [2] and [3].

Definition 1.1. Let V be a disjoint family of compact sets in the n-dimensional Euclidean
space R”, denoted by {C,| a € A}, and let L be a set of line segments in R®. The pair
F = (V,L) is said to be a CL-figure in R, if V and L satisfy the following conditions:

1) Each endpoint of any line segment of L is on the boundary of a compact set C, (a € 4).

2) Any line segment of L has no common points with other line segments of L except possibly
at common endpoints. ' _

3) Any line segment of L has ne common point with any C, (a € A) except for its two
endpoints.

If we regard the elements of V and the elements of L as the vertices and the edges, respectively,
maintaining the incidence relation between V' and L, then we can obtain a graph called the
skeleton of the CL-figure G = (V, L).

From now on, we will use the graph-theoretic terms in the skeleton of G to CL-'ﬁgure G itself.

¥ V is a finite disjoint family, we call V an even disjoint family or an odd disjoint family if
Card(V) is even or odd, respectively. '

* e-mail eddress: hosono@scc.u-tokai.ac.jp

82

Definition 1.2. For a disjoint family V of compact sets, we define a CL-matching of V by
a CL-figure M = (V,L), if M satisfies the condition that any two elements of L cannot be
adjacent to each other. We define H(V) by H(V) = maz{Card(L)| (V, L) is a CL-matching.}
and h(m) by h{m) = min{H(V}| Card(V) =m}.

We call the set of the elements of V which are the ends of some [€ L the saturated ends set
V(M). TV(M)=V, M is called a CL-perfect matching of V.

Furthermore, for an odd disjoint family V' of compact sets and for an element E of V, we
define a CL-perfect matching (of V) with the residue E by a CL-matching (V, L) of V such that
(V\ {E}, L) is a CL-perfect matching.

Definition 1.3. Let X* denote the dual space of a linear space X. For a compact set C
of R™ and for a non-trivial linear function f € (R™)*, let m(C, f) = min{f(z)| = € C} and
M(C, f) = maz{f(z)| z € C}. m(C, f) is called the f-supporting value of C. Define d(C, f) by
d(C,) = M(C, f) — m(C, f); d(C, f} is called the fwidth of C. C is said to be f-connected if
F(C}=[m(C, f), M(C, f)].

If d(Cy, f) = d(Cs, f) for two compact sets C1,C2 of R™ and f € (R™)*, then C; and C, are
said to have f-equal width. If V is a family of compact sets in R, V = {C,| a € A}, and if f
is an element of (R™)*, then V is said to have f-equal width if C, and Cj have f-equal width for
any a,b € A.

Definition 1.4. Let T be a set of points in R®. T is said to be weakly 2-general if T satisfies
the following condition (C):
(C); For any point P € T, there exists another point @ € T such that the line P} does not
contain any other point of T. |
Let C be a compact convex set in R"™. Let V' be a family of translations of C' in R", denoted
by {C+ O-_Pi| i=1,2,..,n}. Then we call the set {F;| i = 1,2,...,n} the translation set of V,
denoted by Trans(V). V is said to be weakly 2-general if Trans(V') is weakly 2-general.

2 Main Theorems

We obtain the following results by the method in Section 3.
Theorem 2.1.
(1) There exists a CL-perfect matching for any even disjoint family of congruent discs in the
Euclidean plane R?.
(2) For any odd disjoint weakly 2-general family of congruent discs in R? and for any disc
E €V, V has a CL-perfect matching with the residue E.

Theorem 2.2,
Let f be a non-trivial linear function in the n-dimensional Euclidean space R™ (n > 2) and

V an even disjoint family of line segments in R™. If V has f-equal width where the f-supporting
value of any element of V is distinct from others, then there exists a CL-perfect matching of V.

Let e, = (0,---,0, 1,0,---,0) in R® (i = 1,2,...,n) and {f;| 1 < i < n} be the dual basis
of {&;| 1 <¢ < n}in (R")*. Moreover, let D be a compact convex set in R". A compact set
E in R™! is said to be a D-cylinder, if f,1;({c}) N E is a translation of D x {0} in R**!, for
any ¢ € R such that £, ({c}) N E # 0.

83

Theorem: 2.3.
Let D be a disc in R2. Then there exists a CL-perfect matching for any even d13_10mt family
V of D-cylinders in R® which satisfies the following conditions:
1) V has f3-equal width.
2) The f3-supporting value of any element of V' i is distinet from others.
3} For sufficiently many ¢ € R, if the set {ENf~ W{H EcVand Enfi({c}) #0} is not,
empty, then it is weakly 2-general.

Theorem 2.4,
Let V be any disjoint family of 2n compact convex sets in R?, If V has f-equal width for
some direction f, then it holds that [2] < h(2n) < |2).

Theorem 2.5. :
If V is a disjoint family of 2n translations of a convex body in the general position in R?,
‘then it holds that h(2n) > | 42].

3 Local Matching Principle

Let V be a finite disjoint family of compact sets in R™. If V satisfies the following condition
for a linear function f € (R®)* and a real number ¢ € R, we say that V satisfies the Local
Matching Principle(in short, L.M.P.) at the f-value c.

Condition: Consider any CL-matching M = (V, L) of V such that

V(M) C{CeViCcCyx fH{{~o0,c))}. Define Voby Ve ={C e V|CNf~ 1({c}) # 0}. Then
either of the following two conditions (L.M.P.I) or (L.M.P.II) holds:

(LM.P.I)Card(V,) is odd,

There exists C; whose f-supporting value is minimum among the elements of V\ (V(M)UV,). |
Then there exists a set L. of line segments in R™ such that the pair (V.U{C1}, L;) is a CL-perfect
matching of VzU{C1} and that the pair (V, L U L) is a CL-matching of V.

(LM.PID)Card(V,) is even;

There exists a set L. of line segments in R™ such that the pair (V%, L) is a CL-perfect
matching of V, and that the pair(V, L U L.) is a CL-matching of V.

We state the algorithm by which we construct the “global” perfect matching by patching
the “local” matchings. The following Main Lemma enables us to prove Thm.2.1, Thm.2.2 and
Thm.2.3. Thm.2.4 and Thm.2.5 can be proved by the modified version of this lemma.

Main Lemma (Algorithm for the construction of a CL-perfect matching)

Let V be an even disjoint family of f-connected compact sets in R™ which has f-equal width -
for a linear function f. If V satisfies the following conditions, then there exists a CL-perfect
matching of V.

1) The f-supporting value of any element of V' is distinct from others.
~ 2) V satisfies the Local Matchmg Principle at the f-value c for any ¢ € R except for a finite
set of real numbers. :

Proof.

1°)} We shall construct the ascending chain M, My, ... of CL-matchings of V. Since

84

Ly Czx Ly Cyx --- holds for M, = (V] Lp), then V(M) Cx V(M) Cx --- also holds for the
saturated ends sets. Thus V = V(M,) holds for some natural number n € N by the finiteness
of V. Therefore a CL-perfect matching of V' results.

2°) Consider V = {Ci,Ca,...,Con} such that ¢; < cp <--- < con holds for ¢; = m(C;, f)

(1 =1,2,...,2n) by condition 1°). Since V' has f-equal width, we simply denote the common
value d(C;, f) for any i by d. Note that f{C;) = [ci, ¢; + dj by the f-connectivities.

3°) The construction of the CL-matching M) of V:

Since only C; and C; among the elements of V intersects the closed convex region f e, ea))s
we can join C; to Cy by some line segment Iy in this region. Then (V,{l}) is a CL-matching
of V. Let Ly = {l},My = (V,L1). Then choose some positive number &; > 0 such that
ey < ¢p + &1 < min{ez + d,c3} hold and the value ¢z + €1 + md is never equal to ¢z for any
me& N.

4°) The construction of M1 by the CL-matching M, of V:

For the constructed CL-matching M, = (V,Ln) of V and sequence of positive numbers
£1,69,. .. En, let V(M) = {C1,Cy, ..., Cox} and Ly, = {l1,12,...,lx}. Especially, suppose that
the value cor + £ + md is never equal t0 Cop41 for any m € N. '

We can now construct a CL-matching Mp41 of V. There exists a unique natural number
m(n) by the choice of &, such that cgps1 < cor + €n + m(n)d < cop41 +d.

Let e{n) = o + €4 + m(n)d. Then all the elements of V(My) are included in the open
half-space f~1((—0,e(n))), and Copps € Vi, holds for Vi, = {C € V| Cn f~1({e(n)}) # 0}.
Therefore either of the following two conditions (I) or (II} holds since M,, satisfies the Local
Matching Principle at the f-value e(n).

(I)Card(Vy) is odd,

Denote Vi, = {Cors1,Cor42s- -+ Cory2i—1} and let L’ be some set of line segments in R™.
Then by (L.M.P.I) there exists (Vy, U {Carat}, L},) of a CL-perfect matching of Vi U {Coxsai}
and (V, L, U L) of a CL-matching of V. Next, since we can choose some positive number
En+1 > 0 such that €,41 < d and the value cag4o1 +&n+1 + md is never equal t0 coproi+1 for any
m € N, we can construct Mpy1 = (V, Lns1) for Lng1 = Ln U Ly,.

(I1)Card(Vy,) is even;

Denote V,, = {Caps1,Catr2,---,Coptar} and let L, be some set of line segments in R”.
Then by (L.M.P.II) there exists (Vy, L},) of a CL-perfect matching of V, and (V; Ly ULY) of a
CL-matching of V. Since we can choose some positive number ep41 > 0 such that g,47 < d
and the value cgrio1 + ens1 + md is never equal to cop4g+1 for any m € N, we can construct
My = (V; Ln+1) for Lpy1 = L, U Lfn O

4 Conjectures

We propose two conjectures selected in [2] and [3].
Conjecture 4.1. Let V be any disjoint family of 2rn compact convex sets in R2. If V has

f-equal width for some direction £, then it holds that h(2n) = |}

Let V be a family of compact convex sets in R™. The family V is said to have equal width, if
V has f-equal width for any f € (R")*.

Conjecture 4.2. Let V be an even disjoint family of compact convex sets in R™ If V has
equal width, then there exists a CL-perfect matching of V.

In particular, we are interested in the family of congruent balls in R™.

85

Acknowledgement
The author would like to thank Professor David Rappaport for his valuable suggestions.

References

1] K.Hbsono,M.Urabe and M.Watanabe, Topics on line segments and polygons, Discrete Math.
151(1996)99-104.

[2] K.Hosono and K.Matsuda,On the perfect matching of disjoint convex sets by line seg-
ments, submitted. ' -

[3] K.Hosono,On an estimate of the size of the maximum matching for a disjoint family of
compact convex sets in the plane, submitted. :

86

Handling rotations in the placement of curved convex polygons.

Francois Rebufat
LIPG
Universilté Pierre el Marie Curie
4, Place Jussicu
75252 Paris Cedex 05
e-mail : rebufat@posso.ibp.ir
Fax : +33 1 44 27 40 42

April 4, 1997

1 Introduction

- Curved polygons are compact subsets of e
whose boundaries are butld of lines segments and
arcs of parabolas.

The problem addressed in this paper is to com-
pute the translation set that sends a convex
curved polygon in intersection with an other. It
is a fondamental step for handling the computa-
tion of the space configuration for a mobil curved
robot in a curved environment.

Basing our proposal on the Minkowski sum, we
represent the space of contact-free confligurations
for Ain B as the complementary set of Sym(A)®
B where Sym(A) is the symmetric of A with
respect to the origin.

Early works have treated the case of “linear”
polygons whose boundaries are only made of line
segments [AB] or arcs of circles [JPPL] and the
case of curved polygons restricted Lo translations
[JIR].

We propose a generalization of both cases aliow-
ing rotation/translation to convex curved poly-

gons. More precisely, we present a theorical
study as a fondation for an efficient algorithm
to compute the application F. Give two convex
curved polygons A and B, F(A, B) is (Rs(A) &
B,0) the subset of R? x S', where Ry is the
rotation with angle ©.

In section 2 we expose briefly the computation of
the Minkowski sum of two curved polygens. In
section 3 we present a general algorithm for the
placement of curved convex polygons in transla-
tion/rotation.

2 Sum in translation

We represent curved polygons by their bound-
aries i.e. by line segments and arcs of parabo-
las. We adopt a parametric representation of
parabolas {in ¢ or u} upon the interval [0,1] for
sitnplicity.

Let v(t) = (X (t), Y (1)) be a parabola, we define
its derivative by ¥'(1} = (X'(t), Y'(t)). While
evaluating the derived curve for a value ¢y of ¢,
we obtain the tangent vector to the curve v at

87

the point y(t;). We formalize the notion of tan-
gent through the definition of tangential angular
value.

~ Definition 2.1 Let A be a curved polygon, we
~ call tangential angular value(s) associated to a €
8A, noled vat(a), the vnlue(s} of angle(s)} defined
as follows :

- if a is a vertex of A defined w:!h the curves
A1(t) and A;(t), vat(a) is the sel of values of
the angles of the half-lines included between the
half-tangents in a, A}(1) and A%(0).

- if a € A(t) then vat(a) is the value of the angle
of the half-tangent in a.

A vat is a real interval eventually reduced to a
point. A list of vat can be sorted by using a

real ordering relation. This allows us to orient

a curved polygon according to its vat (setting a
starting point). Arbitrary, we chose the counter-
clockwise orientation.

Now, we are able to discribe the construction of
the Minkowski sum of two convex curved poly-

gons. 1t is based on a criterion depending on the

vats associated to the polygons.
The following proposition gives the criterion that
will allow us to construct §(A @ B).

Proposition 2.1 Let A and B two conver

curved polygons and let a € §A and b € §B,
(a+b) € 5(A® B) < vat(a)Nvat(b) £ 0.

Differents demonstrations can be found in [1IR],
[JPL], [GSR], [FR].

To compute (A ® NB) we proceed as follows :
“the vats of 84 and 81 are computed on each
vertex and are sorted on the trigonometric cir-
cle. (A @ B) is built step by step while turning

around following the growt.h of their tangential
directions.

We note Ai(t) an edge of A and a; a vertex (re-
spectively B;(u), b;, for B). Curved that build
the boundary of §(A B) can be of three types :

1. The sum of one vertex of A and an arc of
B
Bi(u) + a;

On the arc B;(u), vat(B;(u)) C vat(a;).

2. The sum of one vertéx of B and an arc of
A
Ai(t) + b;

vat(A;(t)) C vat(b;).

3. The sum of an arc of A.and an arc of B,
such that vats are equal on these two arcs.
To compute this, we need to express the re-
lation ¢ that links parameters t and u such
that vat(A;(t)) = vat(B;(4(t))). To com-
pute ¢, we set to zero the determinant of
the derivative matrix of curves components.
¢ is expressed as follow:

On the segment A;(t),

at + 4
St+ 7’

o(t) =

where a, 3,7, é depend of the coefficients of

curves. In [FR) we have proved that in the

case of two parabolas the denominator of qS
" canot be equal to zero.

Following the vats on §A and 6B such that tan-
gential directions are equal gives a method to
compule 6(A @ B). It shows which curve (or
vertex) of A will be snmmed with which curve
(or-vertex} of B. 'The interval of variation for
the parameter of each resulted curve is defined

88

during the process. Each time the configuration
3 appears, the relation @ is computed for the
corresponding curves.

3 Minkowski sum with rota-

tion.

Now the position of polygon A depends on a ro-
tation parameter § € © (typically © = [0, 2x[)
and will be noted A{f). We extend the algorithm
described above to this new hypothesis.

We note Rg = (p1(8), p2(6)) the rotation vector,
classicaly, (sin{#), cos(8)).

The application of Rg to a curve y(t) of 64, de- '

fines a family of curves y(t, 8) called a parametric
surface. :

v(t,0) = {

Decomposition of the rotation set ©

p1(0)X (1) — p2(B)Y (1)
p2)X () + p (6)Y (1) .

Intuitively, to compute A(8) @ I3 we proceed as
follows. We splil a continuous set in a finite num-
ber of subsets such that, each subsei can be car-
acterized by one or more constructive propertics.
More precisely, we split the rotation set © in sub-
intervals, such that on each interval [;, 8;41] the
structure of the boundary of A(f) @ I3 is pre-
served. '

Definition 3.1 Given two curved polygons A
and B, we associale to A @ B the ordered list
of the labels of curves and vertices of 6A and éD
used to build the boundary. We call it the list of
structure of 8(A(8) & B).

Such a list can be augmented by adding to each
element the interval of variation of the parameter

of the curve. _
For the sum with rotation, the list of structure
is modified when 8 describes ©. That is why,
we are looking for a partition of © such that,
on each interval 7; of this partition, the list of
structure is kept unmodified.

Proposition 3.1 Let Vi = (o4 enyan) and
Vo = (B1, .., Bk} be the lists of vats Jor the ver- -
tices (two for one vertez) of A and B. for all
i = 1.n and all j = 1.k the partition of © in-
duced by the covering of the union of the inlervals
[os — B+ @ig1— 8;] defines a partition such that
on each interval the list of structure is preserved.

Proposition 3.2 Let {I},..,I} te a family of .
real intervals such that |J I; = I, the partition of
I induced by the covering of J I; contains 2n—1
intervals and is computable in time O(nlogn).

The family {J;}i=1.n contains at most 2n
bounds. To compute the partition we sort these
20 bounds in . We show by induction that the
number of intervals computed is at most 2n — 1.
Some intervals can be reduced to a point in
the partition. They can be eliminated [rom
the partition, the structure of the boundary of
5(A(6) & B) being continuous.

The computation of (A(6) @ B) being decom-
posable on seperate intervals of ©, we can com-
pute exactly the surfaces of §(A(#) @ B) on each
interval.

Parametric surfaces

Lets us consider an interval 1; =}6;,8it1[with
an associated list of structure £. Three types of
curves appear in L @

1. the sum of a vertex of A and a curve of I3

89

2. the sum of a vertex of B and a curve of A4 ;

3. the sum of a curve of 4 and a curve of B .

Construction of a curve of type (1)

Let @ be the vertex of A and yg(t) the curve of
B. On the interval I;, a draws an arc of circle.
The resulting curve is then yg + a{#). We have
-to describe how the interval of variation of the
curve yg(t} + a(0) varies for @ in I;.

Let us set that for # = 0, vat(a) = [, B]. Upon
I, vat(a(f)) = [a+ 8,5+ 8]. The bounds (lower
and upper) of the interval of variation for yg(t}+
a(#) are expressed with 8, con51der1ng that vg(t)
is defined upon [0,1] :

- Lower bound : maz(r,0), where r is solution
of the equation

val(yp(t)) = a+ 6

- Upper bound :
of the equation

vat(ye(t)) = +6

These equations are of degree 1 in ¢ because they
come from derivaiives of the parabola yg(t). In
fact, vat(ys(t)) = a+ 8 is rewritten in the form
By ()78, (£} = @+ 8 (if we take the slope of
the tangent as representation for the vat). They
only admit one solution.

min(r, 1}, where r is solution

Construction of a curve of type (2)

Let b be the vertex of B and y4(8,t) the curve of
A. The resulting curve is y4(6,4) + b. Il we sel
vai(b) = [a,] as previously the bouids of the
interval of variation of parameter ¢ are obtained
as roots of equations depending on vat{y4(6,1)).
- Lower bound : max(r,0), where r is solution
of the equation

vat('yA (8,t}} = e, or vat(ya (t)) =a-#8

.= Upper bound : min(r,0), where r is solution

of the equation
vat(ya(f,t)) = B, or vat(ya(t)) = 5 - 6.

These equations are of degree 1, thus admtttmg
only one solution.

Construction of a curve of type (3)

We have to sum yg(u) and v4(8,t). We pro-
ceed as we have done for the case where only
translations are allowed ; we compute the rela-
tion ¢(t,6) that links the parameters t and u as
explained previously. Computing the determi-
nant of the matrix of the derived coordinates of
v4 and vp (in t and u) gives the expression of

QS(t, 9)'

Lo < | @+ 0p(0) = (ct+d)pa(6)
A { (ct + d)p1(6) + (at + b)P:(g)
and y(u) = { ot

We can express u = (¢, 8) with the coellicients
of 7A(6 t} and yu(u). Noting 7, (4,t) the X-
azis coordinate of‘yA (8, ¢) and Ya, (0, 1) its Y-cms
coordinate,

J7ay(8:8) ~ by, (8,1)
g'yj’lz(gv t) - e_'rjdy(ﬂ, t)

u=¢{t,0) =

Summing y4(t,#) and yp(u) evaluated on u =
qS_(!.,(i) we obtain :

Led(t,0)% + f(t,0) + 1 + Yaz(t, 0)

Ya+B(0,t) = { .ﬁ.gqs(t,e)? + h(t,0) + e + vay(t,) .

The solution is a surface described with rational
functions of degree lower or equal to 4 in { and 3

90

in 8. The introduction of does not change the
fact that the denominator of ¢ is always dilferent
from zero.

Different configurations lead to a construction
of type 3. These configurations depend on the
intervals of variation (on ¢ and u) upon which
curves are summed.

We will note v, .. {resp. 7B|lu1.uzl) the por-
tion of 4 (resp. 755 defined on the sub-interval
[t)..t2] (resp. [w1..12]). We assume that origi-
nally, each arc of curve is defined on {0, 1]. They
are four possible configurations for y4 + 75 :

Lo YAy 0 + VB
vats at the extremities of y4(t, #) are totally
included between vats at the extremities of

v8(Y) ;

2 TAtosz) T VB
the two curves overlappe themeselves ;

3 YAy) T VBlouay
this configuration is symetrical to the previ-
ous one ;

4 Yo By
this configuration is similar to the first one.

The partition of © ensures that upon an interval
I, 74 + 7B corresponds to one of these configu-
rations. It is easy to detect it, taking some value
for ¢ included in I, for instance #as the middle
of I. Comparing the vats at the extremities of
vg(u) and y4(¢, Opr) we identify the correspond-
ing configuration {we could put this information
~ in the list of structure).

The result of the computation of §{A(f) & B)
on each interval of © is a family of parametric
surfaces (in ¢ or u), where the bounds of intervals
of variation are expressed as Munctions of 8.

Combinatorial bound

For two convex curved polygons A and B hav-
ing respectively n and m edges, computing their
Minkowski sum takes O(n + m) operations,

As we have seen previously, describing the par-
tition of ® is made in O(nmlognm) steps by
sorting O(nm) numbers.

Proposition 3.3 The total complezity for com-
puting the Minkowski sum of two convez curved
polygons, one beeing allowed to move in rofation
takes O(nmlog nm) operations.

Adjacency relations between surfaces on the
same interval I; of © (i.e. horizontal adjacency
relation) are given by the list of structure.
Vertical adjacency relations are easely estab-
lished since only one element of the list of struc-
ture is modified when we step from an interval
I; of the partition of © to the following interval
Linr.

This algorithm gives a total description
boundary of A{6) ® B in O(nmlognm).

of the

4 Conclusion

We have shown that problem of placement
for two convex curved polygons in rota-
tion/translation has same complexity as for con-
vex linear ones [FA]: O(nmlognm). However,
applications are more expensive in CPU time.
Bigger data structures {curves vs. points) and
more algebraic manipulations (computing the re-
lation ¢) increase significantly processing times.
For the these reasons, implementation is more
difficult to develop.

These results increase drastically for non-convex
configurations because algebraic manipulations

21

become uneasy. We also need to compite all

the triple-contact positions by solving in R non
trivial polynomial systems.

Experiences ied with the symbolic computation
system AXIOM show that such applications are
too expensive for real time robot motion planing.
But applications could be developed for prepro-
cessing configuration spaces or other needs like
industrial cutting.. '

References

[JIR] J.J. Risler, Placement of curved polygons,
AAECC -9, Lecture Notes in Computer Sci-
ence 539 (1991), 368-383.

[PS] P. Schapira, Opemttons on Constructible

Functions,
rapport DMI de Paris Nord, 88-2, serie
mathématique, 1988.

[AB] F. Avnaim et J.D. Boissonnat, 1989 Poly-
gon placement under translation and rota-
tion,

Informatique Théorique et Applications
(vol.23, n°1, 1989, p.5 & 28).

[JPL] J.P. Laumond, 1986 Obstacle growing in
a nonpolygonal world,
Information Processing Letters 25 (1987),

41-50.

[GSR] Guibas, Ranshaw, Stolfi, A Kinetic fram-
work for computalional geometry,

[FR] F. Rebufat, Placement de Polygones

proc. JEEE symp. on found. of Comp. Sci. -

(1983), 74123,

[FA] F. Avnaim, Placement et Deplacement de

formes rigides ou articulées.
Thése de doctorat en sciences, Université de
~ Franche-Compté, Juin 1989.

92

Généralisés dans le Plan.
P.h.D. thesis, Université Paris 6, April 1997.

Almost Optimal On-line Search in Unknown Streets

Evangelos Kranakis*

Anthony Spatharis*

April 21, 1997

Abstract We consider the on-line nevigation prob-
lem of a tactile robot searching for a target point g
from a starting vertex sin an initially unknown street,
which is a simple planar polygon (P, s, g) character-
ized by the property that the two oriented chains from
5 to g are mutually weakly visible.

We first present a deterministic competitive strat-
egy of searching in unknown streets which achieves an
almost optimal competitive ratio of 2—5‘% {~ 1.498)
in the Ls Fuclidean metric and significantly im-
proves the previously best known competitive up-
per bournd [12] of 1.73. Second, we easily modify
our strategy into a slightly different on-line algorithm
HLS (High Level Strategy) which minimizes the clad
(continues local absolute detour) [8, 11} and has a bet-
ter competitive factor of 325"\4/-2@ (= 1.85) than the best
known bound of 2.03 for this class of strategies. These
greedy strategies have simple analyses with an opti-
mal lower bound of v/2 (> 1.41) on the competitive
ratio for searches in unknown rectilinear streets.

1 Introduction

The problem of searching is fundamental to almost
every area of computer science and it is a classical
problem in computational geometry and robot mo-
tion planning [16]. Variants of searching problems
have been studied, including searching for a specific
recognizable object in a known or unknown geometric
environment with or without obstacles [16].

We consider the navigation problem, in which a
tactile (or visual) robot (i.e., a robot with an on-board
vision system) has to find a path from a point s (start-
ing point) to another point g (goel} in an unknown
simple polygon without obstacles. The robot search
is based only on the local information that it gathers

*School of Computer Science, Carleton University, Ot-
tawa, Ontario, K18 5B6, Canada. E-mail: {kranakis,
spathari}@scs.carleton.ca. Part of this research was supported
by NSERC (Natural Sciences and Engineering Research Coun-
cil of Canada) grant.

through visual sensors and so it can bé considered
as an on-line problem [18]. Hence, we use the notion
of competitive analysis of on-line algorithms [17] to
measure the performance of this path planning prob-
lem. In other words, an on-line search strategy is
defined to be e-competitive if the length of the path
traveled by the robot is at most ¢ times the optimal
distance from s to the target point g. This constant
¢ is called the competitive ratio {or competitiveness)
of the strategy. Competitive strategies have many
advantages and sometimes exist even for problems
whose optimal solutions would be NP-hard [5}.

Lumelsky and Stepanov [13] earlier studied a simi-
lar problem when a robot with a tactile sensor moves
in an unknown environment of non-convex chstacles.
They were the first to provide an upper bound to
the length of the robot’s path with respect to some
parameters of the environment.

Papadimitriou and Yannakakis {15] have first con-
sidered the competitive analysis to measure the qual-
ity of on-line algorithms in motion planning theory.
Several on-line problems have been studied for search-
ing, exploring and mapping (1, 2, 7, 18] in a geometric
environment using visual information.

Klein [8] first studied another navigation problem
in a special polygon so-called a sireet. A simple pla-
nar polygon {P, s, g) with two distinguished vertices,
s and g, is a sireet if and only if the two boundary
oriented chains L (left) and R (right) from s to g are
mutually weakly visible (i.e., each point of L can be
seen from at least one point of R and vice versa). He
described an on-line strategy to find a short path from
5 t0 g in a street, which achieved a competitive factor
of (1+3) (< 5.72) in the Fuclidean metric Ly. This
strategy has a lower bound of v/2 (> 1.41) on the
competitive factor to search in an initially unknown
street.

Kleinberg [9] has considered a simple on-line algo-
rithm for the same problem improving the competi-
tive ratio to 2v/2 (< 2.83), although a tighter analy-

sis [11] yields an upper bound of 2,/1 + 715 (= 2.61).

93

He also proved that his strategy has an optimal v/2-
‘competitiveness for searching in rectilinear streets.

Lépez-Ortiz and Schuierer [12] presented a on-line.

strategy, which has a better competitive ratio of
2/1+ (1 + I)? (= 2.05). Recently, they presented
a hybrid strategy [11] which achieves a competitive
ratio of 1.73 improving significantly the previous best
known result.

Datta and Icking [3] defined a new, strictly larger
class of simple polygons, so called Generalized streets
(G-streets, for short) and presented an on-line strat-
egy which achieves an optimal 9-competitive ratio
(resp., v82-competitive) in Manhattan metric L, {
resp., L) metric to search in an unknown rectilinear
G-street. Moreover, Lépez-Ortiz {10] has proposed a
strategy with competitive ratio of 80 in L, metric to
search in arbitrary oriented G-streets.

In addition, an even larger class of rectilinear sim-
ple polygons is given by the class of HV-streefs with
the property that every boundary point is mutually
weakly visible from a point on a horizontal or vertical
line segment connecting the two boundary oriented
chains I and R from s and g. Recently, Datta [4]
presented an optimal 14.5-competitive strategy in Ly
metric to search in rectilinear HV-sireets.

In this paper we consider an efficient on-line nav-
igation problem of a tactile robot in an unknown
geometric environment. Particularly, we present a
heuristic on-line algorithm which has a competitive
ratio of 3;4/-? (= 1.498)in L metric o visually search
in unknown streets. - '

The remainder of this paper is organized in five sec-
tions. Section 2 contains the hasic geometric concepts
and important preliminary resalts. In Section 3, we
describe our deterministic on-line strategy for search-
ing in arbitrary unknown streets. Section 4 gives a
very simple analysis to prove the competitive ratios of
the proposed algorithm and its different versions. In
section 5, we informally show that the above competi-
tive factor appears to be the competitive lower bound
for searching in arbitrary unknown streets. Finally,
Section 6 symmarizes our result and concludes with
some open problems.

2 Preliminary Results

We begin with some definitions concerning general
geometric concepts and we state the visibility proper-
ties of streets, before we describe the on-line strategy
itself. T

Figure 1: Visibility in a V-shaped Street

Let (P, s, g) be a street with a starting point s, and
a goal point g on the boundary of polygon P, which -
is denoted by bd(P). For simplicity, we assume that
no three vertices of P are collinear and define the
clockwise (resp., counterclockwise) polygonal chain
from s to g to be the left (right) chain which is denoted
by L (resp., R). The wisibility polygon Vp(p) of the
polygon P from a point pin Pis the set of y € P such
that y is visible from p. A window w of Vp(p) is an
edge of Vp(p) that does not belong to bd(P). Clearly,
a window w splits P into a mumber of sub-polygons
P, P, ..., P one of which contains Vp(p). Let us
denote by P, the union of the sub-polygons that do
not contain Ve (p). An entrance point (sight point) of
a window wis the closer endpoint to p (see Figure 1).

We define a bay B of a window w to be the con-
nected chain of bd{FP) such that the robot has seen
the endpoints of w but no other points of it. Now, let
us assume that a window w has the orientation of the
ray from p to the entrance point of w. We say that a
window w is left (resp., right) window wy, (resp., wg)
if P, is locally to the left (right) of w with respect to
the given orientation of it. A left (right) bay B (BRr)
15 defined similarly.

We have the following lemma about the bays and
entrance points of a window, which can be proved
easily since it is similar to that in [9].

Lemma 2.1 (i) Let p € bd(L) (resp., bd(L)) and let
U be the left (resp., right) (s, p)-boundary subchain
of P. If the robot moves from s to p in P, it will have

seen every point on . (ii) If vy (resp., vr) is a left

(resp., right) entrance point of a window wy (resp., .
wg) of Ve(p), then it belongs to the boundary chain
L (resp., R).

94

Now, let us denote by T the path that the robot
has traveled from s to a point p in P. We say that
s window w with respect to [is a real window, if
it is also a window of Vp(p). The ertended wvisibil-
ity polygon EVp(p) of P at a point p in P consists
of all the boundary points of P that have been seen
so far (i.e., EVp(p) = UperVp{p), which is also de-
noted by V(p}). Two windows are called L (resp.,
R) -consecutive if the left (right) polygonal chains of
Vp(p) between them does not contain a window dif-
ferent from them. Similarly, two real windows are
called consecutive if there is no real window between
them.

We say that a left (vesp., right) pharos ¢ (resp.,
or) of a window wyr (resp., wg) is the entrance
point of the leftmost {resp., rightmost) real left (resp.,
right} window wy, (resp., wg } of pin Vp(p). In other
words, when Vp(p) is traversed from p in clockwise
order, the left {resp., right) entrance point of the win-
dow wy (resp., wgr) which is encountered last (resp.,
first) is the left (resp., right) pharos ¢ (resp., ¢r)
of that window (see Figure 2). Finally, the visibility
angle of p is defined o be the angle at p between ¢
and ¢r (i.e., Z(¢rp, por) and is denoted by v, (p).

We recall that a polygonal path from a point p;
' to another point p; is monotone if the 2~ and ¥
coordinates of its points never decrease along the di-
rection of the straight-line path 71pz). Also, let us
denote by d(p1,p2) the Lz length of the shortest path
T between two points p; and p; in P. We have the
following lemma about real windows and pharos of

Ve(p)-

Lemma 2.2 (i) If w iz a left (vesp., right) window
of Ve(p) and bd(P) € L (resp., R}, then w is not o
real window. (i) If g is contained in a bay B of a
window w (left bay B or right bey Br) and a point
p belongs to the shortest path, then the (p, g)- path of
T touches either left (right) pharos ¢p (resp., ¢r) of
w. (ii) All windows that belong to L (resp., R) are L
(resp., R) -consecutive in Vp(p).

Proof: (i) can be proved easily by contradiction,
while the proofs of (i) and (#i) are similar to those
in [11, 12}. [

Corollary 2.3 (i) Real left (resp., right } windows
are consecutive. (i) If a window wy (vesp., wgr) is
intersected by the robot’s path, then all real left (right)
windows are L (vesp., R) -consecutive from wgr (wr)
in Vp(p).

3 The Competitive Strategy

In this section we describe our simple on-line strat-
egy and its slightly different versions that consist of
four cases which are based on the robot’s extended
visibility of a street.

Algorithm Street-CSS;

/¥ Competitive Search Strategy : This strategy finds
a short path from a boundary starting point s to
another poiat ¢ in an initially unknown general
street P and achieves a lower bound of 3-22‘3{55 in
Ly metric on the ratio of the distance traveled
by the robot to the length of a shortest path. */

Input : A street (P, s, g) and the robot is currently
at the point s. ,

QOutput : The robot reaches the goal g.

begin Street-CSS
pi=5
Determine EVp(p), the pharos ¢z and / or ¢g;
/* it depends on their existence. */
while ¢ is not visible in EVp(p) do

Case 2. If the left (right) pharos ¢y (resp.,
¢r) is defined, then the robot walks
towards p' := ¢, (resp., p’ 1= ¢r); see
Figure 2.

Case 3. If p, ¢, ¢ are collinear, then
the robot travels along their line to the
closest pharos p' of ¢z and ¢ (see Fig-
ure 2).

Case 4. If none of the above two cases

apply, then both pharos ¢ and ¢ g are
defined (see Figure 3).
If the visibility angle va(p) < 3
(va(p) > Z, respectively), then the
robot chooses the positive direction of
the gaxis such that ¢y is to the left
and ¢p is to its right (resp., the posi-
tive direction on the line perpendicular
to ¢r¢r). Next, it begins traveling in
this direction monotonically, updating
the extended visibility EVp(p) and the
entrance points vy, vg, until it either
sees the goal g or one of the following
events occurs at some point O (i.e., the
origin of the coordinate system):

1. One of the associated bays Bp
(resp., Bgr} with the entrance point
vy, {resp., vr} becomes completely
visible..

95

end.

2. If the current robot’s position r is

collinear to the entrance points vy
and vg, then it moves to the clos-
est entrance point ' of (vr, vgr),
which belongs to the shortest path
T. ' '

3. If none of the above two events oc-
cur, then the robot travels along
the vertical axis until a left (resp.,
right) entrance point vy (resp., vr)
has the same gcoordinate as the
robot and there is no other en-

trance point (except possibly its -

collinear entrance points orn the

horizontal axis) to the left (resp.,

right} side of the y-axis.

If event (1) happens first, then the
robot walks directly to the opposite
entrance point p' := wvg (resp., vp),
thereby returning to the shortest path
T. If event (3) occurs, then the robot
reaches the origin 0 and chooses the di-
rection’ Oug (resp., Oug) as the posi-
tive direction of z-axis. Now, it con-
tinues to move in the positive direction
of the line y = 1z updating again the
extended visibility EVp(p} and the en-
trance points vr, vg, until it sees the
goal g or it reaches some target point
¢ of the line TrU7 where the event (1)
always occurs. In this case, the robot
moves directly to the entrance point p’
:= vy {resp., vg) which it has first seen
from the origin 0, thereby returning to
the shortest path T again.

Set p 1= p';
Compute EVp(p), the pharos ¢y and / or ¢g;
Updates EVp(p), the pharos ¢z and / or ¢g;
end; /* while */
Walk straight towards ¢; /* Case 1 */

4 Analysis of the Algorithm

The following lemma, 4.1, which follows immediately
from our algorithm Street-CS8S, shows the correct-
ness of this competitive strategy applying it repeat-

edly,

case 2 case 3

Figure 2: Robot’s Movement in Cases 2 and 3

Figure 3: Robot’s Movement in Case 4

96

Lemma 4.1 If one of the cases 1 — 4 of the strat-
egy Street-CSS holds at some current point p of the
robot’s path T and p € T, then the robot can always
return to o later verter p’' of the shortest path T .

Next, the main inductive result of the competitive
strategy is stated.

Theorem 4.2 The deterministic on-line algorithm

Street-CSS achieves a competitive ratio of % in
Lo metric to search in an unknoun arbitrary street

P.

Proof: If only one of the cases 1 — 3 applies (see,
Figure 2) we easily get that the distance traveled by
the robot from the entrance point p to p’ is no more
than +/2-d(p,p'} in L, metric, where p, p' € 7.

Now, assume that case 4 occurs (see Figure 3}, Let
! = |p0| and gy; = |0f]. If the right entrance point vg
with coordinates (zp, yg) has first seen, then the
robot travels the distance I + +/{zg)% + (31)? from
the entrance point p to the destination point ' : =
vg through the target point c in the line Trog, while
we have d(p,p") > /1% + (zgr}?. Thus, the worst-case
competitive factor of our strategy is upper-bounded
by _ :

L+ erP +(FP _2+45
VE+(r)? T 2v2

where R* denotes the set of non-negative real num-
bers.

(1)

Lezp.yt€R+

If the destination point is p' := vz, then the com-
petitive ratio is bounded above by

L+ +/(z0)? + (yr —31)?
V+yr) + (zr)?

< sup Az) + (y1)? <
Leper,y€ERT '\/(l + yL)?' + ($L)2

sup
Lep.eryL€RY

1++/5
vE
(2)

The symmetric versions of the entrance and desti-
nation points are treated similarly, interchanging R
with L properly etc. Also, we should point out that
if the robot’s moticn is stopped by the boundary of P
(e.g., see the V-shaped polygonal street of the Figure
1), then the preceding analysis and the competitive
bounds of the above formulas (1) and (2} are not ef-
fected.

Clearly, this strategy creates a. (s, g)-path that does
not exceed 2—;\4/-2@ (= 1.498} times the shortest length
d(s, g) in Ly metric. | |

Now, we can modify the case 4 of our strategy
Street-CSS such that the robot continnes moving on
the positive direction of the y-axis until to reach the
target point t of ¢r¢g (see, Figure 3). This slightly
different on-line algorithm Street-HLS {High Level
Strategy) [8, 11] minimizes the clad (continuous locel
absolute detour).

Theorem 4.3 The deterministic on-line algorithm
Street-HLS has o competitive ratio of % (=

- 1.85) in Ly metric for visual searching in an unknown

general street.

Proof: By a similar way to the proof of Theo-
rem 4.2, the worst-case competitive ratio is upper-
bounded by

l+3"2£+\/(z_RP+—(%EV<3+\/5
12+ (zR)? =22
(3)

sup
Legp,yL€RT

Furthermore, our proposed algorithm can be
changed in such way that the robot continues travel-
ing from the origin ¢ to the pharos which has the
same ¢coordinate and from there to the opposite
pharos. The new on-line algorithm Street-LLS (Low
Level Strategy) achieves a competitive ratio of

I+zr++(zL +zR)* + (gL)?
VU+yr)? + (zr)?

245
NG

in the L; metric and justifies the empirical bound
reported by Klein [8].

sup
Lep,zryL€RT

<

(4)

(= 1.89)

Finally, we would like to point out that if the robot
travels along the line y = z (instead of y = $7), then
our algorithm can achieve the competitive ratio of
1+ lg—i in Lo metric. This factor is also better than
the approximate competitive bound of 1.73 which has
been proposed in[11].

Corollary 4.4 If the street P is rectilinear, then our
on-line strutegies are optimal and have a competitive
ratio of V2 in the Ly, metric.

Proof: Since case 4 cannot occur when we apply
our greedy algorithms in a rectilinear street. [|

97

5 A Competitive Lower Bound

In this section we informally show that our strategy
Street-CSS8 appears to achieve a lower bound on the

competitive ratio of -2—%5/5 in L, metric.

Theorem 3.1 The deterministic on-line algorithm
Street-CCS has a lower bound on its compelitive

ratio-of —;\J/-C in Lz metric to search in arbitrary un-

known streets.

Proof: Let Pdenote the polygon shown in Figure 4,
which is not a complete street since the goal has not
yet been specified. The robot starts at the lower ver-
tex s of an isosceles triangle vy pdr and moves along
the vertical g-axis to the middle point 0 of vi¢g.
If the goal g is not visible yet and since no strat-
egy can determine which one of the bays just around
the pharos ¢ and ¢g contains the goal, the robot
travels towards the point ¢ on the interval ¢y ¢ g fol-
lowing the positive direction of the line y = 1z (since
the right pharos ¢ has the same y-coordinate as the
robot). Then one of the associated bays, say Bg in
this example, becomes visible at that target point
c. Therefore, the robot continnes moving straight
towards the opposite pharos ¢r. But then the dis-
tance traveled by the robot from s to ¢ is no more

than Z 25 -d(s,g) in Ly metric using the formula (1)

which has the minimum possible value by a simple.

numerical computation. [|

6 Conclusion

We have addressed the problem of efficient on-line
navigation -of a tactile robot in an unknown . geo-
metric environment and presented an on-line strat-
egy that achieves a competitive lower bound of 2—;3?—
{2 1.498) in the Lp metric to search in unknown ar-
bitrary streets.

The interesting open question remains if there exist
more general natural classes of simple polygons larger
than HV-streets [4, 10} which can be searched com-
petitively. Furthermore, we want to find a strategy
that achieves a better competitive ratio of 80 in I,
metric for searching arbitrary G-streets.

A common research problem is to improve the com-
petitive factor of 133 in Ly metric for exploring an un-
known simple polygon. Moreover, the main and most
interesting problem in this field [5, 6] is the following:

p=s

Figure 4: Establishing a Competetive Lower Bound

Is there a competitive algorithm for learning an un-
known rectilinear polygon with an arbitrary number
of rectilinear obstacles? Although, it is well known
that the previous problern is not true for any number
of arbitrary holes in general polygons, we could find
some polygons for which the above problem is valid.

Generally, we would like to design optimal com-
petitive strategies for these generalized problems and
other applications in on-line navigation and motion
planning theory, in which sophisticated optimization
techniques could promise new and interesting results.

Acknowledgement We thank Anil Maheshwari
for interesting discussions and useful comments on
an earlier version of this paper.

References

[1] R. A. Baeza - Yates, J. C. Culberson, and G.
J. E. Rawlins. Searching in a plane. Information
and Computation, Vol. 106, pp. 234-252, 1993.

[2] R. A. Baeza - Y A. Blum, P. Raghavan, and
B. Schieber. Navigating in unfamiliar geomet-
ric terrain. In Proc. 23rd ACM Symp. Theory of
Computing, pp. 494-504, 1991.

3] R. A. Baeza- Y A. Datta and C. Icking. Com-
petitive searching in a generalized street. In

98

[4]

[5]

[7]

(8]
o]

[10]

[11}

f12]

[13]

14]

10th ACM Computational Geometry, pp. 175-
182, 1994,

A. Datta, Ch. Hipke, and S. Schuierer. Com-
petitive searching in polygons - beyond general-
ized streets. In Proc, Sizth Annual Internationel
Symp. on Algorithms and Computetion. L. N,
C. 5., pp. 32-41, 1995.

X. Deng, T. Kameda, and C. M. Papadimitrion.
How to learn an unknown environment I: The
rectilinear case. Technical Report C5-93-04, De-
partment of Computer Science, York University,
1998,

F. Hoffmann, Ch. Icking, R. Klein and K.
Kriegel. An efficient Competitive Strategy for
Learning a Polygon. In Proc. 8th ACM-SIAM
Symyp. on Discrete Algorithms, 1997.

B. Kalyanasundaram and K. K. Pruhs. A com-
petitive analysis of nearest neighbor algorithms
for searching unknown scenes. In Proc. 9th Ann.
Symp. on Theoretical Aspects of Computer Sci-
ence, pp. 147-157, 1992.

R. Klein. Walking an unknown street bounded
detour. In Computational Geometry: Theory
and Applications 1, pp. 325-351, 1992.

J. M. Kleinbe'rg. On-line search in a simple poly-
gon. In Proc. of the 5th ACM-SIAM Symp. on
Discrete Algorithms, pp. 8-15, 1994.

A. Loépez-Ortiz and S. Schujerer. Generalized
Streets Revisited. In European Symposium of
Algorithms. Springer Verlag, Lecture Notes in
Computer Science, Vol. 11386, pp. 546-558, 1996.

A. L6pez-Ortiz and S. Schulerer. Walking Streets
Faster. In Proc. of 5th Scandinavian Workshop
on Algorithm Theory - SWAT '96. Springer Ver-
lag, Lecture Notes in Computer Science, Vol
1087, pp. 335- 356, 1996.

A. Lépez-Ortiz and S. Schuierer. Going Home
Through an Unknown Street. In Proc. of 4th
Workshop on Algorithms and Date structures.
Springer Verlag, L.N.C.S., Vol. 955, pp. 185-
146, 1995,

V. J. Lumelsky and A. A. Stepanov. Path-
planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary
shape. In Algorithmica 2, pp. 403-430, 1987.

A. Mei and Y.1 lgarashi. An eflicient strategy
for robot navigation in unknown environment.
In Inform. Processing Letters 52, pp. 5-56, 1994,

[15] P. Papadimitriou and M. Yannakakis. Shortest

paths without a map. In Int. Collog. on Au-
tomata, Languages, and Programming (ICALP
'84), pp. 60-620, 1989,

[16] J. T. Schwartz and M. Sharir. Algorithmic mo-

tion planning in robotics. Handbook of Theoret-
ical Computer Science. MIT Press, pp. 391-430,
1991.

{171 D. D. Sleator and R. E. Tarjan. Amortized ef-

ficiency of list update and paging rules. Com-
munications of the ACM, Vol. 28, pp. 202-208,
1985.

[18] A. Spatharis. Efficient Dynamic and On-line

Computation with Applications. M. Se. Thesis,
School of Computer Science, Carleton Univer-
sity, Ottawa, Canadae, 15995. ‘

99

"An On-line Algorithm for Exploring an Unknown Polygonal

Environment by a Point Robot

S8.K. Ghosh ' J.W. Burdick
Computer Science Group Dept. of Mechanical Engineering
Tata Institute for Fundamental Research California Institute of Technology
Bombay 400005, INDIA Pasadena, CA, USA 91125
ghosh@tifrvax.tifr.res.in jwb@robby.caltech.edu
Abstract

In this paper, we propose an on-line algorithm that can be used to explore an unknown polygonal
environment by a point robot under the restriction that the robot computes visibility polygons
at a discrete number of points on its path. We show that the exploration algorithm computes at
most r 4+ 1 — h visibility polygons, where r is the total number of reflex vertices in the polygonal

environment containing b holes. We also show that r + 1 — k visibility polygons are sometime '

necessary to see the entire polygonal environment.

1 Introduction

In computational geometry literature, several algorithms, specifically on-line algorithms (see [2] and
references contained therein), assume that the visibility region can be determined in a continuous
fashion from each point on a path of a robot. While this assumption is reasonable in the case of a
human “watchman,” it is not practical in the robotic case for several reasons. First, autonomous
robots can only carry a limited amount of on-board computing capability. At the current state
of the art, computer vision algorithms that could compute visibility polygons are time consuming.
The computing limitations dictate that it is not practically feasible to continuously compute the
visibility polygon along the robot’s trajectory. Second, for good visibility, the robot’s camera will
typically be mounted on a mast. Such devices vibrate during the robot’s movement, and hence
for good precision (which is required to compute an accurate visibility polygon) the camera must
be stationary at each view. Therefore, it is only feasible to compute the visibility polygon-at a
discrete number of points. Hence we hereafter assume that the visibility polygon is determined at

a discrete number of points. This notion of computing visibility from discrete points rather than

in continuous fashion and the restriction of no apriori knowledge of the environment’s geometry
suggests a new framework in computational geometry for designing algorithms for motion planning.

Though the above discussion suggests that a robot can only compute visibility polygons at discrete
points on its path, it is not clear whether total cost for a robotic exploration is dominated by
the number of visibility polygons that it computes or the length of the path it travels. The
computational geometry literature has typically assumed that the cost associated with a robot’s
physical movement dominates all other associated costs, and therefore minimizing the Euclidean
length of the path of a robot is considered as the main criteria or the sole criteria for designing
motion planning algorithms. The essential components that contribute to the total cost required
for a robotic exploration can be analyzed as follows. Each move will have two associated costs.
First, there is the time required to physically execute the move. If we crudely assume that the
robot moves at a constant rate, r, during a move, the total time required for motion will be r D,

where D is the total path length followed by the robot during the exploration. . Second, in an:

100

exploratory process where the robot has no apriori knowledge of the environment’s geometry, each
move must be planned immediately prior to the move so as to account for the most recently acquired
geometric information. The robot will be stationary during this process, which we assume to take
time tps. Because straight line paths are the easiest to plan, and since any curvilinear path can
be well approximated by straight line segments, we assume that each move consists of a straight
segment. For the reasons outlined above, we assume that the robot is stationary during each sensing
operation, which we assume takes time tg. Let Nas and Ng be respectively the number of moves
and the number of sensor operations that are required to complete the exploration of P. Hence the
total cost of an exploration is equated to the total time, T, required to explore P:

T(P):tM Nuy+ts Ng+r D (1)

Any practically relevant algorithm should endeavor to minimize this cost. Experience dictates that
in a relatively cluttered environment, the actual time that is required to complete an exploration
will be dominated almost ertirely by the computation time needed to compute visibility polygons,
since current computer vision algorithms consume significant time on modest computers. So, not
only it is feasible to compute visibility polygon only from discrete points but also the overall cost
of exploration is dominated by the cost for computing visibility polygons. Hence, in this paper we
will use Ng as a measure of exploration efficiency

Cost = T(P) =~ O{Ng)

and thus the goal is to develop an exploration algorithm for a robot that minimizes Ng.

2 An exploration algorithm for a point robot

In this section, we describe an on-line algorithm that a point robot can use to explore an unknown
polygonal environment P and guarantee that entire free-space F of P has been seen by the robot.
It may appear that in order to see the entire free-space, it is enough to see all vertices and edges
of P. However, this is not the case, as shown by the example in Figure 1. In this figure, three
views from p;, p2 and ps are sufficient to seen all vertices and edges of P but the shaded region
of F cannot be seen from these views. This suggest that in order to see the entire free-space, the
algorithm must ensure that all triangles in the triangulation of P have been explored.

The algorithm proceeds as follows. The robot starts at any initial location, py, where it determines
the visibility polygon V{P,p;} from p;. Using the visible vertices of P in V(P,p;), the robot
triangulates as much of the V(P,p;) as possible. Let this triangulation be denoted T7. The robot
will then execute (in a manner to be described below) a forward move to py, where it will compute
the next visibility polygon V(P,pz). The region common to V(P,p;) and T} is removed. The
remaining free space in V (P, p2) is triangulated, and the total triangulation is updated.

To describe the algorithm in more detail, assume that the robot is beginning the it* step of the
exploration procedure, and is therefore situated at configuration p;. Let T;_; denote the cumulative
triangulation that has been established prior to step ¢. Using its on-board sensors, the robot
computes V(P,p;) and then removes the region common to V(P,p;) and T;—; from V(P p;}. If
this operation splits V (P, p;) in several disjoint parts, choose the part containing p; as V(P,p;).
As a result VP, p;) contains a portion of F which is yet to be triangulated. It can be views as if
V (P, p;) has been computed by treating T;_; as an opaque region. From now on, whenever we refer
to V(P, p;), it means that V(P, p;) is the connected unexplored region of F, that is visible from p;,
and contains p;. ' :

101

Figure 1: Three views are enough to : . _
see all vertices and edges but not the Figure 2: The spiral polygon can be
entire free-space. _ explored in r 4 I steps.

" After computing V (P, p;}, the interior of V/(P, p;) is triangulated by connecting only the vertices of
I’ that fie in V(£ p1). The vertices of the triangulation may also include vertices from previously
triangulated regions. Let T denote the triangulation of the newly viewed free-space in V(P,pi).

Hence, at the end of step ¢, the total free-space triangulated is T; = T;_; U T:. In the foliowing
lemma, we show that Tz is not empty.

Lemma 2.1 There ezists at least one triangle in T; .

Proof: We know that p; has been chosen in such a way that p; does not lie inside T;_; but lies
inside V' (P, p;.1). Without loss of generality, we assume that p; lies in the triangle uvw, where u
and w are vertices of P, uv is a constructed edge of V(P, p;~1) and uw is a boundary edge of T;_;.

Now, the boundary of V(P, p;) consists of the edge uw and a chain of polygonal and constructed
. edges connecting » and w. Since, this chain makes a turn of 180 degrees or more with respect to
pi, there exists a vertex u’ of P on the chain such that uu'w is a trlangie 1n51de V(P pi). Hence,
wu'w belongs to T;. |

Corollary 2.1 The point p; lies inside T; and V(P,p;} removes at least-one constructed edge of
V(P3 Pi-l) . .

The above lemma suggests that every time a view is taken, at least one new triangle is explored for
each forward move, and therefore the algorithm cannot compute more views than the number of
triangles in the triangulation of P. As a by-product, at least one constructed edge is also removed
during each forward move. Since a polygon with h holes and N total edges can be triangulated
with N 4 2h — 2 triangles, the algorithm can compute at most N + 2h — 2 views. This is generally
not an efficient bound. For example, the robot can also make an effective exploration by tracing
the boundary of P and taking a view at each vertex. This exploration would require only N views.
However, a tighter bound can be proved as follows. Observe that every time a view is taken, a
"constructed edge uv is removed, where u is a reflex vertex of P as well as is a vertex of the free-space
that has been triangulated so far. Since the algorithm considers the previously triangulated region
as an opaque region for computing subsequent views, there cannot be another constructed edge

102

with o as vertex. So we can associate each view {except the first view) to a distinct reflex vertex
of P. Therefore, the algorithm computes at most r + 1 views, where r is the total number of reflex
vertices of P, which is generally much less than N. We state this fact in the following lemma.

Lemma 2.2 The erploration algorithm computes at most r 4+ 1 views.

From the acquired view, the robot establishes a list of constructed edges, (Ci1,Ci2y o Cigy)y On
the boundary the current visibility polygon. These edges will help to define the subsequent forward
exploratory moves. Since we assume that the robot has a dead reckoning sensor, the coordinates of
these constructed edges are assumed to be known. For each constructed edge, choose a point z;;
(j=1,+-+,¢) close to (;; which will be used to view the unexplored territory that is associated
with the j'* constructed edge. Observe that the choice of 2 ; can play a major role in deciding
the number of visibility polygons that are required to see the unexplored free-space. However, any
specific strategy for choosing z;; does not seem to perform well in all situations. So, it suffices to
stale thal z;; is not in 77 and that the entire constructed edge C;; can be seen from z; ;.

Choose one of the z; ;, say z;,; for example, to be the next viewing point, pis1, and recursively apply
this procedure. Hence, the algorithm is a depth-first search of the unexplored free-space. When all
ol unexplored territory associated with z;; has been explored, then choose another viewing point
at level i, say 24, and continue. Note that while choosing 2;2 as the next viewing point, the
corresponding constructed edge C; » must lie partially or totally outside the free-space triangulated
so far. Otherwise, it is considered that C; 2 has beer explored. A local exploratory procedure will
terminate when:

- 1. the visibility polygon contains no constructed edges. In this case, the robot retraces its steps
to the last unexplored constructed edge.

2. all constructed edges of a visibility polygon have been explored. The robot returns to the
previous visibility polygon with unexplored constructed edges.

The algorithm terminates when all constructed edges of V (P, p;) have been explored recursively.
In the following lemma we show that the algorithm has explored the entire free-space F.

Lemma 2.3 When all constructed edges of V (P, p1) have been explored recursively, the algorithm
has explored the entire free-space F.

Proof: Assume on the contrary that all constructed edges of V (P, p1) have been explored recursively
but there exists a point z € F which has not been seen by the algorithm. Consider a path () inside
P connecting py to z. If no such path exists, then z does not lie in the free-space F which contradicts
the assumption that z € F. So we assume that such a path @ exists. Since p; lies in the triangulated
region, starting from p;, Q must intersect at least one boundary edge uv of the triangulation before
reaching z. It means that there exists an unexplored constructed edge bounded by u or v, which
contradicts the fact that all constructed edges of V (P, p;) have been explored recursively. Therefore,
the entire path @ lies inside the triangulation of P. Hence, z has been seen by the algorithm. O

Let us now compare the performance of our algorithm with that of an optimal exploration algorithm.
Consider a spiral polygon without any hole as shown in Figure 2. It can be seen from the figure that
no algorithm, starting from p;, can explore the entire spiral polygon in less than r+1 steps. On the

103

Figure 3: The star-shaped polygon Figure 4: The polygoh can be explored
can be explored in two steps. ' in r steps. ' :

other hand, consider a star-shaped polygon without any hole as shown in Figure 3. In this figure,
two views are enough Lo see the entire star-shaped polygon becanse robot takes the first view al
the given starting position p; and then it takes the second view from the star-point y. On the other
hand, our algorithm first takes a view from p; and then takes r views to remove all constructed
edges of V(L% p). This example shows that this is the worst performance of our algorithm (i.e.,
competitive ratio is (r+1)/2) with respect to the performance of an optimal exploration algorithm.
Let us now consider polygons with only one hole. It can be seen from Figure 4 that our algorithm
takes r steps to explore the entire polygon. In fact, this example shows that an optimal exploration
algorithm also takes r steps to see the entire polygon. However, examples can easily be constructed
to show that the performance of our algorithm may not be close to that of an optimal algorithm as
more holes are added to the polygon. On the other hand, it seems that more and more holes are
added to a polygon, our algorithm takes much less than r + 1 steps to explore the entire free-space.
In the following lemma, we prove that the tighter upper-bound of our algorithm is r 4+ 1 — h, where
h is the number of holes in the polygon. '

Lemma 2.4 The exploration algorithm computes at most r + 1 — h views.

Proof: Let T1(F) denoted the region of the free-space triangulated so far by the algorithm. Let
ab and cd be the two boundary edges of 71 (P) which are not polygonal edges. So there exists two
constructed edges, say aae’ and e¢’, which are yet to be explored. Suppose a point z., arbitrary close
to cc', is chosen as the next viewing point. Since the exploration algorithm uses the depth-first
search method, the algorithm will explore the entire free-space lying outside T'(P) that can be
reached from z; before a viewing point is chosen with respect to aa’. Let T2(P) be the triangulated
region of the newly explored region starting from z.. If there is a polygonal path from z. to the edge
ab inside T»(P), then no viewing point will be chosen with respect to e’ as ab no longer remains
as a boundary edge of the triangulated region Ty(P)|JT2(P). Moreover, while constructing 72(P)
no constructed edge can be created with a as a vertex as any visibility polygon computed from
2. or any subsequent viewing point of z, will treat 7(P) as an opaque region. Observe that such
situation arises when the polygonal paths from 2, to some point of ab inside T3 (P) and inside T5(P)
enclose at least a hole. It implies that once the free-space around a hole is explored by the depth-
first search method, a constructed edge generated earlier will be lying in the newly triangulated

104

region. Hence no viewing point will be chosen with respect to that constructed edge. Hence, the
total number of views computed by the exploration algorithm can be at most r 41 ~ k even though
r + 1 constructed edges may be created during exploration. a

Lemma 2.4 provides the upper-bound on the computational compiexity of the exploration. The
correctness the exploration algorithm and the completeness of the exploration follow from Lemma
2.1 and Lemma 2.3 respectively. We summarize the result in the following theorem.

Theorem 2.1 The ezploration algorithm correctly explores the entire polygonal environment in at
most r + 1 — h steps.

3 Concluding remarks

Suppose the given robot is a convex polygon C and the robot wants to explore the free-space of
P. Let z be the point of C corresponding to the position of the sensor of the robot. If C knows
P apriori, then the configuration space of P can be computed using Minkowski sum of C and P
with z as the reference point and then use the algorithm mentioned in the previous section. Since
' does not know P apriori, a diflerent approach is required for this problem. We have designed an
_exploration algotithm which computes the configuration space (under trarslation) incrementally
in N + 2h — 2 steps using a similar strategy as in the case of a point robot, and then discretizes
the non-polygonal edges of the configuration space by a set of points so that the robot can take
views from these points in order to see the free-space of P lying outside the configuration space.
However, the visibility polygons computed from the chosen set of discrete points may not always
guarantee to see all points of P. For details of the exploration algorithm, refer to [1].

Suppose pi1, p2;...., pr be the points of P such that an optimal exploration algorithm for a point
.robot has computed visibility polygons from these points. We know that U?:l V(P p) = P,
pi+1 € V(P pi) and k is minimum. So, P can be guarded by placing stationary guards at p,
P2y--+y Pk- So, the exploration problem for a point robot is the Art Gallery problem for stationary
guards (3, 4] with additional constraints. Hence, our exploration algorithm for a point robot is an
approximation algorithm for this variation of the Art Gallery problem which seems to be NP-hard.

4 References

1. S. K. Ghosh and J. W. Burdick, Ezploring an unknown polygonal environment with a sensor
based strategy, manuscript, 1997.

2. S. K. Ghosh and S. Saluja, Optimal on-line algorithms for walking with minimum of turns in
unknown streets, Computational Geometry: Theory and Applications, vol. 6 (1997), 1-27.

3. J. O’Rourke, Art gallery theorems and algorithms, Oxford University Press, 1987.
4. T. Shermer, Recent results in art galleries, Proc. of the IEEE, 80(9):1384-1399, 1992.

105

' Understanding Discrete Visibility and related

Approximation Al.gorithms

S.K. Ghosh | ~ J.W. Burdick

Computer Science Group ' Dept. of Mechanical Engineering
"Tata Institute for Fundamental Research California Institute of Technology
' Bombay 400005, INDIA . Pasadena, CA, USA 91125
ghosh@tifrvax.tifr.res.in " jwb@robby.caltech.edu
Abstract

In this paper, we consider the following question. Given a human ‘watchman’ tour that was
computed with a continuous or weak visibility assumption, is it possible for a robot ‘watchman’
to realize the same visibility by using only a discrete number of views along the same path? In
other words, given a continuous path, is there a discrete subset of points in that path from which
one obtains the same effective visibility as would be obtained by the continuous or weak visibility

assumption? We present ‘off-line’ and ‘on-line’ approximate algorithms to locate a set of discrete
points on the path.

1 Introduction

In computational geometry literature, several algorithms, specifically on-line algorithms (see {3] and
references contained therein) assume that the visibility region can be determined in a continuous
fashion from each point on a path-of a robot. While this assumption is reasonable in the case of
a human “watchman,” it is not practical in the robotic case. Ghosh and Burdick {1] have shown
that it is only feasible to compute visibility polygons only from discrete points on a path of a
~ robot and the overall cost is dominated by the cost for computing visibility polygons. Within this
framework, we consider the following question. Let Q be a continuous path of a human watchman
tour in P. It means that the entire free-space of P is visible from some point on the path &, i.e.,
P is weakly visible from Q. Is there a set of discrete points W = {wr, we, ..., W) on @ such that
Uf___l V(P,w;) = P? Here, we present approximation algorithms to locate a set W from a given
path Q. Algorithms construct W consisting of both endpoints of cach line segment of @ and some
internal points on each line segment of Q (if required). So, it is enough to present the procedure
for selecting a set of internal points for a line segment st of Q.

2 Limits to the discrete visibility approximati_ons

Let us first consider the basic limits to the discrete visibility approximations approach. Let
V P(P, st) denote the weak visibility polygon of P from st, i.e., every point of V P(P, st) is visible
from some point of st. Suppose V P(P, st) is known. Is it always possible to locate a set of discrete
points (5 = 80,8151 81 = t) on st such that Uﬁ___l V(P,s;) = VP(P,st)? The bourdary of V P(P, st)
will always consists of polygonal edges and constructed edges. For example, in Figure 1 the segment
ab is a constructed edge of V P(P, st). Observe that the edge ab is visible from only one point, ry,
on st and b, a, ¢ and r4 are collinear. Hence the point rqy must be chosen as a viewing point in
order to see the entire segment ab. We term such an edge a degenerate edge. '

106

Figure 1: The neighborhood of ab can- Figure 2: There are two funnels with
not be seen by discrete approximation. a as the apex and sf as the base.

To understand the effect of these degenerate situations on the discrete visibility approximation,
consider a sequence of viewing points that are required to see all points in a neighborhood of a
degenerate edge (the edge ab in Figure 1 for example). Suppose ry is chosen as the first viewing
point. Then the entire region of V. P(P, st) except the triangle bad is visible from ry. In order to
see the triangle bad, subsequent viewing points have to be chosen from the interval riry. Observe
that the second viewing point has to be chosen from the interval ryr;. Otherwise, the points in the
neighborhood of d are not visible from any viewing point on rory. So, rg is chosen as the second
viewing point. Analogous argument shows that r3 has to be chosen as the third viewing point. If
the viewing points are chosen in this manner, one needs a sequence of viewing points along rary
that converges to ry. Hence, it is not possible to see all points in the neighborhood of ab without
the continuous visibility assumption. Thus, it may not be possible to find a discrete approximation
to a continuous visibility path in presence of degenerated edges. Therefore, our algerithm stops
choosing additional viewing points of a degenerate edge, where the viewing points become very
close to each other. However, the presence of such degenerate edges does not necessarily doom
the discrete visibility approximation as there is a high probability that the robot may still see the
points in the neighborhood of a degenerate edge while moving along some other segment of Q.

3 Funnels

Our analysis and discussion of discrete visibility approximation algorithms are based on the funnel
concept {2]. The funnel structure inside V P(P, st), with st as the base of all funnels, is defined as
follows. For each vertex @, compute all paths inside VP(P, st) from a to both s and ¢ such that
every path makes a turn only at a vertex and every path is outward convex {(Figure 2)}. For every
path from @ to s and ¢, extend the edge from other end of the edge incident on a till it intersects
st . Observe that not all such extensions will intersect st. We are interested only in those paths of
@ whose extensions have intersected st and such paths of @ form the sides of funnels with a as the
apex and st as the base. Since every vertex of V P(P, st) is visible from some point on st, two sides
of a funne! meet only at the apex. In Figure 2, there are two funnels with ¢ as the apex and st as
the base. One funnel is (g, d, s, ¢, b, @) and the other funnel is (a, ¢, 5, ¢, €, a). The path (a, f, t)
or (a, g, s) does not form a side of a funnel. '

Observe that the region enclosed by any funnel does not contain any hole and every vertex of
V P(P, st} belong to at least one funnel. For each funnel, the funnel intervalon st can be located by
extending both edges of the funnel incident on the apex to st. Since any point in the interval can

107

b
;5 Upper Regio‘n,/' d

Figure 3: The shaded region is not vis- Figure 4: The left and right con-
ible from r; and rq. ' structed edges in V(P,s).

see the entire funnel, the continuous visibility can be replaced by a discrete viewing point located
anywhere in the funnel interval. Let ¢ be the apex of a funnel and ab and ad are two edges on .
the opposite side of the funnel. If a, b and d are collinear, the funnel degenerates and the interval
induced by the funnel on st reduces to a point. Therefore, this point must be chosen in order to see
the vertex a. Though this point can see the entire region enclosed by tlre funnel, the point cannot
see the neighborhood of the edge ab or ad. ' '

4 Visibility approximation in a known environment

From the description of funnels, it should be clear that it is possible to choose a set of discrete
points on st which can at least see all vertices of VP(P,st). This limited form of visibility is
achieved by choosing a viewing point on each interval on st induced by all funnels. In practice, this
set can be derived by scanning the funnel intervals from s to ¢ by considering only those funnel
" intervals that do not totally contain any other intei'val._ This approach ensures that the chosen set
of discrete points not only can see all vertices of V P(P, st} but also sees the region of V P(P, st)
enclosed by all funnels. However, as shown in Figure 3, it is not true that this approach will ensure
visibility of all or nearly all of V P(P, st). In this figure, viewing points ry and rp can see the region
enclosed by the funnels with apex a and & but they do not see all points of the polygonal edge ab.
It is always be true that points of V (£ st} lying outside any funnel will form triangles with one
edge of the triangle is a part of a polygonal edge. Hence, by choosing one additional point on st
for every such triangle, it is possible to see all edges of V. P(P, st) which are totally visible from st.
We summarize the result in the following theorem. '

' Theorem 4.1 Given a segment st ‘inside a known polygon P, the continuous visibility can be
approzimated by discrete visibility such that (i) the chosen set of viewing points on st sees all

vertices and totally visible edges of V P(P, st) and (ii) the size of the set of viewing points is a
most twice the number of vertices of V P(P, st). ' '

5 Visibility approximation in an unknown environment

The above algorithm is based on the assumption that P is krown apriori. We now assume.that
while st is known, the robot has no other prior knowledge of the environment. The goal of the

108

Figure 6: The points ry, r3 and ry
Figure 5: The shaded region is visible are chosen for exploring funnels F3, F3
from st but not from ry. and Fj.

discrete approximation algorithm in this case is to find a set of discrete viewing points on st that
gives a good approximation of VP(P,st). Assume that V(P,s) has been computed. Note that
V(P, s) does not contain any hole. Let s and ¢’ be the points on the boundary of V(P, s} such that
s and t lie on the segment s't' (Figure 4). We call the region bounded by the clockwise boundary
of V(P, s) from s’ to t’ and the segment s't' as the upper region of st. Similarly, we call the region
bounded by the clockwise boundary of V(P, s) from t' to ¢’ and the segment s't’ as the lower region
of st. As mentioned earlier, the boundary of V(P, s) consists of polygonal edges and constructed
edges.. One endpoint of a constructed edge is always a vertex whereas other endpoint is not a
vertex. If the vertex of a constructed edge in encountered as the first point (respectively, the last
point) of the constructed edge while traversing the boundary of V(P, s) in clockwise order, then we
call the constructed edge as a left (respectively, right) constructed edge. In Figure 4, ab and ef are
left constructed edges in V(P, s) and, cd and gh are right constructed edges in V(P,s). Note that
a, c, € and g are vertices of P. Let s be the first point w; of W. We now wish to choose the next
point wy of W on st. We need the following lemma.

Lemma 5.1 For any point z € VP(P, st} ~ V(P, s), the line segment zr inside V P(P, st), where
r € st, must intersect either a left constructed edge of the upper region of st in V(P,s) or a right
constructed edge of the lower region of st in V(P,s). -

The above lemma suggest that the next point w, on st must be chosen to view those particular
“types of constructed edges of V(P,s) in VP(P, st). Let ab be a left constructed edge in the upper
region of st in V(P,s), where a is a vertex of P. Let b be the next vertex of b in the Euclidean
shortest path from b to ¢ inside V(P, s} (Figure 4). Extend bb’ from ' to meet st at a point r. Note
that r will be the point ¢ if the segment bt is the Euclidean shortest path from b to ¢. The entire
constructed edge ab can be seen from any point on the interval sr. The algorithm computes such a
point r for every left constructed edge in the upper region and for every right constructed edge of
the lower region. Let r; be the closest point to s among all these points. The interval sry is called
the srnallest interval of 5. So the robot moves from s to r; and computes V(P,ry). V(P,r1) now
has a new set of constructed edges. Then, for every left constructed edge in the upper region and
for every right constructed edge in the lower region, the corresponding interval on rit is located.
Let ryry be the smallest interval among all these intervals. So the robot moves from r; to rp and
computes V(P,r3). This process is repeated till ¢ is reached.

109

We now discuss the issue whether or not the chosen set of discrete points can see all vertices and
totally visible polygonal edges of V. P(F, st). Consider Figure 5. Let sr; be the smallest interval on
st induced by the left pocket ab of the upper region in V(P,s). So the robot has moved from s to
r; and then it has computed V(P,r;). Observe that any point in the shaded region is not visible
from r; but all points in the shaded region are visible from some point z on sry. As robot will
move towards ¢ from 7, this shaded region cannot be seen from the subsequent points chosen from
r.t. Hence, this example shows that our algorithm does not guarantee that all vertices and totally
visible polygonal edges in VP(P, st) can be seen from the chosen set of discrete points. 1t seems
that for any choice of discrete points on st, we can always construct such an example to show that
all vertices and totally visible edges in V P(P, st) are not visible from the chosen points.

The above approximate algorithm is based on the assumption that the robot is expected to
move in one direction on st like a human watchman. If the robot is allowed to retrace the path
and is also allowed to choose some more points, then points like z in Figure 5 can be chosen to
explore the hidden region of VP(P, st). We now present an approximation algorithm that allows

backtracking. Assume that V(P,s) has been computed. Let ab be a constructed edge where a is
a vertex. Construct the funnel with b as the apex and st as the base. So one side of the funnel
consists of segments sa and ab and the other side is the Euclidean shortest path from b to ¢ inside
V(B,s). I it is not a degenerated funnel, then the algorithm locates the point r on st by extending
by’ from b’ to st as shown in Figure 4, where b0’ is the edge incident on b’ in the Euclidean shortest
path from b to ¢ inside V(P, s). Then the algorithm computes V(P,r). Let ¢d be a constructed edge
in V(P,r), where ¢ is a vertex, such that the segment dr intersects ab. We call cd as a constructed
edge created in the hidden region of ab. For all those constructed edges ¢d of V(P, 7} which are
created in the hidden region of ab, construct the funnel with apex as d and st as the base. Note
that r can see both sides of these funnels and therefore all these funnels lie inside V(P,r). For
each non-degenerated funnel, the algorithm locates the interval on st induced by the funnel and
computes the visibility polygon from that endpoint of the interval which is not r. Note that one
endpoint of the intervals induced by these funnels is r. Process is repeated till all are degenerated
funnels or the intervals induced by funnels on st are very small.

To summarize the general procedure, the algorithm first constructs funnels Fy, Fa,... in V(P s)
where one edge incident on the apex is a constructed edge of V(F, s). Then the algorithm removes
the degenerated and potential degenerated funnels from the list .of funnels for further exploration. .
From each remaining funnel F; in the list, the algorithm locates the interval induced by.the funnel
on st and chooses the appropriate endpoint of the interval as the next viewing point Lo view the
hidden region of the constructed edge associated with £;. Then it generates funnels F;1, Fig,... with
respect to each constructed edge of the visibility polygon computed from the current viewing point
and prunes the list by removing all degenerated and potential degenerated funnels from the list, and
then recursively explore each of the remaining funnels in the list. The algorithm terminates when
the list of funnels for further exploration in each recursive call becomes empty. In Figure 6, there
are four constructed edges ab, cd, ef and gm in V(P,s). So there are four funnels with st as the
~ base, where b, d, f and m are the apexes of the funnels Fy = (b,a, s,t,¢,¢,b), F; = (d,¢,8,,¢,¢,d);
Fs = (f,e,8,t,q, f) and Fs = (m,g,s,1,e,m) respectively. Since F; is a degenerated funnel, it is
removed from the list. The points ry, r3 and ry are chosen as the next viewing points to view the
hidden region associated with funnels Fy, F5 and Fy respectively. ‘

Let us discuss how the algorithm decides to declare a funnel as a potential degenerated funnel.
We assume that there is a lower bound, 5, on the distance between successive viewing points. If
the interval induced by a funnel becomes very small (i.e. less that &), it is declared as a potential

iio0

degenerated funnel. Suppose the interval induced by a funnel is very small but the last few views
‘could not see a new vertex but only the apex point of the funnel has been shifted as in Figure 1,
the funnel is declared as a potential degenerated funnel. This conditions for potential degenerated
funnels ensure that total number of views computed by the algorithm is proportional to the sum of
the sides of all funnels which can be at most the square of the number of vertices in VP(P, st). Once
all funnels are constructed, one additional viewing points may be required to see each polygonal
edge which is totally visible from st as discussed earlier. Since there could be some vertices hidden in
the region associated with potential degenerated funnels, there is no guarantee that all vertices and
totally visible polygonal edges of V P(P, st) can be seen from the chosen set of points as in the case
of our ‘off-line’ algorithm. However, it appears that in most situation, our ‘on-line’ backtracking
algorithm will succeed to see all vertices and totally visible polygonal edges of VP(P,st). We
summarize the result in the following theorem.

Theorem 5.1 Given a segment st inside an unknown polygon P, the continuous visibility can be
approzimated by discrete visibility such that (i) the chosen set of viewing points on st can see a
large portion of V. P(P, st} and (ii} the size of the set of viewing points is at most the square of the
number of vertices of V P(P, st).

6 Concluding remarks

Above approximation algorithms are useful in desigring exploration algorithms as follows. Suppose
a convex robot C wants to explore the free-space of a polygon P under the restriction that the
robot computes visibility polygons only at a discrete number of points on its path. If C knows P
apriori, then the configuration space of P can be computed using Minkowski sum of C and P. Note
that the configuration space may not cover the entire P. Then by treating each non-polygonal edge
of the configuration space as a given line segment st, a set of viewing points on st can be chosen
using the algorithm in Section 4 so that the robot can take views-from these points in order to see
the free-space of P lying outside the configuration space. So, the exploration problem for a convex
robot reduces to the problem of computing visibility polygons from the chosen set of viewing points.
If C does not know P apriori, the configuration space of P cannot be computed using Minkowski
sum. Ghosh and Burdick [1] have designed an algorithm for this situation which computes the
configuration space incrementally. Then, each non-polygonal edge of the configuration space can
be discretized by the approximation algorithm in Section 5 so that the robot can take views from
the chosen set of viewing points. '

7 References

1. S. K. Ghosh and J. W. Burdick, Fzploring an unknown polygonal environment with a sensor
based strategy, manuscript, 1997. '

2. S. K. Ghosh and D. Mount, An oulput sensitive algorithm for computing visibility graphs,
SIAM Journal on Computing, vol. 20 (1991), 888-910.

3. S. K. Ghosh and S. Saluja, Optimal on-line algorithms for walking with minimum of turns in
unknown streets, Computational Geometry: Theory and Applications, vol. 6 (1997), 1-27.

111

 Why Taro Can Do Geometry

Jin Akiyarﬁa '
Math. Inst., Tokai University

. Abstract

Television is a powerful educational medium. It allows one to reach a huge number of students
{5 million in Japan) in many different locations simultaneously. In the last seven years, I have
had the opportunity of using this medium to teach mathematics and to foster an appreciation -
of mathematics. ' . . '

In this talk, I will be presenting film clips from various geometry lessons aimed-at either ele-
mentary school or junior high school students, while commenting on the contents and objectives
of the lessons and the impact the lessons have made on the Japanese audience, judging from
the responses received from parents and students around the country.

112

A quantum-searching application note

(Preliminary report)

Ngoc-Minh Lé *

Abstract

We observe that the quantum search algorithm of Grover [4], its improvement by Boyer“et
al {1}, and the quantum algorithm for finding the minimum of Dirr and Hgyer [3}, when app_hed
to some typical problems in computational geometry, curiously outperform the known efficient

classical algorithms.

To perform computations, quantum computing exploits properties of microscopic systems whose
behaviour obeys quantum mechanics. The basic principles of quantum mechanics are summarized

below.

1 Quantum computing

A unitary vector space U is a complex vector space endowed with a complex scalar product. In
quantum mechanics, the elements of U are denoted lu), |@),... in place of the usual notations
@,,... . The scalar product of any two vectors |u) and Jv) is denoted by (u|v). A linear operator
Lon U is a linear mapping from U to itself. The adjoint operator of £ is an operator on U, denoted
L*, so that (ulLv}) = (L*u|v) holds for every |u),|v) € U.

A complex number A is an eigenvalue of £ iff Ajup) = £]ua) for some lua) € U. In general,
eigenvalues need not be real. However, if £ = £*, then the eigenvalues of £ are real. An operator
L on U is a unitary transformation iff its inverse equals its adjoint operator: £7! = £*.

In microscopic systems, the measuring process disturbs the system state in a non-negligible
way. Quantum mechanics models the measurable properties of a system by self-adjoint operators
on a unitary space—the observables of the system. The state of the system is fully characterized
by a unit-length vector |®) of the unitary space, which is required to be spanned by the normalised
eigenvectors of the observable, ie., |®) = $° A B(A)|ua), where @(A) = (up)®). The possible results
of any measurement of an observable £ are exactly its eigenvalues. One fundamental statement of
quantum mechanics is that the probability for the occurrence of the eigenvalue A in a measurement
of £ is given by wp = [(us|®)[?, and that, after the measurement, the system will be in the state
{ua). The complex number (uy|®) is called the probability emplitude for A.

To describe a quantum system that is composed of several independent subsystems, for simplic-
ity, U and U2, we use the product space U = U' x U?, which is spanned by the direct products
of the basis vectors of U and U% |ujul,) = [uj)uls), with the scalar product (ulu?jylv?) =
(ul o) (u?v?), for any uf, vt € U,

A quantum bit or, for short, qubit is a state vector of a quantum system whose state space is
2-dimensional. An example of a qubit is the spin state of an electron, which is given by [®) =

al}) + Bl - 1) (with |af2 + (82 = 1)

" Author’s address: EsHag Research, Rénselstrafie 17, D-58135 Hagen, Germany.

113

A quantum register of length L is a quantum system composed of L qubits. If we use |0} and
" |1) to denote the basis vectors of the state space for a qubit, then the basis vectors of the state
space for the quantum register is given by |by«--br) = |b1) -+~ lbr), where b € {0,1}. Clearly the
general state véctor of a quantum register of length L is |®) = Zg;ol o;li), where }i) corresponds
to the binary representation of the number i, and N = 2%, _

Computing on a quantum computer consists in initializing the register with some input, se-
quentially applying appropriate unitary tranformations to the state space of the quantum register,

and finally obtaining the output by observing the register.
The most important quantum algorithm is given in [8]. In this report we deal with quantum
algorithms that search among a set of given items to find one that satisfies a particular property.

2 Quantum searching

The search problein is as follows. Let Xy = {0,1,... ,N — 1} for some integer N. Given any
function ¥ : Xy — {0,1}, find i € Xy so that F(i) = 1. Algorithms on a classical computer
require O(N) time to find such an ¢ (if it exists). Recently, Grover has discovered an algorithm for
the quantum computer to solve the search problem in only O{+/N) expected time [4]. The Grover’s

algorithm is described below (we follow [1].) _
Assume that N = 2%; see [1] for the general case. The conditional phase shift transform

corresponding to F' is defined by
SFI";) — {"'f’&) if F(z) =

|i) otherwise.

In particular, denote Sr, by So, where Fp(4) =1 iff i = 0. Next, we need the Walsh-Hadamard
transform, which is the unitary transform

le Z(1)¥9}),
. a-—O

where 7 - j is the number of 1 in the bitwise AND of ¢ and j. The basic ingredient of the Grover’s -
algorithm is the unitary transform obtained by composing the transforms above:

Gp= "‘WSOWSF.

QUANTUM SEARCHING ALGORITHM -

1. Initialize the register to the state
' 1
. . i=

2. Apply O(V'N) times the unitary transform G F to the register.

3. Observe the register. If there is a unique so that F(i) = 1, then the measurement yields the
state |{) with a probability > 5 : '

1i4

The algorithm above has to assume that there is exactly one ¢ so that F'(i} = 1. It has been
improved by Boyer et al to allow the general case [1]. We next consider an application of this

algorithm.

Detecting intersection among spheres. Given a set of n spheres in 3-space, determine if any
two of these spheres intersect each other. The algorithm in [5] solves this problem in O(nlog? n)

time,
To apply the quantum search algorithm to this problem, consider the function F: X, x X, —

{0,1} defined by setting F(i,7) = 1 if and only if the spheres i and j intersect, with ¢ # j. Note
that the domain of F' consists of pairs (¢, 7). In addition, the register needed in the algorithm will
be composed of two registers, each of length logn. (Assume for simplicity that n = 2! for some
integer {.) The algorithm will start from the state

)= =5 S li)

Thus, the algorithm needs O(n) expected time to find a pair of intersecting spheres, with high
probability. (We assume that F(%,7) can be evaluated in constant time, for all 4, j.)

3 Quantum search of the minimum

Given a table of N items, each of which holds a value from an ordered set, the minimum searching
problem is to find an item holding the smallest value. Thus, to each i =0,... ,N ~ 1 a value T'(i)
is associated. We want to find an 4 so that T°(¢} is minimal.
Diirr and Hegyer give a quantum minimum searching algorithm that runs in O(v/N) expected
-time to find the minimum with high probability [3]. Their algorithm is based on the algorithm of
Grover [4] and Boyer et al [1], refer to the previous section for a short description. To find the
minimum, the algorithm calls the quantum searching algorithm a number of times, each time with
- an appropriate F' that depends on an index in the table 7. This function is defined as follows. For
every y = 0,... ,N — 1, define a function F, by

Vi:0<i<N-1,F(i)=1if and only if T'(¢) < T(y).
Call y a threshold indez.
QUANTUM MINIMUM SEARCHING ALGORITHM
1. Choose a threshold index y uniformly at random from {0,... ,N — 1}.

2. Repeat the following until the total number of Grover iterations that are applied is more than

30VN.

(a) Call the quantum searching algorithm to find an index ¢ with Fy(y) =1
(b) If such an index is found, then set the current threshold index to that index.

3. Return the threshold index, y. The minimum is T'(y) with a probability of at least %

We now apply the algorithm to a problem in computational geometry.

The closest pair of lines in 3-space. Given a set of n lines in 3-space, we want to find the
shortest segment connecting two lines. The algorithm in (6] solves this problem in O(n?/3+e)
randomized expected time, for any € > 0. '

115

To solve the problem using the quantum algorithm for finding the minimum, we define T{i, 5}
0 be the distance between the lines i and 7, for 0 < 4,5 < n —1. The index into the table T is
thus a pair of indices. For simplicity assume that n = 2I for some integer [. ‘We let the quantum
algorithm operate on a pair of registers, each of length logn, so that it will start from the state

n—In—-1

12) == 3 Sl

j=0 1=0

Thus, the algorithm needs O(n) expected time to find the closest pair of lines, with high probability.
(We assume that 7°(¢,7) can be evaluated in constant time, for all 7,7)

4 Discussions

Counting particular objects among a set of objects is also a common problem in computational
geometry [7]. There is a quantum counting algorithm described in [1] that can be a,pphed to that

kind of problem.
We have applied the qua,ntum search algorlthm to some typical problems in computational

geometry in a very simple way, without making much effort to exploit the structure of the problem.
Nevertheless, the power of quantum searching suffices to outperform the known efficient algorithms
for classical computers.

Acknowledgements I wish to thank C. Diirr for clarifying some points of the paper (3].

References

1] M. Boyer, G. Brassard, P. Hpyer, and A. Tapp: Tight bounds on quantum searching. Proc.
4th Workshop Physics and Computation, pp. 36-43, 1996. Also available from the Los Alamos
archive: http://xxx.lanl.gov/archive/quant-ph/9605034, 1996.

2] G. Brassard: Searching a quantum phone book. Science, Vol. 275, 31 Jan. 1997, 627-628.

i3] C. Diirr and P. Hpyer: A quantum algorithm for finding the minimum. Preprint, Los Alamos
archive: http://xxx.lanl.gov/archive/quant-ph/9607014, 1996.

(4] L. K. Grover: A fast quantum mechanical algorithm for database search. Proc. 28th Ann. ACM
Symp. Theory of Computing, 212-219, 1996.

[5] J. E. Hoperoft, J. T. Schwartz, and M. Sharir: Efficient detection of intersections among spheres.
Int. J. Robotics Research, Vol. 2, No. 4, 77-80, 1983.

[6] M. Pellegrini: On collision-free placements of simplices and the closest pair of lines in 3-space.
SIAM J. Comput., Vol. 23, No. 1, pp. 133-153, February 1994. -

{7] M. Pellegrini: On counting pairs of intersecting segments and off-line trzangle renge searching.
Algorithmica(1997) 17: 380-398.

[8] P. W. Shor: Polynomial-time algorithms for prime factorzzatzon and discrete logarithms on o
gquentum computer. SIAM J. Computmg To appear.

116

Some Methods to Determine the Sign of a Long Integer from its Remainders

Toshiyuki Imai
Department of Mathematical Engineering and Information Physics
University of Tokyo

1 Introduction

In geometric algorithms, we can obtain the combinatorial structures of geometric objects by various sign-
tests of the results of arithmetics such as addition, subtraction and multiplication. These arithmetics are
done exactly, because numerical errors in arithmetics may cause failure in executing programs. Moreover,
exact arithmetics are required in techniques to treat non-degenerate inputs such as symbolic perturbation
[2, 3, 4].

In general, the result of arithmetics is quite longer even if input data have bounded length (e.g. 32 bit
integer ete.) It increases the execution time of the implemented program. .

If the execution time for the unit length is O(1) in addition, subtraction and multiplication, that for the
m-ple length may be O(m) in addition and subtraction and O(m?) in multiplication.

By the Fast Multiplication method{1, 5], we can reduce the time complexity of multiplication to O{mlog m
log log m), but it is practically not fast for the geometric purpose. It is said the naive method is faster if m
is less than several hundred.

Modular arithmetic is one alternative, which does addition, subtraction or multiplication in O(m} time.
It is also good for parallel computing. One difficulty to use modular arithmetic is to reconstruct the integer
from its remainders. It takes O(m(logm)?loglogm) and the algorithm contains the Fast Multiplication of
long integers[1].

To obtain combinatorial structures, only the signs of integers are required and the values are not. In this
paper, we present 4 methods to determine the sign of a long integer from its remainders by using modular
arithmetics of the unit length. They take O(m?) time but they are relatively simple and practically fast.

2 Notations, Assumptions, Properties and the Problem

Assume n be the unit length of integer. It means the unsigned integer of the unit length is between 0 and
27 — 1. We assume the computer can show us the following information:
s whether the result of addition is in the unit length or not,
e the lower n bits of the result of multiplication and the other upper bits.
In this sense, the methods in this paper depend on the hardware but this assumption holds in almost all
computers.

To describe modular arithmetics, we introduce 2 notations: for A € Z, B € N, let [A/B] be the integral
quotient and let A%B be the remainder of A divided by B. Then ¢ < A%B < B and the following basic
formula holds:

A={A/B]B + A%B. (1)
Let pg, -+, pm be relatively prime positive integers which satisfies the following properties:
Pi=2" -0y, o 20, g > o’ (2)

Let p = p; -+ p,. Obviously, m < 27/2. This means we have little meaning to discuss the theoretical
performance of the algorithm as m — co. In practical sense, however, m can be large enough.

We can do modular arithmetics as follows: '

Assu.me Z is the result of an integral arithmetic, and let 71, be the lower n bits and Zu be the other
upper bits (i.e. Z = 2"Zy + Z1,). Since 2" = o; mod Pi, £ = ZL + @iZy modp;. Iterate the following
procedure until Zy = 0:

Zy, + lower nbit of Z; Zy « upper bits of Zy Z— 2+ 2y, (3)

It.is kno'wn that.the iteration terminates in 3 times if p; > a?. After the iteration, the result of modular
arithmetic Z¥p; is Z if Z < p;, or Z — p; otherwise.

117

" We formulate the problem as follows:

Problem: :
For several given integers X; (0 € X; < p;), determine the sign of the integer X' (—p/2 < X' < p/2) s.t.

X’ = X; mod p; only by arithmetics for integers of the unit length.
Let X = X"p and X; = XY%p; holds. The following properties hold:
' X'20 & X<p/2 (4)
X'<0 & X>p/f2 _ (5)
Then we can obtain the sign of X’ by comparing X and p/2. '

3 Method A
Let p, = 2". We use py,---, Py, as moduli. p=p; - -+ py is almost 2™",
The following properties hold _ :
| X'20 @& X<p/2=p - pm/2 ' (®)
e X/l <pzpm/2 (7)
& [[X/m)/p2) <pa--pmf2 ‘ (8)
& [[X/mlfead- - [om-1] < pm/2. (9

The last inequality is the only one we can test in the unit length. This means that if we can compute the
value of [- - [[X/p1]/p3] - - /Pm-1], Wwe obtain the sign of X'. '
For each &, let Q¢ = [+ [[X/p1}/p2] -+ - /pr-1).
Qi1 = [Qe/pi), 1 =X (10)

hold and Qm ={ - -[[X/p1]/p2] -+ /Pm-1]. So we obtain the sign of X’ if we can get the value of Q.
By the definition, ' ' : '

Qe = [Qu/melpr + Qulipx (1)
= Q1P+ Qelips ' (12)
holds. By describing this equation modulo p; (j =k +1,--.,m), we have
Qi%p; = (Qu41%p;)pr + Qelipr mod p;. (13)
Then, we have '
Qu1%p; = @i (Qu¥%p; — Qr¥pe) mod p;, (14)

where each ¢z; is an integer satisfying pigi; = ! modp;, which can be computed in the preprocess. We
transform this congruence into recursive formula:

Qr+1%pi = (qr; (Qu¥pj — Qulps))lp; G=k+1,---, m). | (15)

From this formula, we can compute @ (= QmY%pm) from X; (= Qi%p:i) (i = 1,---,m) recursively. and
finally we obtain the sign of X". _ : : '

To illustrate the procedure, we identify Qi¥%p; with (%, 7). This formula shows we can obtain (k+1,5)
from both (k,j) and (k, k). We illustrate this formula as

(k + 1:j) =k,
| | N | (1)
We can obtain (m, m) from (1,1),(1,2),--+,(1,m) as Figure 1.
Time and Space complexities are both O(m?) in the worst case. We can terminate the procedures in
method A when Q%px = Qplp; (= k+1,--,m) holds (i.e. Qm = Qrl%ps holds).
While the method A computes integral quotients Qi (= [X/p; «++pg—1]) one by one, the next method
computes reminders X%(p; - - - pr) successively.

118

(m,m) —(m-1,m) —(m-2,m) <o —(1,m)

N(m=-1,m-1) —~(m-2,m—-1) -+ —~(l,m-=-1)
\(m_zlm—z) <——(1,m—2)
. . N (L 1)
Figure 1: Procedures in Method A and B
4 Method B
Let pm = 2" and we also use p3, -+, pm as moduli. p = p1 -+ pm is almost 2", Let py; = py---pj-1 for

j>2,and p;; = L.
We define Y1,-:+,¥m41 by ¥; = X¥py; for j > 2 and ¥ = 0. The following properties hold:

Y; = Ximodp; (i=1,---,j—1), 0 <Y; < pyj. (17)
If we can compute the value of [X/p1m], we obtain the sign of X’ because '

X'20 & X<p/2=pimpm/2 (18)
& [X/pim] < Pm /2. (19)

holds. From the basic formula X = [X/p1m]pim + Ym, we have a congruence:
X = [X/p1m]pim + Ym mod py, (20)

and it can be transformed to

[X/plm] = cm(){m - m) mod pp, (21)

where c; is an integer satisfying ¢;p;; = 1 mod p;, which can be computed in the preprocess.

Because 0 < [X/p1m] < po,
_ IX/plm] = (cm(Xm - Ym))./ipm (22)
holds. This means if we can compute the value of Yy Yipm, we obtain the sign of X'

Since ¥; = Xy modp; (i=1,---,j—1)forj> 2, X ~Y; =0modp; (i=1,-..,j — 1) holds. This means
X = Y; is a multiple of p;; because each p; is relatively prime. So we have

X =Y =apy;. (23)
Making this equation the congruence modulo p; and transforming it, we have _
e = ¢(X;-Y) (24)
= ¢(X; — Yjlp;) modp;. (25)
Let A = (¢;(X; — Yj'p;))hp;, and :
Yisi=Y; +Apy (26)

(Note that 0 < A < p;). This formula holds for not only j > 2 but j = 1.
By taking remainder of each side modulo px (k = j+1,---,m), we have

Yi4rhpr = Yilhpr + ((c; (X5 — Y3%p;)Yhpspy; modpy (k=7 +1,---,m). (27)

In the preprocess, we compute p;%pi and c;.

We can consider this congruence as a recursive equation to get Y;+14ps from Yi%pe and Y;%p; The initial
value Yi%pr = 0 (k =1, --,m) since Y; = 0. Now we can compute Y,%p,, by this recursive equation and
we obtain the sign of X',

To illustrate this procedure, we identify Y;%ps with (j, k). The recursive equation shows that we can get
(J+1,k) from (4, 7) and (7, k). We illustrate this as follows:

(F+L,k) « (k)
N ()

119

We can compute (m, m) from (1,1),---,(1,m) as the method A and we obtain the sign of X’. We can
see the procedures in Figure 1 at the previous section. _ _

Time complexity is O(m?) and space one is O(m) in worst case. We can terminate the procedure if
Y; = Xp modpg (k= j,---,m) since we find Y,, = Y;, which means Y, is small (Y, < py;).

The both methods A and B terminate early when X is small. To apply these method to —X', they
terminate early when p— X is small. So we can say the method A and B terminate early when the absolute
~ value |X'| is is small. The next 2 methods terminates when X' is large.

5 Method C

Let py = 2" and we use pp,---,pm as moduli. Let P = py--pym and p = p; - - pn(= P/po). P is almost
20m+1)n In this section we assume X' is in the range of —P/2 < X’ < P/2 — mp. We can easily see X’ is
in this range if —p/2 < X’ < p/2 (note that m < 2"/2),

X'>0 & X <pp/2 ' (28)
& X/p)<po/2 @)

holds. From the basic formula X = [X/p]p 4+ X¥%p, we have
' Xo = [X/plp¥po + (X%p)%po mod po. (30)

. This means we get the value [X/p] if we can compute {X%p)¥%po.
From the Chinese Reminder Theorem {1, 5], we have

Xp = (Xrullp)a + (XowaYhp)gz + -+ + (Xontim) hpm)gm mod p. (31)
where ¢; = p/p; and u;q; = 1 mod p;. Let ¥; = (X;w)¥%p:, and we have '
Xlp=Yiq1 + Yaga + -+ Yingm mod p. _ (32)

Let Y be the right side of the congruence: ¥ = YVigi +Yaqa+ - + Yougm.
We evaluate how large ¥ is. Since 0 < Y; < pi, pigi = p, we have
Y=Yin+Yeqz+ - +Ymgm <p+p+-- +p=mp. (33)

This means that X%p and Y has the same remainder divided by p and that their difference is less than
mp. We take Y as an approximation of X%p. Since XUp = Y'ip, from the difference of the each side of the
basic formule X = [X/plp + X¥%p and Y = [Y/p]p+ Y¥p, we have :

| X =Y = ([X/5] - [¥/eDp. (34)
- Making this equation into the congruence modulo pg and transforming it, we have
[X/p] = e(Xo = Y) +[Y/p] mod po. (35)

where ¢ is an integer satisfying ¢p = 1 mod po, which can be computed in the preprocess. From the formula
33, we can see 0 < [Y/p] < m — 1. Then we have the following properties: '

(e Xo=Y)Vipo <po/2 = [X/6] < po/2, (36)
(e(Xo=Y)+m~1Vlpo2p0/2 = [X/p]>po/2. (37}

Now we can see that we obtain the sign of X’ in these 2 cases. _
In the other case: (c(Xy = Y))4po > po/2 and (e Xp =Y} +m — 1)lhpo < pp/2, we have
' -mp< X' <(m-1p. (38)

Let m’ be the greatest integer which satisfies m’ < 2(*=1/2_ From the definitions of m and ' , m'm < 2(r=1)

holds. So we have —pop/2 = ~2°~1p < —m'mp < M' X' < m'(m — 1)p < 2"~1p — mp = pyp/2 — mp. This

means we can apply this method to m’X’ instead of X', Since m'X’ = m'X; mod i, To apply this method

to m’X’, we have only to do X; «— (m’'X;)ip;. If we do not determine the sign again, we iterate this until we

obtain the sign of X’. The iteration is terminated in 3m + 1 times because we can easily see 3™ F! 5 mp.

_ IX’;I‘.in;e complexity is O(m?) and space one is O(m) in worst case. The iteration will terminate early when
is large. : :

120

6 Method D

Let pg = 2" and we use pg, -+, Pm- Let P=po--pm and p=p1-+ p(= P/po).‘ Pis almc.)st.Q(m'f'l)". In
this section we assume X' is in the range of —P/2 < X' < P/2 — mp. We can easily see X' is in this range
if —p/2 < X’ < p/2. As we see in the previous section, the following property holds.

X'>20 & X<pop/2 (39)
& [X/p] <m/2. (40)

Let Y = Y11y + Yog2+ - -+ Yoo where ¢; = pfpi, wigi = 1 modp;, ¥; = (X;u;)p:. As we have already
had in previous section,

[X/p) = ¢(Xo = Y} + [¥/p] mod po (41)

where ¢ is an integer satisfying ep = 1 mod pp, which can be computed in the preprocess.
From the definition of Y, we have

Y, Y. Y, o
Y- h % 5w (42)
P F4 ! b2 Pm

Since 27 — 27/2 < p; < 2" (i = 1, --,m), from this equation we have following inequalities by replacing
pi with 2" — 27/2 and 27

Nt A¥n ¥ N4 4Va
s LM el g2 M 43
an < p = - anf2 ()

We take the most left side as an approximation of ¥/p. Since ¥; < p; < 2", m < 2*/2 — 1, we estimate the
difference between this approximation and Y/p as follows:

Y Yi+---+Y, i+ +¥m N+ +Vn

0< ; - an < on _9njz an (44)
nf2
@ -2 7)(2") .

on{2ymon 2n/2(2n/2 _ 1)
< =1 46
< (2n - 2n/2)(2n) = (2n — 2:1/2) ()

This means the the difference of their integral parts is at most 1:

(it + V)2 S/ S (Vi 4+ + Vo) /27 + 1L (47)
We can compute [(Y) + - - + ¥,,}/2"] by the following procedure: First, set a counter Z «— 0, then, add
Y2,Ys,-+, Y to Y} one by one (the sum is computed in lower n bit) and in every time the sum becomes

more than n + 1 bit, increment the counter Z by one.
After this procedure, counter Z shows [(Y) + -+ + ¥in)/27]. Since [Y/p] -~ 1< Z < ¥Y/p],

(Ho-Y)+Z<Lc(Xo=Y)+[Y/p] <elXo=-Y)+Z+1 (48)
From this inequalities and the formula 41, we have the following properties.

(e(Xo=Y)+ Z)ipo < po/2 = [X/p] < po/2, (49)
(e(Xo=Y)+Z+1)lpo 2 po/2 = [X/5] > po/2. (50}

In these 2 cases, we obtain the sign of X', In the other case (ie. ((Xo=Y)+ 2Wipy > pe/2 and
(e{Xo = Y) + Z + 1)%po < po/2), we can easily see (e(Xo —Y) + Z)%po = pp — 1. This means

[X/Pl=po—1or0, ie. —p<X'<p (51)

In this case, we can apply this method to (py — 1)X’ instead of X' since —pop/2 < (po—)X < pop/2—p.
If necessary, we can iterate it. The iteration terminates at most m + 1 times
Time complexity is O(m?) and space one is O(m).

121

7 Concluding Remarks

We introduce 4 methods to determine the sign of an integer of m-ple length from its reminders. Time
complexities are O(m?) and space ones are G(m?) and O(m).

In theoretical sense, the method to reconstruct a m-ple integer directly from its rema.mders in O(m(log m)®
log log m)[1, 3]. This is theoretically faster tha.n all methods presented in this paper but it is practically too

slow for geometric algorithms.
H a geometric algorithm requires a agn—test of an mteger of m-ple length while all input data are within

the unit length, the algorithm usually contains O(m) multiplications or O(m?) additions/subtractions before
the sign-test. The algorithm takes at least O(m?) time as long as all variables in the algorithm has the same
fixed bits. So we can say in practical sense, there is little need to do the sign-test in less than O(m?) time.
~ The methods presented in this paper is simple and practically fast, so we come to use modular arithmetics
in imprementing geometric algorithms.

References

[1] Aho, A. V., Hopcroft, J. E. and Ullman, J. D.: The Des:gn and Analysis of Computer Algorithms,
Addxson Wesley, 1974,

[2] Edelsbrunner, H. and Miicke, E. P.: Simulation of Simplicity: A Technique to Cope with Degenerate
Cases in Geometric Algorithms, Proc. 4th ACM Ann. Symp. on Computat:onal Geomeiry, pp. 118-133,
1988.

[3] Emiris, I. and Canny, J.: An Efficient Approach to- Removing Geometric Degeneracies, Proc. 8th Ann. -
Symp. on Computational Geometry, pp. 74-82, 1892,

[4] Fortune, S.: Polyhedral Modelling with Exact Arithmetic, Proc. 3rd IEEE Symp. Solid Modeng and
Apphcat:ons 1995,

[8] Knuth, D. E.: The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-
Wesley, 1981

122

A quadratic non-standard arithmetic

Dominique Michelucci
Ecole des Mines, F-42023 Saint-Etienne 02
mzcheluc@emse. fr

1 Introduction

This extended abstract presents an exact real quadratic arithmetic which also handles infinitely small
numbers. The quadratic arithmetic provides the same operations than an exact rational one, plus square
root of non negative numbers. It computes in the real quadratic closure of @, noted here: Q. As for an
example, such an arithmetic can be used to compute the 2D arrangement of a set of circles and lines, or
the 3D arrangement of a set of spheres and planes. The quadratic arithmetic is classic and presented in
_section 2. The new part is the way infinitely small numbers are managed in the quadratic framework.

In Computational Geometry, infinitely small numbers are typically used to symbolically perturb input
parameters {2, 11, 10, 3, 7]: this infinitesimal perturbation removes accidental dependencies between
data, and thus eliminates geometric degeneracy (alignment of more than two points, cocircularity of
more than three points, etc) so that programmers have to handle only the few generic cases. The
more often, people put forward efficiency arguments to restrict used perturbation schemes: most of the
time, the perturbation is valid only for a single geometric predicate (say the InCircle predicate}, and
infinitesimals are not explicitly represented inside the computer. As a consequence, geometric predicates
must concern input parameters only, and not derived values; moreover the user has poor control, if
any, on the perturbation, typically seen as a black box. In opposition, the arithmetic in this extended
abstract enables the user to compute with infinitesimals like if they were ordinary numbers in @. Thus
this arithmetic can manage in a straightforward way all proposed perturbation schemes (assuming the
quadratic framework is sufficient, of course). Here are some of them:

- In Yap’'s perturbation [11, 10, 7), each input parameter «; is perturbed into z; + ¢;. Thus f(z +
=3, = f («)(z) by Taylor’s formula. A consistent ordering between all power products ¢* =
e‘f‘f?’ ... sorts derivatives in decreasing magnitude: the sign of f(z + ¢) is the one of the first non
vanishing term in that sequence. Actually, es are only implicit in Yap’s perturbation.

- Each input parameter z; is perturbed into z; + gi€, where g; describe a generic situation, in Emiris
and Canny’s work [3]. Then z; + gi¢ is a generic configuration: a single ¢ is sufficient.

- liach input parameter z; is perturbed into z; + a;¢, where a; is random. The idea is that random
a; are very probably generic [3]. That is a probabilist perturbation scheme. :

- See quoted references for other perturbation schemes.

This quadratic arithmetic cannot guarantee that the used perturbation scheme is valid, ie really removes
all degeneracy: that obviously remains the responsibility of the CGer. But it detects persistent degeneracy
at run time,

123

2 A Quédratic Arithmetic

2.1 Towers of extensions

The material in this section is not new [6], it is here only for completeness. In Fortune’s method [4].
one has to compare numbers of the form ﬂic‘&, where a, b, ¢ are integers. It is possible to use repeated-
squaring, for this restricted case. This section presents a more general real quadratic arithmetic, which
provides exact comparisons and operations: +, —, +, X and ,/ on non negative numbers, starting from
Q. This arithmetic is an alternative to Yap and Dubé’s one [1, 9]. Lack of space does not permit a
comparison. - '

- The idea is to compute in a tower of Real quadratic extensions Ko = Q,...Ki= K.-_l(\/cF_T) where K;
is an algebraic (and quadratic) extension over K;_1, and a;-1 € K1 18 Real and positive and has no
“square roots in .. It means K; = I_’g-_l(\ﬁrH) is the set of the numbers u + v,/&i-1, with v and v
two elements in K;_1: in other words, numbers in K; are represented by a vector of two components: u,
v € K;_1, and K; is represented by o1 € K;_ {which we already know how to represent, by induction)
and by some reference to K;-1. Operations in K; straightforwardly reduce to operations in K;_1: '

(u+ v/@oT) + (U + v yaion) = (ut o) + (v + v)Veot

(uw+ v /E) X (0 + o' x aimy) = (uxu o x v X aioq) + {ux v+ Ul xv) /ey
~{ut /@) = () + (~o)yET |
1(u+oy/@m) = (u/[e? = aio1 x 071 = (0/[6 — cima X VD)V

Computing the sign of w = u + v, /5 € K; also boils down to computations in Ki_1:

#=0orv=0: trivial
yu>0andv>0=w>0

u> 0 and v < 0 = sign(w) = sign(u? — v ai 1)
u < 0 = sign(w) = —sign{—w)

and in the end Ky = @, where we know how to compute a sign, so the recursion eventually stops.

The last required operation is the sﬁuare root in J¢;. Assume w = u+v/0;_1 € h; is positive. The first
thing is to test if w is a square in K;, say the square of z € K; with z = 2 +y/ovi-1 > 0 with z,y € Ki-1.
We suppose u and v do not vanish, because this case trivially reduces Lo the same problem in K .

w=u+ v JSxi_1 = (.1: + y\/a,-_q)z
su=adbmo Xxvlandv=2x e xy
1

<=>:r:2=§[u:i:_ 2 — o va] andv=2xaxy
Thus w € K; is a square in K; iff u? — aq_y x v? is & square in K-, and if § [u+ u? — ooy X v”]. or

% [u — u? — a1 X vz] is a square in K;_1 (Note that fhe’y cannot be both squares in K;_; because A

. 2
their product: =1 is not a square in K1)

Thus testing if w € K; is a square in" K reduces to computations in K;_i: in the end, testing if
w € Ko = Q is a square in Q is trivial. If w is a square in K;, the method also gives its positive square
root & + ¥,/i1- When w € K; is not a square in K;, we have to define the quadratic extension of K;
which contains the square root of w: call this extension Ki11 = Ki(v/w). In particular, the coordinates
of Jwin Kiqq are: (0 € Ky, 1€ K;).

124

2.2 Using dags

Using a single tower of quadratic extensions Lo perform all computations results in very poor performance,
since the first required operation is to express all met numbers (even integers or rationals) in the higher
field. Thus the time required for a new computation increases with the number of previously performed
computations, even when they are independent. It is clearly unacceptable. A possible solution is as

follows.

Numbers are first represented by expressions, or dags (Directed Acyclic Graphs), like in the lazy rational
arithmetic [8] or Dubé and Yap’s arithmetic. A dag may be: a usual rational number, the sum or the
product of two other dags, the opposite, the reciprocal or the square root of another dag. Each dag is
associated with an enclosing interval, computed with arithmetic interval. When the interval becomes
insufficient, the dag at hand is evaluated in an exact way, starting from an emply tower, ie a tower
containing only Q. This way, the time needed to exactly evaluate a dag depends only on the complexity
of the dag itself (and of its subdags of course, but not on previously evaluated dags). Moreover, only
inevitable exact computations are performed. '

This optimization exploits the fact that CG typically deals with a lot of little computation trees, instead
"of a big one or a few big ones like in Symbolic Computing. Actually, the depth of computation trees met
in-classical non re-entrant CG methods (Convex Hulls, say) can even be known a priori: it is a constant-
for CG methods working in 2D or 3D, and a linear function of the underlying space dimension for CG

methods working in R” (actually Q" or Q7).

2.3 Computing characteristic polynomials

If need be, the characteristic polynomial of z € @ can be computed by the following method. Assume
the characteristic polynomial of z is known in some extension K(a = VA): it is f(z) = SO firt =0,
with f; = a; + b;c, where a; and b; are in K. Then the equation of z in K is obtained with:

d d« 1°
g(z) = [z a; 2" Zb;z'} =0
i=0 i=0

and has degree twice f degree. Now an initial characteristic polynomial of z is easily computed in the
highest extension of the tower: the polynomial of z = = + ywWAis (z—2) —y?A=0.

-4

Another possible method gives a companion matrix, the characteristic polynomial of which is the one of
z. Then interpolation methods (e.g. Lagrange) can be used to recover the characteristic polynomial of
the matrix. Let z = z + yo € K (e = V/A), with z, y € K. Multiplication of any number a + ba € K(a)
and' z can be seen as a linear transformation of vector (a b) by the companion matrix:

M(z):(rj‘l :>

More generally, each number z € K(a) can be represented by M({z). In particular, the characteristic
equation of M(z) is the one of z. Recursive replacements of M (z) entries by other matrices eventually
reaches a matrix with rational coefficients. For instance, let z = z4+yv3 with z = a+bv/2and y = c+dv32.
Then z is represented by companion matrix

(a b) c d e b ¢ d
v _ 2% a 2d ¢ 1 2 a 24 ¢
M(z)—(?)y :c)"— gf ¢ d a b 1 3% 3 a« b

2d ¢ 2 e 6d 3¢ 26 a

125

3 Computing with infinitely small numbers

Let G be a computable real quadratic field. Initially G = @, which the previous seclion has shown to
be computable, ie we can perform additions, multiplications, opposites, reciprocals, comparisons, square
roots of non negative numbers in G. We introduce a new and infinitely small number, namely ¢, which is
smaller than all positive numbers in G. This section shows that G{e) is also a computable real quadratic
field, Then G(e) can itself be used as a new background field for another non standard extension, with
another new infinitely small number, namely ¢/, which is smaller than all positive numbers in G{¢). This
way it is possible to compute in a tower of non standard extensions: that may be useful when the CG
~ problem at hand does not admit a perturbation scheme with a single ¢. Recall if g = {g1,92...gn) is &
generic input of the same problem, whose input parameters are: p = (p1,p2...pn), then p+ €g is generic;

but it may be a difficult realizability question to find such a generic conﬁg,uratlon for some problem, hLe
for instance finding a polytope with a prescribed topology.

3.1 The non qu.adr.atic case

In the simplest case, square roots and divisions are not used. Numbers reachable from G and ¢ are thus
polynomials in ¢: P(€) = ag + a1€ + ...+ ane”, where a; € G. The sign of P(¢) is clearly the coefficient -
sign of its first non vanishing term. The naive method computes all coefficients of polynomials, using '
standard symbolic computations. A more clever method represents polynomials with (not inevitably
minimal) dags, in the now usual way, and exploits laziness and Taylor’s formula:

2 d
| P(e) = P(0) + €P'(0) + 5 P(0) + ... PO(0)

The sign of P(e) is the one of the first non vanishing term in the sequence: P(0}, P'(0), P”(0) ... P(#(0), .
where d is P degree {(or an upper bound). When all coefficients vanish, P(e) is identically zero and the
sign is zero. When polynomial P is represented by some dag, it is easy to generate on-the-fly a dag for its
derivative P’ (and then for P", P/, etc), using standard derivation rules. Successive derivations of a dag
eventually reach a dag without occurrence of ¢, possibly at the cost of some supplementary dertvation.
For instance the dag: dy(¢} = (¢ — ¢} is a non minimal dag representing the null polynomial. It vanishes
in € = 0; it has derivative: d; = (1 — 1) which also vanishes in 0. Since d; contains no more occurrence
of ¢, d; and dp are proven to be identically zero.

To summarize: if a dag f(¢) does not contain ¢, its sign is trivially computed in G. Otherwise, when f(0)
does not vanish, its sign gives the sign of f(¢}. Otherwise the sign of f(e) is the one of f’(¢). This process

always ends. Note dags are evaluated in ¢ = 0, thus no really symbolic computalions (like polynomm]

ged or resultants) are performed on polynomials, except dag derivation and construction.

" This method can be seen as an extension of Yap's perturbation, whose limitations are overcome: the user
has full control on the perturbation (recall Yap's perturbation systematically and implicitly perturbs
the ith input parameler p; into p; + €;): it is easy to choose the sign of the perturbation or to force a
perturbed point to stay on a given half straight line for instance. Moreover the programmer is relieved
of the burden of expressing all tests with input parameters only: dag handling does the job. It is true
that towers of non standard extensions: (Q(c)) (¢')... implicitly sort Lhe sel of power products in ¢, ¢
with reverse lexicographic order, ie : :

15> €3> 3> ... 55 >> e >> % >> 3 ... >> 2 >> e >> ¢ 5> B3¢? 50

though the user may prefer another consistent ordering (also called: computible ordering), say for instance
total degree ordering. But the user can easily obtain any other compatible order [7], for instance using:
a = ¢ and o = e, he gets o and o’ power products sorted in fotal then reverse lexicographic order, ie :

I>>a>>a >>a’>> a0 >>a?>> e >> % >>a0” >>0... >0

126

3.2 Quadratic case

Unfortunately, the previous solution doesn’t extend with divisions and square roots: some derivatives can
be undefined in 0, like F{e) = /¢ the derivative of which is F'(¢) = 5172 Moreover, successive derivations
may never reach an expression without occurrence of . The proposed solution uses series in €.

3.2.1 Using series in ¢

Each element of G{e) is first represented by a dag: a dag can be a constant in G, ¢, the sum or the product
of twa other dags, the opposite or the reciprocal or the square root of another dag. Moreover, each dag
is associated with a series S(¢), represented by a factor k € N, an algebraic degree d € N (defined below),
a shift power p € N; and the lazy (potentially infinite) list or array a; of its coefficients in G:

a0+(11¢5+a252+...
hYa

§=elF) S =

The dag makes possible the computation of coefficient ¢; when needed. The factor k is needed because
of expressions like \/c. It is easy to convert a series to another one with a greater factor, thus we can
suppose w.l.o.g. that series to be added or multiplied have the same factor. The shift power p typically
equals 0, it is only used to avoid negative exponents, like in % = ¢~1 It is ignored {rom now on. We give
formulas for coefficients of sum, product, inverse and square root:

(ag+a15+...)+(bu—i-l)15+...):zo+$16+...where:ck:ak+b;,.

(ao+a1d+ .. .){bo + b10 + o) =zo+ 210+ ... where zx = z::‘; asby_;

A .
=29+ 216+ ... where 29 = GLD, T = —-a!; S, Gil-i, assuming ag # 0

1
agtaé+...
i=k—~1

Vao+aid +...=zo+ 216+ ... where 2o = Vao, 5 = -2i—0 (ak — 2;‘:1 a:,-mk..,-) assuming ap > 0.
If ag < 0 there is no square root. If ag = 0, let 62 = /3, then 1/8(¢) = da\/a1 + @263 + aad] ...

3.2.2 A gap theorem for sign computation

The sign of a non identically null series is the sign of its first non vanishing coefficient. When the
perturbation scheme really removes all degeneracy, series identically null cannot occur. However their
detection is useful. It is made with the following gap theorem: a series y = S(¢) is identically zero when
all its coefficients in terms a;e' with i < d are zero, where d is the algebraic degree, or an upper bound,

of the series.

Lel y = f¢), where f(¢) is a dag in the variable ¢, and let S(¢) be the corresponding series. ¢ and g
fulfill a polynomial condition: £'(e,y) = 0. In other words, the point (¢, y) lies on an algebraic curve.
The degree of the dag f, and of the corresponding series, is the total degree of the polynomial F' in €
and y: for instance, if y = f(€) = I+ ¢, then F(e,y) = y* — (1 + ¢) = 0 has degree 2. Same degree for
y = fle) = (14 ¢)*. d, the degree or an upper bound, is recursively computed like that: if the dag is ¢
or a constant in G, then its degree is 1. If the dag is the sum or product of two other dags a and b, its
degree is the product of the degrees for a and b. The degree of —a and 1/a is the degree of dag a. The
degree for \/a is twice the degree of dag a.

We sketch now the proof of the gap theorem. Assume for simplicity that the factor of the series is 0, e
the series is y = S(¢) = ag + a6+ ase2 + The coefficients for negative exponents are zero (otherwise,
the series is clearly not 0!). The degree of the dag y = f(¢) is at most d. Now, g9 = a1... = ag = 0.
Thus the curve branch y = s(€) = ag + a1¢ + aze? + ... cuts the straight line y = 0 at the origin, with
multiplicity d + 1. But this branch is part of an algebraic curve F (¢,) = 0 with degree not greater than
d. Thus the curve branch y = f(e) is the straight line y = 0, and the series S(e) is identically 0.

127

This argument extends as follows when the series factor is greater than 0. The dag y = F(e) has always
algebraic degree d but the corresponding series is now: S(e) = ap + ay[eF] + agfe3F] 4+ ... Let
§= €7 & e= 6 and T(6) = ap+ a1 +axé* +.... The dag y= g(é) = F(52)) has algebraic degree
d x 2¥. From the previous gap theorem, when all coefficients for exponents 0,1...,d x 25 of T(6) vanish,
then the series y = T'(¢) = S(e) is identically zero. Conclude. '

3.3 Limitations of perturbation methods

Though input parameters are perturbed according some perturbation scheme, computations may still
yield to non generic situations. It is especially true, and annoying, with on-line or reentrant methods,
where computed values may be re-used (for instance an intersection point becomes a verlex of a new
edge). The most trivial example is as follows: the intersection point [between two perturbed segments
AR and C'D (whatever the perturbation) is exactly aligned with A and B, and with ¢ and D! Alignment
of more than 2 pointsis a degeneracy!. Note geometric applications in the real world involve edition of
geometric objects, thus they need reentrant methods. These limitations of perturbation have not been
seriously addressed so far. ' ‘

4 Conclusion

This extended abstract has presented a quadratic arithmetic which also handles inﬁnitély small numbers,
like if they were ordinary numbers. The computation depth has not to be known or bounded a priori
(contrarily to other CG exact arithmetics, like Fortune and Van Wyk’s one [5]). Perturbations are
handled using lazy series and a gap theorem to achieve termination. Exploiting laziness insures that
only inevitable computations are performed. This arithmetic can be used with all existing perturbation
schemes {compatible with a quadratic-arithmetic). It detects at run time cases in which the perturbation
scheme does not remove degeneracy. It does not add any overhead (except constant) to the intrinsic
complexity of asked computations. Unfortunately, due to lack of space, this extended abstract couldn’t
compare it with other quadratic or algebraic arithmetics. '

References

[1] T.Dubé and C. Yap. A basis for implementing exact geometric algorithms. manuscript, 1993.

{2] 1. Edelsbrunner and B.P. Miicke. Simulation of simplicity: a technique lo cope with degencrate cases in geometric
algorithms. 4 CM - Trans. Graph, 9:66-104, 1990.)

[3] I. Emiris and J. Canny. A general approach to removing degeneracies. SIAM J. Computing, 24(3):650-664, June 1995,
[4] S. Fortune. A sweep-iine algorithm for Voronoi diagrams. Algerithmica, 2:153-174, 1987. '

[5] 8. Fortune and C. Van Wyk. Efficient exact arithmetic for computational geometry. In Proceedings of the 9ith ACM
Symposium on Computatienal Geomelry, pages 163-172, San Diego, May 1993.

[6] D. Michelucci. The robustness issue. submitted to publication, 1997,

{7] D. Michelucci. An epsilon-arithmetic for removing degeneracies. In Proceedings of the IEEE 12th Symposium on
Computer Arithmetic, pages 230-237, Windsor, Ontario, July 1995.

[8] D). Michetueci and J-M. Moreau. Lazy arithmetic. To be published in TEEE Transaclions on Compulers, slanmaer 1097,
Available at: <fip://{tp.emse.fr/pub/papers/LAZY [lazy.ps.gz>. . : '

f9] K. Ouchi. Implementation of exact computation. Masters Thesis, New York University, 1997,
I10] C.K. Yap. A geometric consistency theorem for a symboelic perturbation scheme. J. Comput. Syst. Sci., 40:2-18, 1990.
{11] C.K. Yap. Symbolic treatment of geometric degenaracies. J. Symbolic Compul, 10:349-370, 1990.

1 A solution is here to perturb the intersection point with a new infinitesimal smaller than all already existing ones

128

Analysis of a class of k-dimensional merge procedures,
with an application to 2D Delaunay Triangulation in
expected linear time after two-directional sorting

Christophe Lemaire!?

Jean-Michel Moreau?

Extended abstract

! SETRA, 46 AVENUE ARISTIDE BRIAND, BP 160, 92223 BAGNEUX CEDEX, FRANCE (lemaire@setra.fr)
2 E.M.S.E., 158 CoURS FAURIEL, 42023 SAINT-ETIENNE, FRANCE (moreautemse.fr)

Abstract

This paper exploits the notion of “unfinished sites”
in the average-case analysis of k-dimensional divide-
and-conquer algorithms.

This general result is then applied to the 2D case,
and it is shown that the divide-and-conquer construe-
tion of the Delaunay triangulation of a set of planar
points quasi-uniformly distributed in a square may be
done in expected linear time after a two-directional
preprocessing sort. This method is readily imple-
mented, and, as shown by the easily reproduced re-
sults provided, it is one of the fastest worst-case op-
timal methods ever suggested to construct real-scale
Delaunay triangulations in the plane.

1 Introduction

The first worst-case optimal, O(nlogn), method to
construct the Delaunay triangulation in the plane
was published in 1980 by Lee and Schachter ([8]).
Their method — which will be referred to in the text
as “the standard algorithm” — was based on the fa-
mous divide-and-conquer paradigm. In 1985, Guibas
and Stolfi generalized Lhis method ([6}). Meanwhile,
in 1984, A. Maus {([9]) published the first expected
linear-time method for constructing the Delaunay tri-
angulation of a site of planar points, using a grid
to speed up the location of the closest empty-circle
neighbour for any given Delaunay edge.

in 1987, R. Dwyer published an O(n log log n) met-
liod ([4]) for the same problem assuming uniform dis-
tribution, using a regular grid. In their 1988 paper,
[7], J. Katajainen and M. Koppinen introduced a vari-
ant of the standard algorithm, based on a regular
grid. Their average-case analysis exploited the notion
* of unfinished siles in a rectangular domain. Finally,
R. Dwyer published the first k-dimensional method
with expected linear behaviour in 1991 ([5}).

This paper addresses the analysis of k-dimensional
divide-and-conquer methods that make use of the no-
tion of unfinished site and of (balanced) kd-tree based

partitioning. Some preliminary definitions and math-
ematical results are given in Section 2. Section 3 then
presents the main result for dimension k, that is ex-
ploited, i Section 4, Lo obtain Lhe construction of
the Delaunay triangulation of a set of planar points
quasi-uniformly distributed in a square, in expected
linear time, after a two-directional sort preprocessing
step.

2 Definitions and mathematical pre-
liminaries

We first need to prepare the ground for the general
analysis of Section 3 by presenting its framework and
by giving some preliminary definitions or results that
will be required afterwards.

Although the analysis has a wider scope, let us,
for the time being, concentrate on the k-dimensional
Delaunay triangulation, noted DT($), of a set S of
sites. We shall use the term “triangulation” for k-
triangulation (k > 2) throughout this paper.

Assume the sites to be quasi-uniformly distributed
on a unit cube Uy, This implies the existence of two
sbrictly positive real constanis ¢ < ¢y, and of a prob-
ability density f such that,

VX = (21,22,....2:) €Uk, c1 < F(X) < e,

and f is null outside the cube. Thus, the probability
for one given site to lie in domain D is f, f.

2.1 Unfinished sites

Let us generalize some definitions and statements from

[7):

Definition 2.1 Let T(S1) and T(S;) be the triangu-
lations of sets §1 and Sy. We shall write T(S)) <a
T(S52) whenever S; C Sa and T(S)) contains each
edge in T(Sa) the endpoints of which belong to ;.

Definition 2.2 Lel T'(S} <a T{S2) be two triangu-
lations and s € S;. We say that site s is finished in

129

iy

Figure 1: Lemma 2.1.

T(51) wrt T(Sg) if the set of edges adjacent to s in
T(51) and T(82) coincide; otherwise, s is said to be
unfinished (in T(S1} wrt T(Sz)) :

The first definition induces a partial order in the set
of triangulations. Notice that T(S1) <a T(S;) does
not imply that all edges in T(S)) belong to T(S2).
Also note that DT(S1) <a DT(S:) is equivalent to

5] C 8, if §] has a unique Delaunay triangulation.

The two following results are direct consequences
of Definition 2.2:

Proposition 2.1 Let T(S;) <a T(5») be two tri-
angulations. A site s € 51 is finished in T(S51) wrt
T(Sy) if and only if S1 contains the endpoints of all
edges adjacent to s in T'(53).

2.2 k-partition around unfinished sites

Lemma 2.1 If s is an unfinished site in k-rectangle -

Ry, at distancet from the boundary of Ry, then there
is a k-ball By with radius %, centered at distance %

from s, with no sites in ils interior.

Proof: Referring to Figure 1, if 5 is an unfinished site
in k-rectangle Ry, there is a site ¢ belonging to 24 \ R
such that (s, q) is a Delaunay edge in &), Since ¢ lies
oulside A-rectangle Ry, the length of (s, q) is greater
than . And since (s, q) is a Delaunay edge, we may
find a k-ball Bs with no sites in its interior, and s and
g on its boundary. The diameter of this k-ball is thus
greater than {. Let ¢ be the center of B, and B; the
k-ball with center lying on segment [sc] at distance £

from s. Bs is contained in Bs, hence By has nio sites

in its interior.

Lemma 2.2 Let s be a site, and By the ball cen-
tered in s, with radius v, Lel By be the ball with
radius v, = %, and center p at distance § from s.

Let (8,%,...,

Figure 2: Lemma 2.2

%) be an orthonormal system of co- .
ordinates, with §j collinear to s_ﬁ and with same di-
rection. Let Ro be the portion of ‘rectangular’ cone
with aper s, with symmetry axis 7y, included in By,
and with equation in a generalized spherical coordi-

nate system (p, o1, ..., ak_1) -
p. <N
O oy < %
(Ro)g . * . .
-7 < m- < -}
' i
then RoCBy&r < =
: : =

Proof: Let us first show that Ro C By = .§ .
: 27T
Knowing that Ro C B, implies that, for all o; =
+%, m(r1, a1,...ar_1) belong to B.

Now, consider the limiting case where points m are -
situated on the common boundary of balls By and Bs

. ™
Figure 2). We have : so = ———=——
(*) . (V2)k-1
Since triangles Asom and Asmr are similar:
soe sm - 1 2 - o1
—— —_— = — r o=
sm e (VAL ot T T R

whence: RoC By = 1y € ——

The reciprocal is straightforward.

Corollary 2.1 Consider te (k —1)-ball by_.1 circum- .
scribed to the vertices of the reclangular section F of
(Ro). Let (Co} be the cone with section by, and apex
s. Then, '

RoC Bye o Bs

Proof: Suppose that Ro C B;. Ball by_; circum-

~ scribed to F has radius om and center ¢ (see Figure

1390

2). It is therefore included in the intersection of By
and Bs. Hence, cone Co is included in Bs. The recip-
rocal is straigtforward, since Ro C Co.

Remark: If Ro is rotated around its symmetry
axis, it is still included in Co, and hence in 8.

Corollary 2.2 If s is an unfinished site inside k-

rectangle Ry, and at distance t from its boundary,

then we may find o k-partition of the neighbourhood

of s such that at least one okf the partitioning k-cells
TTtk

- each with volume 5D - has no sifes
F]

r(z+1)

i ibs interior.

Proof: If s est unfinished, Lemmas 2.1, 2.2 and Corol-
lary 2.1 imply that we may find one open cone wedge
Co,, with vertex s and no sites in its interior. How-
ever, Co, depends on. the position of the Delaunay
edge originating from s,

We shall then construct a fixed &-partition of ball
B and show that, if s is unfinished, at least one of the
partitioning k-cells of B; has no sites in its interior.

Let (s,71,...,%) be an orthonormal system of co-
ordinates. Chose in Co, a ‘rectangular’ cone Ro, such
that the (d — 2)-faces of its section are orthogonal to
the axes of the co-ordinate system. Using the spheri-
cal co-ordinates (p, ay,..., ax_1), its equation, in the
above co-ordinate system, will be of the form:

r < n

a; < m < ar+

T A

Notice that, if the o; are judiciously chosen, it is
possible to build a partition of ball By with ‘rectan-
gular’ cones Ro.

The number of elements of the paving is equal to
the number of faces of an hypercube (a cube is a reg-
ular polyedron inscribable in a ball, in all dimensions
(2]). The faces of this hypercube differ little from
the section of the (Ro)’s. (but are indeed different,
except for k =2)

Let us now consider, more precisely, a paving of
ball B, with ‘rectangular’ cones Ro with symmaotry
axes cqual to the axes of the co-ordinate system.
Imagine that we divide the section of (Ro)’s along
all hyperplanes orthogonal to the axes of the referen-
tial (except the one orthogonal to its symmetry axis),
and containing the cenler of symmelry of the section
of (Ro)’s. This partition yields 25=1 “cells” each
of which being assoctated to a cone wedge (ro) with
vertex s, limited by B;.

r < mn

% <y < (L+1)%
(ro) ¢ . :

1,&-1% < g < (ik_1 + 1)-}

We have found a fized and finer partition of ball
By by 2k x 287 = k9% cone wedges, each with the
same volume, for symmetry reasons.

Consequently, (Ro,) - and hence {Co,)-, will nec-
essarily contain at least one partition cell {ro;) void
of sites, whatever the direction of its axis (e.g. set
b= 125)
| B T .

All cone wedges (ro) have the same volume, which
is thus equal to the volume of the k-ball centered in
s with radius ﬁ, divided by (k2). '

k
k ¢
w2 |
(0"'}1) 1%

T T+ 1) k2

RS (E)

V{ro)

{where T' is the second-order eulerian function).

2.3 Probability for a site to be unfinished

Lemma 2.3 Assuming the probability density f to be
quast-uniform with bounds ¢, and ¢a, consider rect-
angle Ry € Uy in DT(S NRg) <a DT(8). Ifs e
SN Rk is a site at distance ¢ from the boundary of
R, then the probubility p{C\) for s Lo be unfinished
in DT(SNRy) wrt DT{S) is, at most:

k

n—1
R clfritk
PG} < k25 |1 — [TCEY
RS (5 1)

2

Proof: (11,...,%) being the same orthonormal ba-
sis as before, By, centered in s with radius —tr, is
partitioned by ‘rectangular’ cone wedges (rcfj_)ﬁ,_j €
[1, k2¥]. Using Corollary 2.2, condition C; — that s is
unfinished in DT(S NUy) wrt DT(S) - implies con-
dition Cy ~ that al least one of the open partitioning
k-cells (ro;) is void of sites. Hence,

kat
P&) < PC) < Y P(S0(co;)) =)
J=1 o
kz*
= 1 — S
i=1

using property f(x,y) > c;.

131

@l

Figure 3: Theorem 2.1

2.4 Expected number of unfinished sites

Lemma 2.4 For if.ategers n>0and k> 2:
1 % i 1
" Ky 1 .]
= I - dr = <
zt= [- e =Tl < v

§=1

(proof by induction).

Theorem 2.1 In the seiting of Lemma 2.3, if & is
the surface of Ry, and E(Ry) is the e.:cpected number
of unfinished sites in Ry, then:

k(k+1) &
7 HET (541
n ¢y Sk_ \/77 (2.)

YRV

E(Ry) <

Proof: Let ay, ag, ..., ax be the lengths of the sides
of k-rectangle Ryi. Let a; be the length of the small-
est side of Ri. Consider the elementary volume V;
comprising the points of Ry at a distance between ¢
and ¢+ dt from the boundary of Ry {with 0 <2 <)
_ {Figure 3). Let us call §; the exterior surface of V,:

k k
S:ZQZ H(a,'—gi) SS;;=QZ Ha,-
J=1 \i#j Jj=1 \i#f
=>V,SS;xdt§$kxdt
The probability for a given site to belong to 1, is:

]IS(:ngtSf:ngkX(ll

Using Lemma 2.3, we have the following estimation:

+ cymitk !
E(Ry) < nj ka(— g | c2Skdt
0 k25T (£ 4 1)

2 e B+ 1)

= "<=/c—18“ =
ay /7 [
X] V we(g+1) (1 - xk)n_l dr
0 . .

cube Uy DIVISION MERGE

along iy
level 1

along iy
level 2

i a]ong iy

level p-1
’) along ip
level p

a]ong 'P+‘

B k-rectangle

Figure 4: Tree representation of divides and congquers
according to a balanced kd-tree.

setting =1 ﬁhu— .
k2 r(§+1)

Since a; < 1 et ¢ < 1, we may write:
o BG4
n
e v
1
_x/ (1—)"V de
0

k2 kr(“+1

E(Rx)

1A

n
<

using the upper bound on the integral from Lemmia 2.4,

Hence, E(Ry) = 1— X —52= % Sg)-

Remark: This bound is better than tat obtained
by Katajainen and Koppinen in the plane [7].

3 Average-case analysis of a class of
k-dimensional merge procedures us-
ing the notion of unfinished sites

In this section, we demonstrate how the previous re-
sult may be exploited to analyze certain classes of
multi-dimensional divide-and-conquer-type algorith-
ms. Please refer to figures 4 and 5.

Theorem 3.1 Let S be a set of n sites distributed
in a k-dimensional unal hypereube Uy, according to
a quasi-uniform densily probability [, wilh bounds ¢) -

and ez (61 < ¢2). Consider the following algorithmic -

scheme:

Divide step: Divide Uy until reaching cells, each con-

taining one single sile, using a balanced kd-tree

(1)
Merge step: Then re-construct Uy through succes-
sive merges in reverse order (of the divisions).

If merging two subsels takes times proportional to the
number of unfinished sites (wrt Uy), then the whole

132

Stice 5 unilary hypercute Ly
ice Sp

Npgy =+

1

p

w—— kerectangles merges

Figure 5: Merges at level p: Slice S, with all its
(shaded) hyperrectangle constituents,

merge phase of the algorithm will be proportional to
.

Proof: Using Theorem 2.1, the running time of the
merge phase will be proportional to

.ch 2M\"/mzs

W {i/c_ k—rect.

Hence, we must evaluate o = Z &, this quantity
k=rect.

representing the sum of the surfaces of all k-rectangles

involved in the merges, We shall decompose ¢ into

sub-sums o, one for each merge level p.

Let (&1,...,%) be an orthonormal basis, such that
each axis is orthogonal to one hyperface of ¥;. The

kd-tree produces a partition of iy, with n k-rectangles.

Definition 3.1 Let us define slice S; relative to di-
rection 35 as one subset of the hyperrectangles parti-
tioning Uy, such that the orthogonal projection of S;
on either hyperface of Uy, orthogonal to 7; constitutes
a partition of this hyperface.

During the construction of the kd-tree, the division
of space - orthogonally to one direction — doubles
the number of slices relative to this direction. More-
over, note that the whole rectangular partition for i/
may be itself partitioned into slices with the same di-
rection, whatever this direction. Let us call N the
number of slices relative to direction 7 .

Consider merge-level p." Save for the last level —
for which this value is only an upper bound for N; -
a simple induction argument yields:

N; = ol =8

Let us now evaluate o, by grouping k-rectangles into

slices, and this, relatively to all directions. Since the

surface of any hyperface of Iy is 1, the overall sum is
k

equal to 2 Z N, whence:
i=1

13 ivs
.21.% < Ez{mk T < kol #]
j=1

Summing over all & merge-levels yields:

h h h
o= 12"? <3 k2lEl =k 3ol
2P=1 p=1 p=1

{%-‘ h h
< k(R 2v) < K211 < gp2alt]-

w=1

Since the division scheme is supported by a balanced

kd-tree, its own height h is such that 2"~! < n < 2%,
and hence:
Ya>oa T poltltae= Y s<akiim
k—rect.
This implies that the average running time of the
merge step is linear in the number of sites. It is,
more precisely, proportional to:
k{k+1)48) &
¢y K°27 2 (kD (5 +1)

nw \/E

4 Application:2D Delaunay triangula-
tion in linear expected time after
two-directional sorting

The previous result may be implemnented in the con-
struction of the Delaunay triangulation of a set of
planar points, after a preprocessing two-directional
sort. In general, the optimized algorithm proves to
be 2 to 3 times faster than the standard D&C one

(8). Yor n distincts sites, the total number of edges-

created and of edges destroyed is close to 4n and n,
respectively, and the number of edges of the injtial
triangulation still valid in the final one is close to 3n.

Extensive tests were tonducted on sets of up to
seven millions sites, uniformly distributed in a square
domain. Both the standard algorithm, and the stan-
dard-based optimized algorithm were tested on a Sil-
icon Graphics Indy (200 MHz), and on a Convex C3
super-computer.

We have shown, in Figure 6, the results obtained
on the C3. These results strongly corroborate the
theory, and show the asymptotic O(n logn) and O(n)
behaviour of the standard and optimized versions, re-
spectively {excluding preprocessing sorts). Ohya, Iri
and Murota ([10]) have shown that even the average-
case running time for the standard merge step is
Q(nlogn).

133

EDGES CREATEDY N
ywu05%+109
12
1%
L] Standard varsion
8
yudy
4 - -
R . Cpimized varaion
2 L
»
P-—)
ieaZN)
1 10 35
Figure 6: Comparison of the standard (Lee and

Schachter’s) version, and of the optimized version.

We have chosen to measure performance through
the total number of edges created by the programs,
since the running time for the triangulation is pro-
portional to this quantity. The difference between
the running times of both versions becomes percepti-
ble from 60 sites on, and, for 130,000 sites, the opti-

mized version is already twice as fast as the standard

one. The difference increases with n.

On a 200 Mhz Indy workstation, 200,000 sites are
triangulated in 7 seconds, after a sorting phase of
3 seconds. The rate of triangulation (exclusive of
sorting) is about 30,000 sites per second (between
50,000 and 60,000 triangles). '

5 Conclusion

The evaluation of the expected number of unfinished

sites in & k-rectangle, under quasi-uniform distribu-
tion, is an interesting result in itself, that may be
used to analyze various algorithms. It may be added
to the probabilistic results alréady obtained by Bern,
Eppstein and Yao ([3]) on the Delaunay triangulation
in any dimension.

However, the major interest of this result lies in its
application to the construction of the Delaunay trian-
gulation in any dimension with a divide-and-conquer
algorithm based upon a balanced kd-tree partition
scheme. This paper has shown the efficiency of such
a scheme in the planar case. The corresponding al-
gorithm is fairly easy to implement, and séems to he
the fastest, at least for quasi-uniform distrtbutions,
to our knowledge. '

One of our next research goals is to prove Theorem
3.1 for other classical distributions. Doing this would
give our method a neat advantage over all those based
on regular grids.

Another goal is to prove that the method may
be applied in k-dimensional sétting, to obtain, after
multi-dimensional pre-sorting, a triangulation the ex-
. pected running time of which would be proportional
to the number of sites. It would be interesting to

compare this method with Dwyer’s {[5]), in which it
is suggested to use a pre-partition of the sites based
on a regular grid. In 3D, the algorithm is almost
established. '

Acknowledgments

The anthors wish to thank Jacques Hervé for his skili,
help and encouragements; Philippe Nouaille for his
participation in the coding of the optimized version;
Tam Vo-Dinh for making the Convex C3 computer
available, and finally Jean-Noél Theillout for lelting
the first author go on with this work. '

References

i L.Bentley. Multidimensional binary search trees
used for associated searching. In Communications
of the ACM, vel. 18, pp 509-517, 1975.

[2] M. Berger. Géométrie 3. convexes et polytopes,
polygdres réguliers, aires et volumes. Ed. Fernand
Nathan, Paris, 176 pp, 1974

[3] M. Bern, D. Eppstein, F. Yao.. The expected
extremes in a Delaunay triangulation. In Infer-
national Journal of Computational Geometry and
Applications, 1{1), pp 78-91, 1891. '

4] R.A. Dwyer. A faster divide-and-conguer algo-
rithm for constructing Delaunay triangulations.
In Algorithmica, 2, pp 137-151, 1987.

{5} R.A. Dwyer. Higher-Dimensional Voronoi Dia-
grams in Linear Bxpected Time, In Discrete Com-
put Geom, B, pp 343-367, 1991. '

[6] L.J.Guibas, J.Stolfi. Primitives for the Manipu-
lation of General Subdivisions and the Computa-
tion of Vorenoi Diagrams. ACM Transactions on
Graphics, 4, pp 74-123, 1985.

[7} J. Katajainen, M. Koppinen. Constructing
Delaunay triangulations by merging buckets in
quadtree order. In Annales Societatis mathemati-
cae Polonae, Series IV, Fundamenta Informaticae
11, pp 275-288, 1988. :

[8] D.T. Lee, B.J. Schachter. Two algorithms for con-

structing a Delaunay triangulation. In Milerne-
tional Journal of Compuler and Information Sci-
ences, 9, pp 219-242, 1980.

{9] A. Maus. Delaunay triangulation and the convex
hull of % points in expected lincar dine. In 81T
24, pp 151-163, 1984.

{10} T. Ohya, M. Iti, K. Murota. Improvements of the
incremental wethod for the Voronol diagram with
. computational comparison of various algorithms.

In Journal of the Operations Research Socicty of
_ Japan 27, pp 306-337, 1984,

134

On-line Searching in Geometric Trees®

(Extended Abstract)

Sven Schuierer!

Abstract

In this paper we study the problem of a robot searching
for a target in an unknown geometric tree with m leaves.
The target can only be detected if the robot reaches the
location of the target. The search cost is proportional
to the distance traveled by the robot. We are interested
in the competitive ratio, that is the ratio of the distance
traveled by the robot to the length of the shortest path
to reach the goal. We provide optimal upper and lower
bounds for the competitive ratio of search strategies in
geometric trees.

As an application of our strategy we present an al-
gorithm to search in simple polygons. It works for ar-
bitrarily oriented polygons and achieves a competitive
ratio of 1 + en where n is the number of vertices of
the polygon. We also present a different strategy that
achieves a competitive ratic of 2n — 7.

1 Introduction

Searching for a goal is an important and well-studied
problem in robotics. In many realistic situations the
robot does not know its environment in advance, ie.,
it does not have a map of its surroundings [DHSOS,
D194, Kl1e92, Kle94, LOS95, PY89]. In this paper we
examine the problem of searching for a goal in unknown
geometric trees as well as simple polygons.

The search of the robot can be viewed as an on-line
problem since the robot has to make decisions about the
search based only on the part of its environment that it
has explored before. One way to judge the performance
of an on-line search strategy is to compare the distance
" traveled by the robot to the length of the shortest path
from its starting point s to the goal g. The ratio of the
distance traveled by the robot to the optimal distance
from s to g maximized over all possible starting posi-
tions s and locations of the goal is called the competitive
ratio of the search strategy [ST85}.

*This research is supported by the DFG-Project *Diskrete
Probleme”, No. Ot 64/8-2.

finstitut fiir Informatik, Universitit Freiburg, Am
Flughafen 17, Geb. 051, D-79110 Freiburg, FRG, e-mail:
schuieretinformatik.uni-freiburg.de -

One problem in this setting that is very well investi-

.gated is searching on m concurrent rays. Here 2 point

robot is imagined to stand at the origin of m rays and
one of the rays contains the goal g whose distance to
the origin is unknown. The robot can only detect g
if it stands on top of it. If the rays are allowed to
contain branching vertices, then we obtain a geometric
tree. Klein presents an algorithm to search in a geomet-
ric tree with m leaves that has a competitive ratio of
8m — 3 [K1e97): This algorithm can be applied to search
in a simple polygon and achieves a competitive ratio of
8n — 3 if the polygon has n vertices [Ick94, Kle97].

In this paper we show how to adapt the optimal de-
terministic strategy to search on m concurrent rays to
geometric trees, i.e., trees embedded in d-dimensional
Euclidean space. We obtain an algorithm with a com- -
petitive ratio of 14 2m™/(m — 1)™~1 <1+ 2em if the
tree contains m leaves. The algorithm we obtain can be
directly applied to searching in simple polygons which
leads to a competitive ratio of 14+n"/(n—1)""* < 14en
if the polygon has n vertices. We also present a different
strategy with a competitive ratio of 2n — 7.

The paper is organized as follows. In the next section
we introduce some definitions. In Section 3 we present
the algorithm to search in a geometric tree and analyse
its competitive ratio. Section 4 shows how the algo-
tithm can be applied to searching in a simple polygon.
It also introduces a second algorithm for searching in a
simple polygon. We conclude with some final remarks
in Section 5.

Some of the proof are omitted due to the limited
space.

2 Definitions

Let C be a simple closed curve consisting of n line
segments such that no two consecutive segments are
collinear. We define a simple polygon P to be the union
of C and its interior. A vertex of P is the end point of a
line segment on the boundary of P. A vertex is called
convex is the subtending angle in the interior of P is
less than = /2 and reflex otherwise.

]
o
v

135

Definition 2.1 A geometric tree T = (V, E) is a tree

embedded into IE? such that each v € V is a point and

each edge e € E is a polygonal path whose end points
lie in V. The paths of E intersect only at points in V,
and they do not induce any cycles. '

If p and g are two points inside P, then we denote
the shortest path from p to g by shp(p, g). The union
. of ali shortest paths from a fixed point p to the vertices
of P forms a geometric tree called the shortest path tree
of p. It is denoted by Tp.

Let A be an a.lgonthm to search for a target ¢ in
an environment class £ . We denote the length of the
path traveled by the robot to find ¢ using algorithm 4
starting at s in E € £ by df(s,#) and the length the
shortest path from the robot locatxon s'to t by de(s, t).
The competitive ratio of A is defined as

)
Ecé s teE dg(s,t)

3 Searching in Trees

In this section we consider the problem of searching
in geometric trees. Before we describe our strategy to
search in trees, we briefly discuss the optimal algorithm
to search for a point in m concurrent rays.

*3.1 Multiway Ray Search

The model we consider is the following. The robot is
placed at the meeting point or origin of m concurrent
rays and it has to find a point ¢ which is situated in
one of the rays. The distance of the point ¢ is unknown
to the robot though a lower bound ¢ on the distance
to ¢ is known to the robot. The robot can only detect
the point ¢ when it reaches ¢. A deterministic strategy
which achieves the optimal competitive ratio works as
follows. The robot visits the rays one by one in a round
robin fashion until the point ¢ is reached. In every ray,
the robot goes a certain distance and turns back if the
point ¢ is not found and explores the next ray. The
number of steps from the origin the robot walks before
the i-th turn is determined by the function

£6) = (m”j 1):—.

It is easy to see that the worst case ratio of the dis-
tance traversed by the robot to the actual distance of ¢
from the origin (i.e., the competitive ratio of this strat-

egy) is

. mm-
1+2W§1+20m

For instance, if m = 2, then the competitive ratio is 9.

A

3.2 Geometric Trees

At first it seems that the problem of searching in geo-
metric trees can be solved trivially by using the optimal
strategy to search on 'm rays if the tree has m leaves.
However, there is one crucial difference. Whereas in
the ray searching problem the number of the rays to
be searched is known in advance, the number of branch
vertices of the tree and their degree is not known in ad-
vance in tree searching. Klein provides a simple way to
avoid this problem by dividing the search into phases
[K1e97]. In phase i all the known branches are explored
to a depth of 2. The phase énds when the last branch
is visited and then the search depth is doubled. It can

- be easily seen that the competitive ratio of this strategy

is at most

25k m2 4 2(m — 1)2k+1 4 ok
2k

In the following we show that by adapting the strate- -

<8m-3.

.gies to search in m rays more carefully one can achieve

a competitive ratio of at most 14 2em. We assume that
we are given a lower bound € on the distance to the tar-
get as well as the distance to the closest branch vertex.
In the applications that we present such a bound can be
easily derived. Assume that in the beginning m; rays
are incident to the root of the tree. We start off with
the optimal search strategy to search m; rays. The ini-
tial step length is set to di = e(my — 1)™ /m™. This
guarantees that every ray has been visited at least once
before a branch vertex is detected. _ '

The strategy works as follows. Assume the explored
tree has m leaves l;,...,I. The robot searches the
root to leaf paths by simulating the strategy to search
on m concurrent rays. Let P; be the path from the
root to leaf /;. The robot travels on each path P; for a
distance of d; where d; is the current step length and
then returns to the origin, What happens if new edges
branchmg off P; are discovered is discussed below. The
requirement that the robot should return to the origin _
is, of course, overly restrictive since the branching pat-
tern of the tree often makes it unnecessary to return to
the root. While in practice a robot using our algorithm
of course would make use of shortcuts, it is conceptu-
ally more convenient to assume that the robot returns
to the origin, i.e., to treat the paths P; as separate rays.

As indicated above it may happen that the robot

discovers a new edges while traveling of P;.. Once it
discovers a new edge on P;, it reduces its step length
d; by a factor of (1~ 1/m?)™ and increases m by one.
This only happens the first time a new edge branching
off P; is discovered. All other new edges are just col-
lected without affecting d;. After it has reached the end
point of the current root to leaf path, it returns to the

136

first point at which a new edge is detected. It chooses
a rewly discovered edge, increases the step length by
m/(m — 1) and follows'it. If there are other new edges
remaining to be explored, the step length is again re-
duced by a factor of (1 — 1/m?)™ and m is increased.
Once all unexplored branches are exhausted, the robot
returns to the origin and chooses the next root to leaf
path. In a more algorithmic notation the algorithm can
be described as follows. The built-functions that are
used in the algorithm are explained below.

Algorithm Tree-Search
Input: a geometric tree T with root r, a target £,
and a lower bound ¢ on the distance from r
to t and to the closest vertex of T
Qutput: apathin T fromr tot
1 letey,...,en be the edges incident to r
2 fori:=1tomdo
‘ follow e; to the distance d; = g(B=2)m=*
let I; be the end point of the explored part of ¢;
i=m+ 1 di i=m/(m-1); df = g(=l)ym=1
new-edges 1= new-edges; 1= []
L,' = [(11,81), sy (lm, em)]; Ty =m
loop
9 if new-edges = [1
10 then (I, P) := remove-first(L;)

L]

o ~1 Ch TR

11 else (I,P):= remove-first(new-edges)
12 if new-edges # [] then

13 shrink(L;,1 — 1/m?)

14 di:=(1- 1/mf)m='d,'

15 follow P until
16 Case 1: t is detected >

17 exit loop

18 Case 2: a new vertex v is reached >

19 if new-edges = [] then

20 shrink(L;, 1 — 1/m?)

21 d; := (1 — 1/m?)™d;

22 v =

23 let e1,..., e, be the edges incident to v
24 for each edge e; do

25 let Q; be P concatenated with e;
26 Pi=0y

27 append(new-edges, [(v, Qz), ..., (v, Qt)])
28 go to 15

29 . Case 3: the distance traveled on P is at least d; &
30 let I be the end point of P

31 Liyy = concat(Ly, (1, P)])

32 if net-edges =]

33 then return to the root r

34 i1 =My

35 else return to v}

36 My = M; + 1

37 new-edges;, ‘= new-edges; v}, = v}
38 di,; = d(l,r)

where (I3, P;) is the first tuple of Ly
39 dit1 == Mg f(mig1 — 1)d;
40 ii=i+1

Algorithm Tree-Search makes use of a couple of proce-
dure calls which we explain in the following. The pro-
cedure remouve-first(L) returns the first element of L
and removes it from L. The procedure append(Ly, L2)
appends the list Ly to the list L;. The function con-
cat(Ly, Lo) returns the list that is the concatenation of
L, and Ly. (The difference between append and concat
is purely syntactical.} Finally, the procedure shrink is
described below. '

Note that the index ¢ can be removed without affect-
ing the computation of the algorithm. It is introduced
in order to simplify the analysis of the algorithm. In
particular, the assignments in Steps 34 and 37 are un-
necessary if the index ¢ is removed.

Algorithm Shrink
Input: alist L= [(py,P1)..., (px,Pk)] consisting
of tuples of points p; and paths P; that
start at r with p; on P; and a number o
Output: the list L where the distance of the points
p; on P; to r is reduced by a factor of o/~
for j:=1to L} do
let (p;,P;) be the jth element of L -
move p; on P; closer to = by a factor of a/~!

1t is easy to see that algorithm Tree Search is correct
since clearly all the edges of T' are visited. If no new
edges are discovered anymore, then the step length of
the root to leaf paths increases exponentially by a factor
of m/(m — 1) after each step. This guarantees that the
target is eventually found.

3.3 Analysis of Algorithm Tree Search

In order to analyse the strategy we show that a number
of invariants are maintained.

Invariant 1 (Algorithm Tree Search) At Step §L;
contains m; — § tuples (p;, P;} with

o\ i-1t6 :
”") &

d(f‘,pj) = (m 1
1
forl<j<m;-4, and
. = M ymi—8 e
d3 (m‘i - 1) di
where & = 0 if new-edges; = [1 and § = 1 otherwise.

Proof: In order to show Invariant 1 we first note
that the invariant clearly holds the first time the loop
is entered. In this case d(f,p;) = e(Tizt)™~d, for

137

1 <47 < my and df = ¢(T=l)™~1 So assume

that invariant is true at Step 8. First assume that
new-edges; = [1. In this case the first tuple (1, P1)
of L is removed in Step 10. After Step 31 L;y, con-
sists of the tuples [(p2,P2); -+ (Pmes Pmi)y {1, P)]. We
distinguish two cases. If no new vertex v of T is en-
countered in Step 18 while the robot follows P, then
the distance of [to r is in Step 31

d{l,r)

i
5
Il
PN
3
RAE
S
S
E}
&

|
N
"33
RS
=
N
3
1
)
by
.
N

Since df,; = mi/ (m; — 1)d?, it is easy to see that Liyy
‘again satisfies the invariant if the elements of Ly are
renumbered appropriately. After Step 39 the value of

di+.] is
.ml Tn Ly
dipy = et : d;
i+ m;—1 \m; — 1 '
™ my
i x
= d’.
(Tni-— 1) b
as claimed.

If a new vertex v is encountered, then d{p;,r} is re-
duced by a factor of (1 —1/m?)#~1, for 2 < j < m;, and
d; is reduced by a factor of (1 = 1/m2)™ in Step 20.
By the invariant we have after Step 20

H
PN
F
Sl
~
S
TR
I
B,
®

for 2 < §j < my, and, similarly, d {—'—“'——)m'd"‘ af-
~ ter Step 21. After the tuple (I, ’P) is added to Liyy in
Step 31, the invariant for L,y holds again since now
new-edgesi_,_l # [] and L;41 contains m; = myyq — 1
tuples which satisfy Condition 1. After d; is multiplied
with mygp1 /(M1 — 1} diyy also satisﬁes Invariant 1
again.:

- Note that the s1tuat10n may occur that d; is reduced
5o much in Step 21 that the robot has actually already
traveled farther than the new value of d;. This does not
pose a problem as the robot then just remains at v and
follows the next edge. If the new step length d;i4; is
again less than d{r,v), there is nothing to do and the
robot considers the next edge and so on. Finally, it will
encounter an edge for which d; is larger than d(r,v).
For, if there Have been k new edges in the beginning,

then the new step length to explore the last edge is
(2L)™ +* which is larger than (—'-—)"“ Since
(7Hg 'h)”‘- is the step length of the iteration in which
the robot encountered v, d; > d(v,r) in the last step.

Finally, assume that new-edges; # []. In this case
the first tuple (I, P) of new-edges; is removed in Step 11.
Moreover, since new-edges; # @, L; contains only m;—1
tuples and d; = (;2i7)™~1d;. First assume that af-
ter (I, P} is removed from new-edges;, new-edges; = [1-
and no new vertex is encountered. Hence, after {{,7)
is ‘added to L;; and d; is increased by a factor of -
mis1/(mis1 — 1) the invariant holds again.

If after the removal of (I, P) from new-edges; still
new-edges; # [] or new-edges; = [] and a new vertex
is encountered by traveling on P, then we see as above
that, after L; is shrunk and d; is reduced, we obtain

. _ j=1
dipj,r) = (m*“) g and

d;

|
e
3
3|3 3
[y
S
3

for 1 € j < m-1. Of course, now (p;,P1) is the first
tuple of L;. And as in the second case above we see
that after the tuple ({,P) is added to Liy; and m; is
incremented to m;+; = m; + 1 the invariant for L; 4
holds again; and after d; is multiplied with m;q /fm;y1—
1, d;yy also satisfies Invariant 1 again. |
Note that, for each leaf ! in L;, the robot has ex-
plored the complete path to I; this is true when [is
added to L; and afterwards [is only changed in the
Steps 13 and 20. In both steps | is moved closer to r.
The following two invariants are stated without proof.

Invariant 2 (Algorithm Tree Search)

If new-edges; # (], then at Step 8 d(v},r) > ﬂ;;_—ld;' :

Invariant 3 (Algorithm Tree Search) If in Step 8
the robot is at a distance of deyr to T, then the total
distance traveled by the robot is at most

mi;~1—§ ms i
2d; y (mi_‘_l) + deur.

j==00

where § = 0 if new-edges; = [] and § = 1 otherwise.

3.3.1 The Competitive Ratio

Once we have established a bound on the distance trav- -
eled by the robot, it is easy to compute the competitive
ratio of Algorithm Tree Search. So assume that the
robot detects the target t. We again distinguish two
cases. First assume that new-edges; = [] at Step 8.
Then, the current search path of the robot starts at the

138

root r of T. By Invariant 1 the distance of [to r is dj.
Hence, d(t,r) > d;. On the other hand, by Invariant 3
the distance traveled by the robot is at most

mi—1 ™. J
2d; Y (mi_J +ad(t.7)

j=—o0

Hence, the competitive ratio is given by
. Y
2d; STL (:nf‘i—l) +d(t,7)
d(t,r)

dr(mi - 1) (72)
d;

my

IA

142

my
my

= 142
m??l

IA

1+2

where m is the number of leaves of T'.

Now assume that new-edges; # [at Step 8. Then,
‘the current search path of the robot starts at the vertex
v;. By Invariant 2 the distance of v} to r is at least
mizlg* Hence, d{t,r) > B=1d?. On the other hand,

my

b}r/n Invariant 3 the distance traveled by the robot is at

most
mi;—2 — 7
ad; (mi_1> +d(t, 7).

j=—o0

Hence, the competitive ratio is given by

2d; =2 (—"“—)j-f-d(t,r)

j==—00 \ m;—1

d(t,r}

A ()™

- mi=tdy
mmi
=]_ 2_.L.___.
+ (m,— — l)m.--l

mﬂl
(m = 1ym-1

748

1+2

as above.

The above algorithm is optimal since m concurrent
line segments also form a geometric tree. By making the
line segments longer and longer, the lower bound on the
competitive ratio of searching in the m concurrent line
segments approaches 1 + 2m™/(m — 1)™~! [BYCRS3,
Galg0].

4 Searching in Simple Polygons

In this section we present an algorithm to search for a
target t inside a simple polygon P that is not known to

the robot. It is based on an approach by Icking [Ick94,
Kle97]. We assume that the robot is equipped with
a vision system that allows it to compute its visibility
polygon in P and also to recognize t. We assume that
the robot is located in the beginning at the points s in
P.

Let T, be the shortest path tree of 5. If ¢ is not visible
from s, then shp(s,t) intersects a number of vertices.
Let v be the last vertex that is intersected by shp(s,).
Clearly, the line segment ! from v to ¢ is contained in P.
Hence, once the robot has reached v, then it sees ¢ and
moves directly to t. Hence, if d4(s,v) denotes the length
of the path that the robot travels in order to reach the
vertex v using algorithm A, then the competitive ratio
of A is given by

da(s,v) +d{v,t) _ da{s,v)
d(s,v) + d(v,t} ~ d{s,v) "

Hence, we only need an algorithm to reach the vertices
of P. This can be easily achieved by applying Algo-
rithm Tree Search to T,. That T, is not known in the
beginning is not a problem since the following lemma
holds.

Lemma 4.1 ([K1e97)) If the robot has seen the points
p and g in P, then it can compute shp(p, g).

Hence, the robot can construct T, on-the-fly as it ex-
ecutes Algorithm Tree Search. This immediately leads
to a competitive ratio of 1 4 2n™/(n — 1)"! < 1+ 2en
for searching for a target in simple polygons which con-
siderably improves the (8n — 3)-competitive algorithm
of Icking [ick94, Kle97].

However, the analysis of the above algorithm can be
further improved by the following observation.

Lemma 4.2 If s and t are two points in P, then the
lnst vertexr v of P that is intersected by shp(s,t) end
that is different from t is an internal node of T,.

Hence, in order to find the vertex v it is not necessary
to consider the leaves of T,. If we prune the m leaves of
the tree, then the remaining tree T/ can have no more
than m leaves. Therefore, the number of leaves m' of
T, is at most n/2. If we apply Algorithm Tree Search
to T, we obtain a strategy to search in polygons with
a competitive ratio of 1 + en. Note that since we can
compute shortest path between two points, it is easy to
decide if a vertex is a leaf of T, or not. If we denote the
number of reflex vertices of P by r, then the competitive
ratio is 14 2r"/(r — 1)7* < 1 4 2er since the vertices
of T, obviously only consist of reflex vertices.

Simulating Dijkstra’s algorithm on T7 yields an even
better algorithm with a competitive ratio of 1+2(r —1).
Here, the robot repeatedly chooses the closest unvisited

139

vertex v, follows shp(s,v), and returns if ¢ is not v151bIe
from ».! Note again that even so P is not known to
the robot, the closest unvisited vertex is visible to the
robot. The competitive ratio is now just

2 Ev’. visited d(s’ ,Ur) + d(s: 'U)
d(s,v)
< 14 2|{v' | v is visited}| _
< 142(|T¢]-1) £ 1+2(r—1)

since d(s,v) > d(s,v'), for visited vertices v'.

If IT!| > m'e/2, then Algorithm Tree Search yields
a better competitive ratio. A simple example are spiral
polygons where Algorithm Tree Search achieves a com-
petitive ratio of 9 in the worst case whereas the sim-
ulation of Dijkstra’s algorithm on T can have a com-
petitive ratio of up to 2n — 7. This is also an upper
bound since there are at least three convex vertices in
a simple polygon. In general, the application of Al-
gorithm Tree Search to T, has a competitive ratio of
14 2(2k)2%/(2k — 1)~ < 1 + 4ek in polygons whose
boundary can be decomposed into &k convex and k reflex
‘chains. -

5 Conclusions

We present the Algorithm Tree Search to search for a
target in an unknown geometric tree T'. Algorithm Tree
Search simulates the optimal scarch strategy to search
in m concurrent rays and achieves an optimal compet-
itive ratio of 1 + 2m™/(m — 1)™"! if m is the number
of leaves of T :

In the second part we show how to apply the al-
gorithm to the problem of searching for a target in un-
known simple polygons. We present two algorithms, one
based on Algorithm Tree Search and the other based on
a simulation of Dijkstra’s algorithm. The first algorithm
achieves a competitive ratio of 1 4 én whereas the sec-
ond achieves a competitive ratio of 2n — 7. However, if
it is known in advance that the polygon can be decom-
posed into k' convex and reflex chains, then the search
algorithm based on Algorithm Tree Search achieves a

competitive ratio of 1 + 4ek whereas the competitive

ratio of the algorithm based on the simulation of Dijk-
stra’s algorithm may be arbitrarily high.

The problem of searching in polygons is far from
salved. There is a lower bound of n/2 for the compet-
itive ratio which still leaves a significant gap compared
to algorithms presented above.

!The same aigorithm (only applied to T%) was mdependently
discovered by 1. Semrau [Sem97].

[Sem97}

References

[BYCRY3] R. Baeza-Yates, J. Culberson, and G. Rawl-
ins. Searching in the plane. Information and
Computation, 106:234-252, 1993.

A. Datta, Ch. Hipke, and S. Schuierer. Com-
petitive searching in polygons—beyond gen-
eralized streets. In Proc. Sizth Annual In-
ternational Symposium on Algorithms and
Computation, pages 32-41. LNCS 1004,
1995.

A. Datta and Ch. Icking. Competitive
searching in a generalized street. In Proc.
10th Annu. ACM Sympos. C’omput Geom.,
pages 175-182, 1994,

S. Gal.
1980.

Ch. Icking. Motion and Visibility in Simple
Polygons. PhD thesis, Fernuniversitit Ha-
gen, 1994,

[DHS95)

[DI94]

Search Games.

[Ga180) Academic Press,

[lck94]

R. Klein. Walking an unknown street with
bounded detour. Comput. Geom. Theory
Appl., 1:325-351, 1992.

[Kl1e92]

(Kie94] - J. M. Kleinberg. On-line search in a simple
polygon. In Proc. of 5th ACM-SIAM Symp.

on Discrete Algorithms, pages 8-15, 1904,

[Kle97) R. Kiein. Algorithmische Geometrie.

Addison-Wesley, 1997.

[LOS95] A. Lépez-Ortiz and S. Schuierer. Going
home through an unknown street. In S. G.
AK], F. Dehne, and J.-R. Sack, editors, Proc.
4th Workshop on Algorithms and Datastruc-

tures, pages 135-146. LNCS 955, 1995,

C. H. Papadimitriou and M. Yannakakis.
Shortest paths without a map. 'In Proc.
16th Internat. Collog. Automata Lang. Pro-
gram., volume 372 of Lecture Notes in
Computer Science, pages 610~620. Springer-
Verlag, 1989.

[PY89]

I. Semrau. Personal communications, 1997.

D. D. Sleator and R. E. Tarjan. Amo_rtize&
efficiency of list update and paging rules.
Communications af the ACM, 28:202-208,
1985.

[ST85)

140

Biased search and k-point clustering

Binay K. Bhattacharya Hossam ElGindy
School of Computing Science Department of Computer Science
Simon Fraser University The University of Newcastle

Burnaby, B.C., Canada, V5A 156 Callaghan 2308, NSW, Australia
April 28, 1997

Abstract

We have shown that some k-point clustering problems can be solved efficiently by a biased search -
technique. Biased search is useful if it takes more time to determine whether the optimal parameter, we
are looking for, is greater than the search value than the time when the optimal parameter is less than or
equal to the search value. The proposed algorithms generate the search keys randomly. All other steps
of the algorithms are deterministic. We are able to achieve Of{log k) improvement with high probability
over the running times of the deterministic algorithms.

1 Imntroduction

‘We consider a clustering problem which can be stated in general terms as follows:

Given a set S of n points in d-dimensional space; an integer k, 1 < k¥ < n; and a dissimilarity measure,
find a subset of S of size k (called a k-set) that minimizes the dissimilarity measure.

A number of papers have considered this form of k-point clustering problem. Dissimilarity measures that
have been considered include euclidean diameter {1, 5, 2], Lo, diameter [5, 2], circumradius {1, 4, 2, 5, §] etc.
[See [2, 5] for other references.] Suppose ¢* denotes the optimal dissimilarity measure of an optimal k-set.
Most algorithms for the k-point clustering problems can be modeled as follows (again in general terms):
Algorithm Cluster (S)

1. Select a value £. Set | — 1.
2. For each point 55,7 = 1,2, ...,|5], do the following.

(a) Find the largest cardinality subset Ws(s;,%) of S such that s; € Ws(s;,t) and the dissimilarity
measure of Ws(s;,1) is at most £.

(b) If [Ws(s;,1)| > & then

select a smaller ¢, set [«— 7, and go to step 2 { Here t* < t. }
If no such 1 exists, t* =t and stop.

3. { Comment: There is no k-set of dissimilarity measure <t }
Select a larger ¢ and go to step 2. { ¢* >t }.

There are two commonly used searching methods for ¢*. One is the standard binary search technique
and the other is the parametric search technigue proposed by Megiddo [9]. The binary search technique
is commonly used when the potential candidate set of t*, say C{(S), is small. When C(S) is a large set,
Megiddo’s parametric search is often used. In algorithm Cluster if T(n) represents the sequential time needed
to execute step 2 (a), the binary search technigue will determine an optimal k-set in O(nT(n) logn+ Gs(n))
time in the worst case where (75(n) denotes the time needed to generate the search keys for the binary
search. Again if step 2 (a) can be implemented in B(n) parallel steps requiring P processors, parametric
search technique gives an O(n.P.B(n) + n.B(n).T(n).log P) implementation of algorithm Cluster. Notice

141

here that Gs(n) term is not involved here. In most cases the second term dominates the running time.
However, Megiddo’s parametric search is not feasible in practice. As a matter of fact we are not aware of
any non-trivial implementation of parametric search. Therefore, our objective in this paper is to avoid the
parametric search of Megiddo completely in the design of our algorithms.

In algorithm Cluster(S), when we are selecting t, we have no control on whether t* < ¢t or t* > {.
We call this type of search as unbiased search. It is inexpensive to determine if t* < t than determining
if #* > t. In order to determine that ¢* > ¢ for a given ¢, we need to show in Step 2(a) that for each
point g of S, |Ws(q,?)} < k. However, to determine t* < t for a given ¢, we need just an existence of one
point s; of § for which |Ws(s;,?)} > k. In this paper we show that it is possible to take advantage of
this property by biasing our search and obtain faster algorithms to solve k-point clustering problems for
the dissimilarity measureés such as euclidean diameter, Lo, diameter and circumradius. The search keys
during the search will be generated randomly. We achieve O(logk) running time improvement with high
probability on most of the results of Eppstein and Erickson [5] and Datta et al. [2]. In some cases we also
get a significant improvement on storage space requirement. Matousek [8] presented a completely different
randomized algorithm which achieve the same improved space and time bound for the selection of k-point
subset minimizing the circumradius. His approach can also be applied to obtain O(logk) running time
improvement for the selection of k-point subset minimizing euclidean diameter and Leo diameter. In [8], not
‘only the the search keys were generated randomly, the data point to be processed next, as stated in Step 2
of Cluster, was also selected randomly. _

In section 2 we present a biased search algorithm for a generic problem. k-point clustering problems
minimizing euclidean diameter and circumradins dissimilarity measures can easily be formulated from the
generic problem. For all the three clustering problems we generate search keys randomly. In section 3 we
describe methods to generate random search keys for the three problems being considered here. Section 4
contains the solutions of the clustering problems.

2 Generic problem

In this section we consider k-point clustering problems for the dissimilarity measures (i) euclidean diameter
and (ii) circumradins. However, we explain the biased search technigue for the following generic problem.
Then the actual algorithm for the specified dissimilarity measure can easily be designed from the algorithm
for the generic problem. : '

The generic problem is:

Given a set S of n points in d-dimensional space and a dissimilarity measure, determine a k-subset of S
that minimizes the dissimilarity measure. _ :

Datta et al. [2] showed that for the dissimilarity measures being considered here, the above generic
problem can be reduced to O(n/k) similar subproblems of size O(k). The solution to the original problem is
then the solution of a subproblem with the smallest dissimilarity measure. This reduction process requires
O(nlogn) time and O(n) space. :

Let S; be the set of points of S for the i*® subproblem where |S;| = n;i is O(k), i = 1,2,..,m; m
(€ O(|S}/k)) being the number of subproblems. Let t* be the dissimilarity measure of the optimal k-set to
be computed. Initially, let C(S) be the set of potential candidates of #*. Let ¢ and ¢’ be two elements of
C(S). As mentioned before, let Ws,(p,t) be the largest cardinality subset of S; containing the element p,
_ with dissimilarity measure at most . We can now show that that '

Lemma 1 For i < ¥, if IWSI."(p,t)I > k and |Wg,(q,t')| < k, for aﬁy i, g cannot be an element of the
optimal k-set of S;. : '

We now formally describe our biased search algorithm. In the following we assume that £* always lies
in (4,t,]. Initially ¢ = 0 and ¢, = oo. Let N denote the number of elements of C(S) lying in (i1,1,]. We
assume that N is finite. - - '

Algorithm Cluster-modified (S)

1. Reduce the k-point clustering problem on S to k-point clustering problems on S;, ¢ = 1,.. .,O(%)
where |S;| € O(k) for each 1. _ : . '
{ Let 535, j= 1,2, ..., |Si| be the points of S;. }.

142

2. Set starting. subproblem « 1; ¢* - 0.
Set stari[j] — 1 for each subproblem j.

3. Set (o) < L.
Select ¢(;y,7 = 1,2, ..., |S|® elements of C(S) lying in (¢;,%,], 0 < € < 1, sorted in increasing order.
If there are less than |S¢| points of C(8) in (i1, ¢,], we take c(1) = ¢(2) = ... = #; appropriately.

4. Set ¢ — starting_subproblem; j — start{i]; u — |S|*.
5. Determine W, (si;, cqu)).

6. If [Ws, (i, cquy| > k then set £, «— cqy; u — u — 1; start[i] — j; starting_subproblem — i and go to
step 5,
elseset j — j+ 1 and go to step 5 if § < |5;].

7. Set i — i+ 1; j — start[i] and go to step 5 if : < m.
{ m is the number of subproblems. }

8. { t* lies in (cqu—1y,). }
Set #; < ¢(y~1). I number of elements of C(S) in (t,1,] is one then t* — ¢, and stop.
Otherwise go to step 3.

We first consider the correctness of the algorithm. We are assuming that t* € (0,00) is an element of
the starting potential candidate set C(S). In step 6, as a consequence of Lemma 1, when W, (855, cquy) 2 K,
all the points of the sets Si,Ss,...,5;_1 and the points s;1,si2,...,8 j—1 of S; can be eliminated. The
interval containing ¢* gets smaller as the algorithm progresses. This searching technique is a generalization
of the standard binary search technique. Thus algorithm Cluster-modified correctly converges to the optimal
solution t*.

We now estimate the running time of Cluster-modified. Let G(}S|) denote the time taken to generate all
the search keys of S used in Cluster-modified. Step 1 requires O(]S|log|S|) time. The remaining steps except
Step 5 are straightforward and clearly do not dominate the running time. Let T(|S;|) be the time required
to solve step 5. The exact value of T'(]S;|) is dependent on the dissimilarity measure being considered. The
remaining issue to be resolved is the number of times step 5 is executed. We claim that

Lemma 2 Step § is ezecuted al most O(|S|€ + |S|) times.

Proof: The search tree in algorithm Cluster — modified is an |S|*-ary tree and therefore, has a constant
depth. At each level we search the keys in descending order. At every level of the search tree, therefore,
there will be just one instance of the case when ¢(,) < t* (“Less” instance) and at most |S|¢ instances of the
case when c(y) > t* (“More” instance). Due to Lemma 1, only a constant number of “Less” instances per
data point per subproblem are possible during the entire search process. Hence there will be O(|S|) “Less”
mstances in total. According to our search there can be at most O(|S[¢) “More” instances and each “More”
instance requires one call to step 5. Hence step 5 is executed at most O(|S|¢ + |S]) times. T
As a consequences of lemmas 1 and 2,

Lemma 3 The algorithm Cluster-modified takes O(G(|S|) + [SIT(|S:]) + |S]log|S]) time.

We have not discussed the space complexity yet. It is very much dependent on the way the probe sequences
are generated.

3 Random generation of search keys

We now discuss specific methods to generate search keys for biased searching to solve the k-point clustering
problem (i.e. to determine G(|S])).

Let C(S) be the initial active set of potential candidates (also called events) of ¢*. We are assuming here
that the size of C(S) is some polynomial of |S| of fixed degree. Our search tree is a |S|*-ary tree where

143

0 < ¢ < 1. The tree has a constant depth. Therefore, O(]5]°) total-events are generated for the entlre search
process. As mentioned earlier, we will generate these events randomly.

Suppose we know that ¢* lies in the interval (#;,1,]. Let there be N events’ which lie in the interval (&, 1.].
We repeatedly generate a random event from C(S) and check if they define an event in (f1,1 r]. If not we
repeat it. Expected number of trials needed to generate one random event in (#;,%.] is given by the following
well known lemima. :

Lemma 4 An evenl in (t1,t,] can be found with high probability after O({C(S)|log|C(S)|/N) trials.-
O{|S|%) random events in (t1,1.] also satisfy the following property.

Lemma 5 If |S[* event points in (11,t.] are randomly generated, there are ne more than O{N log N/|S|%)
event points between any two consecutive event points with probability exceeding 1-N~° for any fized consiant
¢> 0. ' :

Clearly, when N is small, we will require a large number of trials to find an event. Hence we assume for
now that we have an oracle which can determine in O(U(|S])) time whether there exist at least M events
of C(S) in (#1,1,). We also assume that the oracle returns all the events in the interval (21,%,] in O(U(|5]))

time when the number falls below M. When the number of events in the interval falls below M, the events -

for the searching step can be generated deterministically in O(M log M) time where all the event pomts in
(t1,1,] are enumerated first. Therefore,

Lemma 6 If the events are generated randomly, with high probability the search process terminales using
O(|SI¢) probes and these probes can be generated in O(U(|S)) + Mlog M + |S| x |C(S)|log1C(S)l/M) time.

We now discuss below the way the random events are generated for specific dissimilarity measures.

3.1 Euclidean diameter

The search space is the lnterpomt distanices. There are O(n/k) subproblems, each of size O(k}. Therefore,
|C(8)| € O(nk). We take M to be n. We can determine the number of events in the interval (t,tr] In O(nk)
time. Hence

Lemma 7 All the O(n®),0 < € < 1, events for the search can be found in O(nk + nlogn) time. The space
complezity is O(n). :

3.2 Circumradius

The optimal k—set of S in d-space with the minimum circumradius must be determined by either 2,3,, or
d+ 1 data points. Hence |C(S})| = O{nk?®). During the search process we will consider each case separately
Here we only consider the case when the optimal k-set is determmed by d + 1 points. The remaining cases
can be solved exhaustively in O(nk?1).

We describe an algorithm which determines whether the number of event points in the interval (¢;,1,] is
less than M. The algorlthm is formally described as follows:

1. For each point p of each subproblem S; do the followmg.

(a) For each (d — 2) points (say V) of S; do the following:
i. Determine the 2-dimensional space W which is equidistant to V N {p}.

ii. For each ¢ of the remaining points of 5; determine the line segments (at most 2) which are -
equidistant to V U {p, ¢} and the distance of any point on the line segment to p lies in the
interval (¢;,2,) . { There are O(k) line segments in total }.

iii. Determine all the intersection points of the line segments computed in the previous step. If
the total number of intersections computed so far is > M then stop, 0therw1se report the
events of C(S) in the interval (,1,]. :

144

We can report r intersections among O(k) line segments in a plane in O(k log k+ rlog k) time. Therefore
U(|S}]) is bounded above by O(nk?~1logk + Mlogk). The space requirement is O(n 4+ M). From Lemma 6
it follows that

Lemma 8 Ifk ¢ o(n), n random events in a given interval (t;,1,] can be determined in O(nk?!logk) time
and O(n) space (M here is n.). If k € O(n), the space requirement increases to O(n”“) while the running
time remains the same (M here is nl¥®). :

3.3 L, diameter

We can surely generate the events the same way as we did for the euclidean diameter i.e. in O(nk + nlogn)
time. But in L., metric we can do much better. The event space can be stored in d triangular matrices
of coordinate differences with each row and column elements appear in sorted order. Here d represents the
dimension of the data set 5. We assume that d is fixed. We do not actually build the matrices. But we can
access any entry in O(1) time. During the search process we will treat each matrix separately.

We can determine the number of events in an interval (;,¢,} in O(n) time very easily [6]. These events
can be represented by a. set of monotone polygons requiring O(n) storage space. We can then pick a random
event point in (¢,%,] in O(logn) time after O(nlogn} processing by applying the standard random number
generation technique (see {3]). Therefore,

Lemma 9 All the O(nf), 0 < ¢ < 1, random event poinis for the search can be generaled in (nlogn) tzme
The space complexity is O(n}).

4 Optimal k-point subset

4.1 minimizing euclidean diameter

For the euclidean diameter dissimilarity measure we can show that

Theorem 2: The k-point clustering problem that minimizes euclidean diameter can be solved in
O(nk? log k) time and O(n) space when d = 2 and in O(nlogn + 20(")11) time and O(n + k?) space when
d> 2.

Proof: Eppstein and Erickson [5] have described an algorithm that takes O(k? log k) time and O(k) space
to compute W, (sij, ¢y). Hence T(]S;]) is O(k*logk). Lemma 7 states that the required probe sequence can
be generated in O{nk + nlogn) time. This is the value for G(|S|). The space complexity is O(n). Hence,
when d = 2, the theorem follows by substituting G{(|S|) and T(}S;|) in Lemma 3.

In higher dimensions, there is no efficient algorithmn similar to Lemrma 8. Using a brute force like approach,
it is possible to determine in O(29(*)k) time whether there exists a k—set containing a specified point whose
diameter is at most ¢ ([5]). The storage space requirement is O(k?). Hence we can conclude that the k-
point clustering problem minimizing euclidean diameter can be solved in O(nlogn + 2°(*)n) time requiring
O(n + k?) space. O

4.2 Minimizing circumradius

Eppstein and Erickson [5] presented an O(k?"!logk) algorithm to determine W, (s, ¢(uy). The algorithm
has O(k) storage space complexity. Therefore from Lemma 3 and Lemma 9 we conclude that

Theorem 3: Minimum circumradius k-point subset of a set of points in d-space can be determined in
O(nk?!logk + nlogn) time and O(n) space when & € o(n) or in O(nk? ! logk + nlogn) time and O{n'*¢)
space, 0 < ¢ < 1, when k ¢ O(n).

4.3 Minimizing L, diameter

We can solve the k-point clustering problem minimizing Lo, diameter in the same way as we have done for
the k-point clustering problem minimizing euclidean diameter. However, we can do much better.

Overmars and Yap {10} presented an O(k%/?logk) time and O(k%?) space algorithm (based on space
sweep) for finding an optimal placement of an Lo, box of size ¢y) in S;. This problem is equivalent to the

145

problem of finding the deepest point in an arrangement of hypercubes where each point z of S; is replaced
by a square box of size ¢(y) with & as its center. However, [10] cannot be used for the planar point set. In
9-dimensional space the algorithm of Lee [7] (also based on plane sweep) can be used to solve the problem
in O(klogk) time and O(k) space. The probe sequence can be generated in O(nlogn) time (Lemma 9).
Therefore from Lemma 3 it follows that

Theorem 4: When k is o{n), k-point subset of .S with the minimum L., diameter can be computed in
O(nlogn + nk%/2=log k) time and uses O(n + k%/2) space for all fixed d > 2.

5 Conclusions

In this paper we showed that some k-point clustering problems can be solved efficiently by applying the
biased search technique. Biased search is useful if it takes more time to determine when ¢* > ¢ than when
t* < t for any search key ¢{. The expected running times, based on biased search, are almost always better
with high probability (by O(log k) factor) than the deterministic algorithms of Eppstein and Erckson [5] and
Datta et al. [2]. In some cases the storage space improvement is quite significant.

Our algorithms can also be used to improve by O(log k) factor, with high probability, the running times
of the semi-dynamic/dynamic k-point clustering algorithms discussed in [2].

Matousek [8] also presented a different randomized algorithm which can be extended to achieve the
same improved space and time bound as ours. Selecting search keys are the only randomization step in -
our algorithm. However, it is not so in [8]. We feel that there are other applications where biased search
approach could be applied successfully.

References

[1] A. Aggarwal, H. Imal N. Katoh and 5. Suri. “Finding k points with minimum diameter and related
problems”, J. Algorithms, Vol. 12, 1991, 38-56.

[2] A. Datta, H-P. Lenhof, C. Schwartz and M. Smid. “Static and dynamic algorithms for k-point clus-
tering problems”, In Proc. Jrd Workshop Algorithms Date Struct., pp. 265-276. Lecture Notes in
Computer Science, Vol. 709. Springer-Verlag, New York, 1993.

[3] L. Devroye. Non-uniform random variate generation. Springer-Verlag, New York, 1986.

{4] A. Efrat, M. Sharir and A. Ziv,. _“Computi'ng the smallest k-enclosing circle and related problems”, In
Proc. 8rd Workshop Algorithms Data Struct., pp. 325-336. Lecture Notes in Computer Science, Vol.
709. Springer-Verlag, New York, 1993. :

(6] D. Eppstein and J. Erickson. “Iterated nearest neighbors and finding minimal polytopes”, Discrete
and Computational Geometry, Vol. 11, 1994,321-350.

[6] G.N. Frederickson and D. B. Johnson. “The complexity of selection and ranking in X +¥ and matrices
with sorted rows and columns”, J. Comput. System Sci. Vol. 24, 1982, pp. 197-208.

[7] D. T. Lee. “ Maximum clique problems of rectangle graph”, In Advances in Computing Research, Ed.
F. P. Preparata, pp. 91-107, Jal Press, 1983

[8] J. Matousek. “On enclosing k points by a circle”, Information Processing Lelters, Vol. 53, 1995 217-221.

[9] N. Megiddo. “Applying parallel computatmn algorithms in the design of serial algorithms”, J. Assoc.
Comput. Mach., Vol. 30, 1983, pp.852-865.

[10] M. H. Overmars and C-K. Yap. “New upper bounds in Klee’s measure problem”, SIAM J. Comput.,
Vol 20, 1991, 1034—1045

146

Walking in the visibility complex with applications to visibility polygons
and dynamic visibility

RIVIERE Stéphane *

1 Introduction

The visibility complex is a data structure that encodes all
visibility relations between objects of a scene in the plane.
However, in some applications only a subset of these infor-
mations is relevant at a time, in particular visibility informa-
tions about rays issued from (resp. going to) a given ohject

0.

We first consider the set of faces of the complex repre-
senting rays issued from a given object. We define an or-
der on these faces and show, once the visibility complex is
computed, how to visit all of them with no additional data
structure in optimal time O(ky), where ky is the number of
faces visited. Then we show how to use this walk to perform
a topological sweep of the vertices incident to these faces in
optimal time OQ(ky), where k, is the number of these ver-
tices, still with no additional data structure.

We next consider the set of faces of the complex represent-
ing rays issued from the “blue sky” and passing through a
Iine segment s which is outside the convex hull of the scene.
‘We show that the previous algorithms can be adapted simply
in this new coniext, and we use these walks for two applica-
tions. First, we show how to compute the visibility polygon
of a line segment s = (p, g) outside the convex hull of the
scene in O(vis(s)+1ty(p)+ty(g)) time, where vis(s) is the

size of the visibility polygon and t,{p) (resp. £,(q)) is the '

time to compute the view around p (resp. g). Second, we
show how 10 maintain the view around a point moving from
p to g. Once the view around p is computed, the algorithm
has a total running time O(max(v(p), v(p, ¢)))}, where v(p)}
is the size of the view around p and v(p, g) the number of

changes of visibility along (p, ¢}. This algorithm is an alter-

native to those we have described in [Riv97b].

*IMAGIS-GRAVIR/IMAG - BP 53
38041 GRENOBLE CEDEX 09 - FRANCE
e-mail: Stephane.Riviere @imag, fr
www: http:/fwww-imagis.imag. fr/Membres/Stephane.Riviere
iMAGIS is a joint project of CNRS/INRIA/INPG/UJF

2 The visibility complex

Visibility computations involve determining the object seen
along directions of vision, that is along maximal free line
segments (line segments of maximal length in free space),
that we also call rays. Recomputing each time the object
seen along & ray can be too time consuming for some visi-
bility problems. One solution to this issue is to classify rays
according to their visibility: To find the object seen along a
ray, we then just have to identify the set of rays that contains
the given ray and to read the visibility properties of this set.

Pocchiola and Vegter [PV96] have devised a new data
structure, the visibility complex, which represents sets of
rays having the same visibility properties. A ray going {rom
an object O to another object O,. being characterized by its
label (Oy, O), the visibility complex is the quotient space of
the space of rays under the following relation ~: ry ~ rq iff
71 can be moved continuously to ro while keeping the same
label. '

We have adapted this structure, created initially for scenes
of convex curved objects, for polygonal scenes: Each side
of a polygon is a distinct object (there is an additional object
Ou which represents the “blue sky” surrounding the scene).
The visibility complex is composed of three types of ele-
ments: faces (2D components), edges (1D components rep-
resenting rays passing through a polygon vertex), and ver-
tices (0D components representing rays passing through two
pelygon vertices, that is edges of the visibility graph). We
say that an element of the complex representing rays of la-
bel (O, O-) has itself a label (O, O,).

These elements are best handled by means of a duality re-
lation, which maps a line { of the scene into a point [* in a

_dual space, and maps all the lines passing through a point

147

p in the scene into a dual curve p*. The only relevant in-
formations in dual space are topological relations between
clements of the complex. We use here any duality relation
equivalentto ! : ycos@ ~ zsin® —u = 0 — I* : (6,u),
that is, with the following property: If { and I are two paral-
lel lines such that I’ is above [, then in dual space I* and I
are two points with the same x-coordinate and I’* is above [*.
This property implies that if a point p is below (resp. above)
aline !, then the dual point {* is above (resp. below) the dual

curve p”. _
Figure 1 shows the elements of the complex represented in
dual space. This figure also shows the general structure of a

vertex

Scene Dual space

Figure 1: Visibility complex in dual space.

face. A face has two extremal vertices (v; and v,) that sep-
arate its frontier into two chains of edges: a chain of upper
edges (lu*, 1%, 2%, and ru*} and a chain of lower edges (rd”,
3*, and [d*). The complex has a lower and an upper semi-
infinite faces of label (Ow, O) that represent rays that are
outside the convex hull of the scene.

Edges of the complex corresponding to rays passing
through p have p* as supporting curve. As shown in Fig-
ure 2, edges whose supporting curve is ru* (resp. rd*, lu*,
and Id*) can be in fact divided into sub-edges: Such edges
are then called fat edges. They can occur only at the be-
ginning or at the end of chains of edges and will be called
left/right-upper/lower fat edges. -

Dual space

Figure 2: Right-upper fat edges.

The visibility complex of a polygonal scene of n total
polygon vertices has a size O(k) — k size of the visibility
graph — and can be computed in optimal O(nlogn + k)
time and O(n) working space with the algorithm we have
described in [Riv97a].

3 Walking in C;(O), elements of the
complex of label (O, .)

The visibility complex encodes all visibility relations be-
tween objects of the scene. However, in some applications
only a subset of these relations must be used at a time, and
visiting all the elements of the complex is then a waste of
time. For example, in lighting simulations (see [ORDP96]
for morc informations on how (o use the visibility complex
for radiosity computations), only faces of label (0, .) (i.e., O
is the ieft object of their 1abel) must be processed to update
the illumination of an object O. :

Let C;(O) denote the set of elements of the complex of la-
bel (O, .} (we do notinclude in C; (O) the two semi-infinite
faces of label (Oy, O)). To visitall faces of C;(0), we de-

" fine an order on theses faces, and visit them in order.

148

Let us consider two faces f and f’ of C;{O) incident to a
same edge e. Notice that, since both faces have label (O, .),
one face is above ¢ and the other one is below e, that is e is
an upper edge of one face and a lower edge of the other. If
f is below ¢, then f’ is above e and we say that f < f (and
vice versa). We can extend this order: We say that f < f'if
there is a sequence {f;) of faces of C;{O} such that fo = f,
Fe=Ff andVO0<i<k, fi < fiy1. It can be proved that any
two faces f and f’ of C;{O) are comparable with respect to
~<, therefore:

Proposition 1 The relation < on faces of Ci{O) defined by
=< f' iff there exists a sequence (;) of faces of Ci{O} such
that fo = f, fi = f' and V0 < i < k there exists an edge
e; that is an upper edge of f; and a lower edge of fi11. isa
total order on faces of C;{O).

Given a face f, we can now define its previous face
prev(f} = maz{f' € Ci{O)| f' < f} and its next face
next(f) = min{f eC{O) | fF<F'}.

All faces incident to a lower (resp. upper) edge of f arein-
ferior {resp. superior) to f . These inferior faces are of two

%L fi<fz

Figure 3: Ordering of faces of C;(O).

Faces inferior to f

sorts: faces incident to sub-edges of the left-lower fat edge,
that are ordered from left to right, and faces incident to nor-
mal lower edges, that are ordered from right to left (figure 3).
Therefore, the previous face of f is the face incident 1o the
last sub-edge of the left-lower fat edge of f if this edge ex-
ists, incident to the first lower edge else. Similarly, the next
face of f is the face incident to the first sub-edge of the right-
upper fat edge if this edge exists, incident to the last upper
edge else.

A face always has a previous and a next face in Ci{O).
If the complex is “warped” modulo 27 (i.e., rays of slopes
differing by 27 are identified), then by starting from f and
always walking into the next (resp. previous) face we visit
all faces of C;(Oco) and “come back” to f. Figure 4 shows
an example of walk in C;{O4,) when faces are visited in dé-
creasing order,

Scene

Figure 4: Visiting faces of C;(Oo) in decreasing order,

On the other hand, if O is a line segment (p, ¢) of the
scene, then the previous (resp. next) face of f may not be-
longs to G;(O). If £ has only one lower edge whose support-
ing curve is p*, then prev(f) does not belongs to C;(0). In
this case, the left extremal vertex of f is v; = p* g™ and cor-
responds to the ray (p, g): f is the first face of C;(O). Like-
wise, if f has only one upper edge whose supporting curve
is ¢*, then next(f) does not belongs to C;{O). The right ex-
tremal vertex of f is v, =¢* Np* and corresponds to the ray
(p,q): f is the last face of C;(0).

So C;{O) has a finite number of faces that are located be-
tween the curves ¢* and p*. To visit all faces of C;(0), we
Just start from its first face (which can be found in O(log n)
time if needed) and walk into the next face until encounter-
ing the last face.

If each face has a pointor to the first (resp. last) sub-edges
of its right (resp. left) fat edges (pointors that can be com-
puted during the construction of the complex), then the pre-
vious and the next faces of f can be found in constant time:

Proposition 2 Withour any supplementary data structure,
Jaces of C1(O) can be visited in increasing (resp. decreasing)
order in optimal time proportional to the number of visited
faces. '

4 Topologically sweeping vertices of
G(0)

We have seen that we can visit the faces of C;(0) in optimal
time. If for each face f we visit each of its incident vertices,
then we can visit all vertices of C;(0Q) in optimal time: Such
vertices are incident to at most three faces of C;(0). How-
ever, visiting a vertex several time is not practical: If a vertex
must be processed only once, then we must keep an historic
to check whether a vertex has been visited before. Moreover,
there is a natural partial order on the vertices of the complex
-—v < ¢’ if there is a monotonous path of consecutive edges
from v to v" — and it is more interesting to perform a topo-
logical sweep of the vertices of ¢ (O, that is, to visit then in
a way compatible with their order: We can then use the co-
herence of the sweep to update informations in constant time
instead of recomputing them each time.

We use the walk devised in the previous section to do a
topological sweep of these vertices in increasing order; We

149

walk on the faces of C;(Q), and for each visited face J we
sweep some of its incident vertices,

Those swept vertices must be chosen so that when the
walk is completed, (1) each vertex of G (O) has been swept
exactly once (therefore only a subset of vertices of f must be
swept when f is visited), (2) the sweep is coherent locally,
that is, for each face f its vertices have been swept from left
to right, and (3) the sweep is coherent globally. Property (2)
is a consequence of property (3), but we mention it because
it helps to devise the sweep.

a b

Figure 5: Sweeping vertices in increasing order a. in G, (0),
b. in C;(Oco).

We first consider C; (O}, with O # O,. Figure 5(2) shows
aface f of C;(O) and the order in which incident faces of f
are visited (dotted arrows) in increasing order. We see that
when we visit f, we can sweep neither its extremal vertices,
nor vertices that separate sub-edges of its right-upper (resp.
left-lower) fat edge: If we did, the local coherence of prop-
erty (2) would not be satisfied. So we visit only the other
incident vertices (black cireles, bold arrows), those of upper
edges

e = first upper edge of f
while e ¢ right-upper fat edge
sweep left vertex of e
€ = next upper cdge

and those of lower edges

e = last lower edge of f
while e ¢ left-lower fat edge
sweep right vertex of e
e = previous upper edge

as shown in figure 5(a).

We see that incident vertices that are not swept when vis-
tting f are swept when visiting incident faces of f during the
walk (white circles, normal arrows), and finally each vertex
is swept exactly once (with the exception of the left (resp.
right) vertex of the first (resp. last) face of the walk, but we
just have to sweep them before (resp. after) the walk). We
also see that vertices incident to f are swept correctly from
left to right. By considering a dual curve and all successive
faces incident to this curve, we can show that the sweep is
also coherent globally.

Although this sweep is correct for ; (0), it cannot be used
for C;{Oso): The face incident to the first (resp. last) sub-
edge of the left-lower (resp. right-upper) fat edge of f may

be a semi-infinite face of label (O, O). and since these

faces are not visited during the walk, some vertices may not

be swept. _ :

So we perform the walk by visiting faces in decreasing or-
der (dotted arrows in figure 5b). We see that this time only
vertices subdividing the right-upper and the left-lower fat
edges of f can be swept. We sweep them from left to right,
by visiting first vertices incident to the right-upper fat edge,
then those incident to the left-lower fat edge (black circles,
bold arrows). This order is important: A dual curve may cut
first the right-upper fat edge of f and cut next the left-lower
fat edge of f. Other incident vertices.of f are swept when
visiting other faces (white circles, normal arrows). As in the
previous algorithm, it can be shown that this sweep visits
each vertex exactly once and is coherent globally.

This sweep is only valid for C;(Ox) and cannot be used
for C;(O) when O is a line segment (p, g) of the scene: The
first upper (resp last lower) edge of f may be supported by
g* (resp. p*), and in this case faces incident to these edges
would not belong to C;{(O) and vertices incident to these
edges would not be visited.

Both algorithms have their counterpart for sweeping ver-
tices in decreasing order: The walk is done in reverse order
and vertices are swept in decreasing order. Since the walk is
done in optimal time, :

Proposition 3 The vertices of Ci{O) can be swept topolog-
ically in increasing (resp. decreasing)} order in optimal time
proportional to the number of vertices swept.

- Figure 6 shows an exemple of sweep: It takes the walk of
figure 4 and shows how vertices are swept during the walk,
The order in which vertices are swept is similar {o the order

Figure 6: Sweeping vertices of C; (O).

in which vertices of an arrangement of lines are swept with
the algorithm of Overmars and Welzl [OW88]. This algo-
rithm, a simplified version of the original algorithm of Edels-
brunner and Guibas [EG86], uses only one horizon tree and
sweeps each time the leftmost upper vertex of the upper hori-
zon tree.

Finally, we can notice that other combinations of

walk/sweep produce partial sweeps that visit only interior -

vertices (i.e., vertices incident to three faces of C;{O)).

- 150

5 Walking in the zone of a line seg-

ment

We want now to compute the visibility polygon of a line seg-
ment s = (p,), oriented from p to g, which is outside the
convex hull of the scene. We must handle the objects of the
scene weakly visible from the right side of s.

We must therefore consider faces of the complex that con-
tain rays issued from O, and passing through s (from left to
right). The set of rays passing through s is represented in the
visibility complex by the zone comprised between the dual
curves p* and ¢* of the extremities of s, that is, the zone lo-
cated below ¢* and above p*. So we consider the subset of
elements of the complex of C;{Ox) that intersect this zone.
We note this subset £;(s) and call it the zone of s.

We can define a total order on faces of C;(s) in the same
way we did for faces of (;(O). However, when searching
the next and the previous face of a face f, we must now be
carefull to stay in C;(s): The next (resp. previous) face of
f in Ci(O) may not belongs to C;(s). To compute the upper
edge e, incident to the next face nezt,(f) of f in C;(s), we
must do some checking (figure 7a):

en, = edge incident to next(f) in C;(O)
if e, is above g* ‘
" then ens = upper edge of f cut by ¢*
else if e, is below p* '

then e, = upper edge of f cut by p*
else ens = €,

We compute the lower edge ey, incident to the previous face
prevg{ f) of f in C;(s) similarly (figure 7b):

ep = edge incident to prev(f} in {0}
if ep is above ¢* :
then e,, = lower edge of f cut by ¢*
else if e, is below p* :
then e,s = lower edge of f cut by p*
elseep, =€

Figure 7: a. Computing next,{f). b. Computing prevs (f). '

'Ci(s) has a finite number of faces, and therefore has a first’
and a last face. More precisely, a face f does not have a =
next (resp. previous) face in (;(s) either if it contains the
vertex v = p* N ¢* corresponding to the ray (p, ¢) (resp.

{g,p)), orif its next (resp. previous) face is a semi-infinite
face (Ou, Ono)-

Il the supporting linc of § does not cut the convex hull
of the scene, then v = p* M ¢* is in a semi-infinite face
(Oso, Ous). In this case, the first face of C;(s) is the face in-
cident to the first edge cut by p*, and the last face is the face
incident to the last edge cut by ¢* (figure 8 left). Both faces
are incident to a semi-infinite face {(Qoo, Oso)-

If the oriented supporting line (p, ¢} of s cuts the convex
hull of the scene such that s is.behind the scene, then the first
face of Cy(s) is the face incident to the edge cut by p* and to
the lower semi-infinite face (O, O), and the last face is
the face containing v = p* M ¢* (figure & middle).

If the line (p, g) cuts the convex hull of the scene such that
s is before the scene, then the first face of C;(s) is the face
containing v = p* N ¢”, and the last face is the face incident
to the edge cut by ¢* and incident to the upper semi-infinite
face (O, Ouo) (figure 8 right).

BEgA first face

Qs

Figure 8: First and last faces of the zone of s,

-Checking if e, (resp. ep) is below p* or above ¢* is done
in constant time. The computation of all the edges cut by p*
(resp. g¢") is in fact the computation of the view around p
(resp. g). These views can be computed with a sweep al-
gorithm and need not be computed in advance: The edges
cut by p* (resp. g*) can be computed one at a time when
needed so that the computation of the walk and of the views
are synchronized. So the sweep can be performed with no
additional data structure, and '

Proposition 4 Given a line segment s = (p, q) outside the

convex hull of the scene, the ny faces of Cy(s) can be vis-

ited in increasing (resp. decreasing) order in O(log n+n s+
to(p) +tu(q)) time, where t,(p) (resp. t,(q)) is the time to
compute the view around p (resp. q).

The view around a point can be computed by two sweep
algorithms respectively in O(vlogn) time, v size of the
view, and in Q(v) and O(nv) time where these bounds are
light (see [PV96] and [Riv97a)).

We show in the remaining sections how the walk in the
zone of s can be used to compute the visibility polygon of s,
and to maintain the view around a point moving from p to q.

151

6 Computing the visibility polygon of
a line segment

The visibility polygon of a line segment s = (p, g) is the set
of points of objects of the scene that are visible from (at least)
one pointin s. Every two side of the polygon is a transversal
side supported by an object of the scene. The other sides are
radial sides that link transversal sides (figure 9), We consider
here that s is outside the convex hull of the scene.

Figure 9: Visibility polygon of a line segment.

We compute the visibility polygon by sweeping its succes-
sive transversal sides. A transversal side s; of the visibility
polygon supported by an object O is the set of right extrem-
ities of rays of a face f3, face of C;{s) of label (Oy;, O1). 53
can be considered as the portion of O; lightened by the neon
s, the rays lightening s; being those of fj,

Let f2 be the next face of fy in Ci(s} (f2 = nexts(f1)),
and let (O, O2) be its label. Then it can be shown that the
next transversal side of the visibility polygon is the part of
Oz “lightened” by rays of fa. Moreover, if e denotes the
edge incident to f1 and fa, then the radial side linking s; to
82 (when it is not reduced to a point} is supported by the ray
whose dual point in the complex is either a vertex extremity
of e, or the intersection point of e and p* (resp. g*).

Figure 10: Sweep of the visibility polygon.

The walk in C;(s) allows us to compute the visibility poly-
gon of s easily:

Proposition § The visibility polygon of s = (p,q) can be
computed in O(vis(s) + ty(p) + t,(q)) time, where vis(s)
is the size of the visibility polygon and t,,(p) (resp. t,(q)) the
time to compute the view around p (resp. q).

Although its complexity is low, this algorithm is only
close to optimal: Some points seen by p (resp. ¢) may nol
correspond to a radial side of the visibility polygon. Notice
also that the visibility polygon is not necessarily a simple

“polygon.

7 Maintaining the view around a
moving point

We show in this section how to maintain the view around a
point moving from p to g along a line segment s = (p,q)
which is outside the convex hull of the scene.

In [Riv97b] we have proposed two algorithms that main-
tain the view around p, by processing visibility changes in
their order of occurence. Here we use the walk in Cy(s} to
process visibility events in topological order.

The view around a moving point py changes when p,
crosses an (extended) edge of the visibility graph. In the vis-

ibiliy complex, the view around py is the set of consecutive .
edges cut by the dual curve pj,. The view changes when the

dual curve p’ sweeps a vertex of the complex. The vertices
swept by p?, during a displacement of p, must be processed
in topological order so that the view around p, can be up-
dated in constant time at each visibility change.

‘We show here how to maintain the view when the support-
ing line of 5 does no intersect the convex hull of the scene

(others cases are similar). After computing the view around

p, we must sweep vertices of C(s) from p* to ¢*, that is in
decreasing order. When we are in a face f, instead of com-
puting directly the edge incident to the next face, we use the
sweep of the vertices to find the next face. We first sweep
sub-edges of the left-lower fat edge in decreasing order. If p*
cuts the fat edge, we start from the sub-edge cut by p*, else
we start from the last sub-edge of the fat edge. We sweep the
previous sub-edges until encountering a sub-edge cut by g*
or the first sub-edge of the fat edge. Then we sweep the right-
upper fat edge the same way, and the last sub-edge swept is
the edge incident to the next face. '

With this method, the view around g is not computed di-
rectly, but computed implicitly after all the updates of the
view around p.

Proposition 6 Let p,, be a point moving from p to q along
the line segment s = (p,q). After computing the view
around p, the view around p, can be maintained in total
O(max(v(p), v(p,q))) time, where v(p) is the size of the
view around p and v(p, g) the number of changes of visibility
along s.

We have previously presented in [Riv97b] two algorithms

for maintaining the view around a point. The algorithm of

this paper has the advantage over these two algorithms ofup- -

dating the view in constant time (instead of O(log® v(po))
(resp. O(logn)) time) at each change of visibility. More-
over, it dogs not need data structures such as a dynamic con-
vex hull or a priority queue and is in fact independant of the
real trajectory of p,, between pand g.

If a program does not need to process visibility changes in
temporal order, but only in topological order, then this algo-
rithm improves the running time of the second algorithm in
[Riv97b] (which needs an initialization in O(v(p) log v{p))
time).

152 -

When used for consecutive moves, this algorithm has
however the disadvantage over the first algorithm in
[Riv97b] of visiting all faces of C{s), even if some of these

‘faces do not yield a visibility change, and therefore runs in

at least O(v) time for each move.

8 Conclusion

We have shown how to sweep only some parts of the visibil-
ity complex in optimal time and without any additional data-
structure. Although we have studied in this paper walks in
subsets of elements of the complex having the same left ob-
ject in their label, all the algorithms have their counterpart
for subsets of elements having the same right object in their-
label. All these algorithms appear to be relatively smple and
have been or are being implemented.

We have also shown two applications of these walks:
Computing the visibility polygon of a line segment and-
maintaining the view around a moving point.

Asano, Guibas, and Tokuyama [AGT94] have shown how
to sweep some parts of an arrangement of lines in the plane
without the arrangement being built. It would be interest-
ing to see if our walks in the complex can also be performed
without the complex being built.

We are also studying if these walk could be used in algo-
rithms for maintaining the visibility complex upon insertion
or deletion of polygons in a scene, to identify the elements
of the complex that are modified by this insertion/deletion.

Finally, we have extended the algorithm for computing the
visibility polygon of a line segment to line segments inside
the scene. However work remains to be done to ameliorate
its complexity.

References

[AGT94] Te. Asanc, L.J. Guibas, and T. Tokuyama. Walking on an ar-
rangement topologically. Internat. J. Compuz Geom. Appl.,
4:123-151, 1954

[BEG86] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an
arrangement. In Proc. 18tk Annu. ACM Sympos. Theory Com-
put., pages 389-403, 1986,

{ORDP96] R.Ori, 8. Rivigre, F. Durand, and C. Puech. Radiosity for dy-
namic scenes in flattand with the visibility complex. Comput.
Graph. Forum, 15(3):237-248, 1996. Proc. Eurographics *96.

M. H. Overmars and E. Welzl. New methods for computing
visibility graphs. In Proc. 4th Annu. ACM Sympoes. Compur
Geam pages 164171, 1988.

[PV96] M. Pocchiola and G. Vegter, The visibility comph:x. Internai.
J. Comput. Geom. Appl., 6(3%:279-308, 1996, Special issue de-
voted to ACM-S0CG'93.

[Riv97a] S. Rivitre. Visibility computations in 2D polygonal scenes.
Ph.D. thesis, Universitd Joseph Fourier, Grenoble, France,
1997. :

[Rivd7b] Stéphane Riviere, Dynamic visibility in polygonal scenes with
the visibility complex. In Proc.]13th Annu. ACMSympos Com-
pul. Geom. (Communication), 1997.

[OW38]

The 3D Visibility Complex: a unified data-structure for global visibility
of scenes of polygons and smooth objects

Frédo Durand, George Drettakis and Claude Puech
iMAGIS-GRAVIR/INRIA *

Abstract

In this paper we describe a unified data-structure, the 3D Vis-
ibility Complex which encodes the visibility information of a
3D scene of polygons and smooth convex objects. This data-
structure is a partition of the maximal free segments and is
based on the characterization of the topological changes of
visibility along critical line sets. We show that the size k of
the complex is §2(n) and O(n*) and we give an output sen-
sitive algorithm to build it in time O((n® + k) log n).

This theoretical work has already been used to define a
practical data-structure, the Visibility Skeleton described in
a companion paper.

1 Introduction

Visihility is a crucial issue; motion planning in robotics, ob-
ject recognition in computer vision, lighting simulation or
view maintenance in computer graphics are some examples
where global visibility computations are required. The no-
tion of "coherence” is often cited as the key to treat these
problems efficiently and not restart every computation from
scratch, but its characterization is not straightforward.

The usual space-subdivision methods do not translate the
line nature of visibility, since a line of sight intersects many
cells of any subdivision. _

Computational geometers have characterized sets of lines
in space by using Pliicker duality. It is an oriented projec-
tive 5D dual space in which lines of space are naturally and
linearly embedded (lines intersecting a given line are asso-
ciated with hyperplanes). Its main drawback is the necessity
of an intersection with the Pliicker hypersurface [CEG'96,
Pel90). The scenes considered have always been polygo-
nal and are mainly restricted to isothetic or c-oriented poly-
gons. {In fact there exists a few resulls on ray-shooting with
spheres involving parametric search without Pliicker coordi-
nates [MS97]). These techniques have been used by Teller

* Laboratoire GRAVIR / IMAG. iMAGIS is a joint research project
of CNRS/INRIA/INPG/UJF. Postal address: B.P. 53, F-38041 Greno-
ble Cedex 9, France. Contact E-mail: Frederic.Durand@imag. fr.
hitp://www-imagis.imag.fr

153

in computer graphics to compute the antipenumbra cast by
an area light source through polygonal portals [Tel92). The
problem with these methods is that intersections of lines
with the entire scene are considered; occlusion is not really
treated.

In computer vision, the aspect graph has been developed
to characterize the viewpoints from which the scene has the
same topological aspect. The viewing space (52 for ortho-
graphic projection, R® for perspective projection) is parti-
tioned along visual events. Construction algorithms have
been developed for polygons and algebraic objects, both for
orthographic and perspective projection, and some of them
have been implemented; see {EBD92] for a good survey. A
main drawback of aspect graphs is their size: O(n®} for or-
thographic projection, and O(n®} for perspective projection.

To build the aspect graph, Plantinga and Dyer [PD90] de-
fined an intermediate data structure called the asp. For the
orthographic case, it is a partition of the 4D space of oriented
Iines of space according to the first object they hit, and for the
perspective case it is a partition of the 5D space of oriented
half lines (rays). This approach has been limited to polygo-
nal scencs. It was applied to maintain views, but the degrecs
of freedom allowed by the implementation were limited to
rotation along a predefined axis [PDS90].

Inlighting simulation, researchers have computed the dis-
continuities of the lighting function (which correspond to
the limits of umbra and penumbra} also called disconti-
nuity meshes. This characterizes the visibility of a light
source, Initially only a subset of discontinuities where com-
puted (e.g., [LTG93]), followed by algorithms computing all
the discontinuities, together with a structure, the backpro-
Jjection, which encodes the topological aspect of the light
source{DF94, SG94]. These approaches are nonetheless re-
stricted to a single light-source at a time.

Recently, a data-structure which encodes all the visibility
information of a 2D scene called the Visibility Complex has
been defined [PV96]. This structure is a partition of the set
of maximal free segments according to the object they touch.
Optimal construction zlgorithms have been developed for
smooth convex objects [PV96] as well as polygons [Riv97]
and used for lighting simulation [ORDP96].

In [DDP96] we introduced the 3D Visibility Complex for

scenes of convex smooth objects (the polygonal case was
simply mentioned). An O(n* logn) brute-force algorithm
was roughly sketched, and applications for lighting simula-
tion, walkthroughs and aspect graph computation were pro-
- posed. : . :

In this paper, we present a unified version of the 3D vis-
ibility complex for scenes of polygons and smooth convex
objects. It is based on a complete catalogue of critical line
sets which are lines where visibility changes. We derive
bounds for the size of the complex and present an output sen-
sitive construction algorithm. '

Moreover, the formalism described in this article has been
used to develop and implement a global visibility data-
structure called the Visibility Skeleton [DDP97]. It is a sim-
plified version of the 3D visibility complex for polygonal
scenes built using a brute-force algorithm.

2 Scenes and maximal free segments

‘We consider scenes of polygons and algebraic smooth con-
vex objects. Concave objects and piecewise smooth objects
are beyond the scope of this article but could be handled by
considering other critical line sets described by the theory
of singularity [PPK92, Rie87]. The algebraic objects are as-
sumed to have bounded degree. In what follows, n repre-
sents the overall complexity of the scene which is the total
number of objects, polygons, edges and vertices. The ob-
jects are assumed to be in general position; degeneracy is-
sues are not addressed in this paper.

In this work we do not consider lines but maximal free
segments to take occlusion efficiently into account. Intu-
itively, a segment represents a class of rays, and we want to
group the rays that.“see” the same objects. Since many seg-
ments can be collinear, we need a fifth dimension to distin-
guish them. But it is not a continuous dimension: there is
only a finite number of segments collinear to one line. See
figure 1(a) where a 2d equivalent is shown. The segments a
and b are collinear, t is tangent to the object and is adjacent
to segments above and below the object. Topologically we
have a branching structure represented in fig. 1 for parallel
segments. Note that almost everywhere the graph is locally
1-dimensional. Similarly in 3D, the segment space is a 4D
space embedded in 5D. This can be seen as a unification of
the spaces used by Plantinga and Dyer [PDS0]: in the ortho-
graphic case they deal with a 4D space and in the perspective
case with a 5D space.. _

We use the same parameterization for lines as [PD90,
DDP96]: they are represented by two coordinates of direc-
tion, the angles # (azimuth) and ¢ (elevation) which are the
spherical coordinates of the director vector, and the coordi-
nates {u,) of the projection onto the plane perpendicular to
the line and going through the origin (the axes of of the plane
are chosen such as u is orthogonal to both the director vec-
tor and the vertical). See figure 1(b). Note that if ¢ is fixed
we obtain all the lines contained in a set of parallel planes.

Figure 1: (a) 2D equivalent of the segment space: Parallel
segments in the scene and local topology with branchings.
(b) Parameterization of lines in space.

We call it a -slice. If we also fix v, we obtain the lines of a
plane in which ¢ and v are-the polar coordinates. We call it
a pu-slice. '

3 Critical segments

We define a segment to be in general position if it touches ob-
jects only at its extremities. A segment that touches objects
in its interior will be called critical. At such an intersection
there is a local event. If a segment touches more than one
object in its interior, we call this a multilocal event. Critical
segments are grouped into critical segment sets. The dimen-
sion of such a set can be seen as the number of degrees of
freedom a segment has to keep the events. We can also refer.
to the codimension of such a set, which is the complement
to the dimension of the space (the number of fixed degrees
of freedom).

For the class of scenes we consider, there are two Kinds of
local events: tangency events and vertex events. The object
or the vertex are called the generators of the event. To stay
tangent to an object, a segment has thiree degrees of freedom.
1t is of codimension 1. It is of course the same when a seg-
ment goes through the edge of a polygon. We call thisa T
event from tangency (also referred to as E from edge in the
aspect graph or discontinuity meshing literature which deals
with polygonal scenes). A segment that goes through a ver-
tex has two degrees of freedom (rotation), and thus has codi-
mension 2. We call ita V event.

The combination of many local events causes a multilocal
event, and the codimensions are added. We use the notation
+ to describe such a combination. For example, a segment
that is tangent to an object and that goes through a vertex be-
longs to a T' + V critical line set of codimension1 +2 =3
(it is a 1D set). _

There is also a different kind of multilocat event that was
not described in [DDP96]. A segment can be tangent to two
objects and belong to one of their common tangent planes. In
this case, the common tangent plane adds one codimension.
and we use the notation ++. For example T + +T critical

i54

Dimension | Type Configuration

3 T O

2 T+T %
\ Pay

I T+T+T %@‘
rer | OO
T+V STr

0 T+T+T+T %@O\
T4++T+T %ﬁé\\@
T+T+V m@
Vv S

Table 1: faces of the visibility complex.

segment sets have codimension 14141 = 3 (1D set). (One
may think of the example of two parallel cylinders and notice
that lines contained in a bitangent plane have two degrees
of freedom. . This case is not considered here because it is
degenerated.) These events are crucial for dynamic mainte-
nance of views, aspect graphs and discontinuity meshes. For
example a sphere hidden behind another sphere will appear
when their outlines are tangent, that is when_the viewpoint
lies ona T + +7 segment.

Each local event corresponds (o an algebraic equation: a
line tangent to an algebraic object or going through a ver-
tex. A set of critical segments can thus be associated with
the connected set of lines verifying the corresponding set of
equations.

Events caused by faces are considered as T' + T events
since they involve two edges. In the same way, segments go-
ing through an edge are V' + V events. The reason why the
" case of vertices {(which could be seen as two edges events) is
distinguished is that they introduce “discontinuities™ at the
end of edges and require a specific treatment as we shall see
in section 5.4.

4 The 3D Visibility Complex

The 3D visibility complex is the partition of maximal free
segments of 3-space into connected components according
to the objects they touch. Its faces of dimension 4 are max-
imal connected components of segments in general position
with the two same objects at their extremities.

The different faces of lower dimension correspond to crit-
ical segments as summarized in table 1.

(a)

Figure 2: (a) Scene with an O(n) Visibility Complex (b)
Scene with an O(n*) Visibility Complex (an example of
T + T + T + T critical line is shown).

Theorem 1 The size of the 3D visibility complex is Q(n)
and O(n*) where n is the complexity of the scene.

Proof (sketched)

The number of (k-1)-faces adjacent to a k-face is bounded.
For example a }-face 71 + 1o + T3 is adjacent to five 2-faces:
two faces Ty + T (there are two different faces because one
extremity of the segments can lie on the object tangent at T
or not. See [DDP96]), 71 + T3 and two T + T3,

Each 4-face is adjacent to at least one 3-face, a 3-face to at
least one 2-face, and a 2-face to at least one 1-face. We just
sketch the demonstration. For a givenface F' of the complex,
we consider the associated critical line set 5. This set of lines
contains a line set §* with one more codimension (one of the
lines tangent to one object is also tangent to a second object,
one of the lines tangent to two objects belongs to one of their
common tangent plane, and one line going through a vertex
is tangent to an object), Consider a continuous path {Tom the
line associated with a segment s of F to one of S', and the
corresponding continuous path over the segments. If all the
segments of this path have the same extremitics, F is adja-
cent to the face with one more codimension associated with

S, otherwise when the extremity changes there is a tangency-

local event and one more codimension.

Note that a 1-Tace may be adjacent 1o no O-face (we give
an example below of a scene without a 0-face).

So the size of the complex is bounded by the number of
1-faces which are not adjacent to a 0-face plus the number
of 0-faces. For each kind of events, the number of possible
systems of algebraic equations depends on the number of ob-
jects implicated, the T'-+T 4T+ T critical line sets are thus
the most numerous with O(n*).

We show in figure 2(a} an example of a scene with a vis-
ibility complex of size O(n): there is one T + +T face for
each pair of neighbour spheres. Note there is no 0-face in
that case. The scene in figure 2(b) is the same as in [PD90]
and has an O(n*) visibility complex. There are two “grids”,
cach one composed of two very slightly distant orthogonal
sets of & parallel rectangles (this is also valid with thin el
lipsoids). Consider a rectangle in each of the four sets: there
isalwaysa T + T + T + T critical segment.

155

W

ﬁ

a ® -
Figure 3: (a) Parameterization of the directions. (b) Initial v
sweep (¢} sweep. '

Visual events considered in the aspect graph literature
[EBD92, PD90] correspond to the 1-faces of the visibility
complex. For example the topology of a view changes when
a vertex and an edge are aligned from the viewpoint. The
aspect graph is in fact the arrangement of those events in the
viewing space. This explains its size: O(n®).in the ortho-
graphic case where the viewing space is § 2 and O(n®) in the
perspective case where the viewing space is R3,

In [DDP97] we presented a data-structure called the Vis-
ibility Skeleton which corresponds to the graph of the 0 and
1-faces of the visibility complex. First experiments with a
few typical computer-graphics scenes show that the number
of these faces (and thus the size of the complex) is about
quadratic in the number of input polygons.

5 Output-sensitive sweep

Our algorithm is a double sweep with a preprocessing phase.
First the scene is swept by a horizontal plane and a 2D Vis-
ibility Complex [PV96] of the wu-slice is maintained (fig-
ure 3(b)). We then sweep ¢ (figure 3(c)), but some O-faces
can not be detected during this sweep and have to be prepro-
cessed.

5.1 Sweeping the initial slice

To build the initial y-slice, we first maintain a pu-slice of

the 3D visibility complex which corresponds to the 2D vis- -

ibility complex [PV96] of the sweeping plane. We briefiy
review the 2D visibility complex. It is the partition of the
segments of the planés according to the objects they touch.
Its 2D faces are connected components of segments touch-
ing the same objects (they are pu-slices of the 4-faces of the

3D visibility complex). They are bounded by edges which

correspond to segments tangent o one cbject (v slices of
the 3-faces T') and vertices which are free bitangents of the
2D scene (pv-slices of 2-faces T+ T). Since a view around
a point corresponds to the extremities of the segments go-
ing through this poiat, it corresponds to the traversal of the
2D visibility complex along the 1D path of these segments.
The object seen changes when the path traverses a new face,
which occurs at an edge of the 2D complex. In the case of a
polygon, the chain of edges of the 2D complex going through
one of its vertices is the view around this vertex.

Figure 4: When the first vertex of a polyhedron is swept, the
2D view is computed in the sweeping plane and is restricted
for each edge adjacent to the vertex by considering the angle .
formed by the direction of the two adjacent polygons.

Figure 5: Fusion-restriction of a view around edges when a
vertex is swept '

The 2D visibility complex has to be updated when the
sweeping plane is tangent to an object or conlains a vertex
and when three 2D slices of objects share a tangent.

When the sweeping plane starts intersecting an object, we
have to “insert” this object in our 2D complex. This is done
by computing a view around the point of tangency or around
the vertex using the current 2D visibility complex. This can
be done in O(v log n) where v is the size of the view using '
the techniques described in [Riv97]. When the path of this
view crosses an edge of the 2D complex it corresponds to a
new T + T or V + T face of our 3D complex. In the case
of the first vertex of a polygon, the view has to be restricted
for each edge of the polyhedron, corresponding to the view
seen by a vertex of the 2D slice (see figure 4).

Symmetrically, when an object stops intersecting the
sweeping plane, the corresponding faces of the 2D visibil-
ity complex are collapsed. These faces are those along the
chains of edges corresponding to segments tangent to this
object. Their removal can be done in O(v) where v is again

the size of the view.

When a vertex in the middle of a polyhedron is encoun-
tered the 2D views around the points corresponding to the
edges under the vertex have to be merged, and then the view
around this vertex has to be restricted for each edge above
the vertex, in the same manner as first vertex sweep-events,
see figure 5. Each operation is linear in the size of each view,

As the plane moves, three slices of objects can share a tan-

156

gent (corresponding to a T+ T4 T face of the 3D complex),
in which case the 2D visibility complex is updated using the
technique of [Riv97]. Basically, for each bitangent we com-
pute the value of v where it will become tangent to a third
object and store these sweep-events in our queue which re-
quires time O(log n) whenever a bitangent is created.

Finally, a bitangent of the 2D complex can correspond to
a common tangent plane. For each bitangent, we compute
the value of » for which it will lie on a bitangent plane and
insert this sweep-event in the queue. Of course, these sweep-
events have to be discarded if the bitangent is collapsed be-
fore.

5.2 Principle of the ¢ sweep

We now have computed a -slice of the 3D visibility com-
plex. It is the partition of the segments contained in the set
of horizontal planes. In this ¢-slice, 1-faces of the complex
have dimension 0, 2-faces have dimension 1, and so on.

During the @-sweep (fig. 8(c)) we maintain this y-slice
as well as a priority queue of sweep-events. In what fol-
lows, we will only describe the update of the 1-faces of the
visibility complex, the update of the upper dimensional is
done at each sweep-event using a catalogue of adjacencies of
the 1-faces which for reason of place cannot be given here,
As stated before, the number of adjacent upper-dimensional
faces is bounded; their update does not affect the complexity.

We first prove that some sweep-events are regular: a 1D
component of the ¢-slice is collapsed as its two extremities
merge. These sweep-events can be detected by computed for
cach 1D component of the ¢-slice the value of ¢ for which it
will collapse. We will then study the case of irregular sweep-
events.

5.3 Regular O-faces

Consider a Ty + Ta + T3 + T3 segments with extremities
Oy and Os and elevation angle o (fig. 6). Consider the 1D
critical Line set Ty + To + T3. We locally parameterize it by
o and call it [(ip). The ruled surface described by I(y) cuts
04 at po. Two 1-faces of the complex are associated with
1(y), one for @ < g and one for ¢ > wo; one has Os at
its extremity, the other Oy. It is the same for To+ T3+ T4
Moreover the two 1-faces before g are adjacentto a 2-face
T, + Ts. In the -slice, this 2-face is a 1D set bounded by
the slices of Ty + T» + T3 and T2 + T3 + T4 This 1D set
collapses at o, it is thus a regular sweep-event. It can be
detected by considering the adjacent T+ T + T faces in the
(o-stice and maintaining a priority queue.

The T + +T <+ T faces can be handled the same way be-
cause they are adjacent to a pair of 7' + +T and a pair of
T + T + T 1-faces, and the faces of a pair are associated
with the same line set.

-~

Figure 6: T + T + T critical line set adjacent toa T + T +
T + T critical line.

Figure 7: None of the T' + V critical segment sets adjacent
to this V' + V critical segment exist before ¢y

5.4 Irregular O-faces

Unfortunately, all the 0-faces arc not regular sweep-events.
The T + T + V and V + V events cannot be detected in
this way. The main reason is that vertices represent discon-
tinuities at the end of edges, and we have no guarantee that a
1-face adjacent to such a O-face exists for ¢ < (g. See figure
7 where the four T + V faces appear at yq; this corresponds
in the dual space to situation (b} of fig. 8.

These events thus have to be preprocessed by considering
all the V'V pairs and all the Object-Object-V triplets.

Fortunately, at least one slice of an adjacent 2-face exists
before such O-faces appear (face V; in fig 7). The proof is
omitted from this version. This face is found using a search
structure over the 1D components of the -slice ordered by
their generators. The O-face is then tested for occlusion: we
test if the generators (V3 here) lies between the extremities
(O and O2) of the 2-face. It can then be inserted.

5.5 Non monotonic 1-faces

There is another kind of irregular sweep-event. A 1-face of
the complex can appear during the sweep without a 0-face
event. This is obviously the case for T + +T events since
they can be adjacent to no O-face, but this can also be the
case for T + T + T events. Consider the associated line
set, it is not necessarily monotonic with respect 10 ¢ (see fig.
8(c)). These sweep-events also have to be preprocessed and
inserted in the ¢-slice with a search over the 1D components.

5.6 Complexity of the algorithm

Theorem 2 The visibility complex can be built in time
O((k + n®)logn) where n is the complexity of the scene,
and k the number of 0-fuces of the complex. :

157

T IovTs W Ta+T3+Ts Vi+T3 W
VT

Ti1+T2+T4 Ti+T3+Ts i Ti+T2+Tz
Vi+T4

Ta+T3+T4 Ti+Te+Ts V2+T2

(@ (b} ()
Figure 8: Different sweep-events represented in the dual
space. The T+ T+ T +T event(a)is regular, butthe V4V
event (b) has to be preprocessed as well as the null derivative
with respect to ¢ of the T + T + T events (c).

During the initial v sweep, each view computation re-
quires time O(vlogn) where v is the size of the view. A
view corresponds to the number of 3-faces of the 3d visibil-
ity complex adjacent to the appearing/disappearing 2 faces.
The total cost is thus bounded by O(k log n}. Each tritangent
event requires time O(log n), here again the cost is bounded
by O{klogn).

During the o sweep, each regular event requires O{log n)
to maintain the priority queuve.

The preprocessing of the other 0-faces and non-monotonic
1-faces requires the enumeration of all the triplets of objects
and the insertion of the computed faces in.the priority queue,
it is therefore O(n? log n).

The output-sensitive nature of this algorithm is very
important since experiments on a few polygonal scenes
[DDP97] have shown that the number of T+ 1T + T + T
segments which is responsible of the theoretical O(n*} is in
fact much less than the number of T + T + V segments.

6 Conclusions and future work

We have introduced a unified data structure, the 3D visibility
complex, which encodes the global visibility informations
for 3D scenes of polygons and convex smooth objects. Its
size k is §3(n) and O(n*) and we have presented an output-
sensitive algorithm to build the structure in time O((n® +
k)logn). :

Future work includes the use of the visibility complex to
maintain views around a moving viewpoint, a study of the
events involved by concave and piecewise smooth objects,
the development of a better construction algorithm, and the
incremental update of the visibility complex when an object
is moved, added or_removed.

Acknowledgments

The authors would like to thank Seth Teller, Michel Pocchi-
ola and Sylvain Petitjean for vcry fruitful and inspiring dis-
cussions.

References

[CEGT96] B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and "

[DDPS6]

[DDPIT]

[DF94]
{EBD92)
[LTG93]

MS97]
[ORDPY6]
1PD90)]

[PDS90]

[Peio0]
[PPK92]
[PV96]

[PV96)

[Rie87)

[Rive7)

[5GY4]

{Tel92]

158

1. Stolfi. Lines in space: combinatorics and algorithms. Al-
gorithmica, 15:428-447, 1996,

F. Durand, G, Dreitakis, and C. Puech. The 3d visibility com-
plex, a new approach to the problems of accurate visibility. In
Proc. of 7th Eurographics Workshop on Rendermg in Porto,
Portugal, June 1956,

F. Durand, G. Drcttakls. and C. Puech. The visibility skeleton:
A powerful and efficient multi-purpose global visibility tool.
Compuier Graphics {Siggraph’97 Proceedings), 1997.

G. Drettakis and E. Fiume, A fast shadow algorithm for area
light sources using back projection. In Computer Graphics
Proceedings, Annual Conference Series: SIGGRAPH *94 (Or-
lando, FL), July 1994.

D. Eggent, K. Bowyer, and C. Dyer. Aspect graphs: State-of-
the-art and applications in digital photogrammetry. In Proceed-
ings of the 17th Congress of the Int, Suciety for Phawgramme-
try and Remote Sensing, 1992.

D. Lischinski, F. Tampieri, and D. Greenberg. Combining
hierarchical radiosity and discontinuity meshing. In Com-
puter Graphics Proceedings, Annual Conference Series: S1G-
GRAPH 93 (Anaheim, CA, USA), August 1993,

S. Mohaban and M. Sharir, Ray shooting amidst spheres in 3
dimensions and related problems. to appear in SIAM J. Com-
puting, 1997,

R. Onti, S. Rivitre, F. Durand, and C. Puech. Radiosity for dy-
pamic scenes in flatland with the visibility complex. In Proc.
of Eurographics, Poitiers, France, 1996,

H. Plantinga and C. R. Dyer. Visibility, occlusion, and the as-
pect graph. JJCV, 1990,

H. Plantinga, C. R. Dyer, and B. Seales. Real-time hidden- -
line efimination for a rotating polyhedral scene using the as-
pect representation. In Proceedings of Graphics Interface 90,
1950. '

M. Pellegrini. Stabbing and ray shooting in 3-dimensionat
space. In Proc. 6th Anne. ACM Sympos. Comput. Geom., 1990.

S. Petitjean, 1. Ponce, and D.J. Kriegman, Computing exact as-
pect graphs of curved objects: Algebraic surfaces. [JCV, 1992.

M. Pocchicla and G. Vegter. Topologically sweeping visi-
bility complexes via pseudo-triangulations. Discrete Com-
put. Geom., December 1996. special issue devoted to ACM-
SoCG’95.

M. Pocchiola and G, Vegter. The visibility complex. Internat.
J. Comput. Geom. Appl., 96. special issue devoted to ACM-
S0CG'93.

J.H. Rieger. On the classification of views of piecewise smooth
objects. Image and Vision Computing, 1987,

S. Rivizre. Dynamic visibility in polygonal scenes with the vis-
ibility complex. In Proc. {3th Annu. ACM Sympa.s- Compultat,
Geom,, 1997,

1. Stewart and S. Ghali. Fast computation of shadow bound-
aries using spatial coherence and backprojections. In Proceed-
ings of SIGGRAPH '94 (Orlunde, Florida, July 1994), Com-
puter Graphics Proceedings, July 1594,

S. Teller. Computing the antipcnufnbm of an area light
source. Computer Graphics, July 1992, Proceedings of S1G-

GRAPH "92 in Chicago (USA).

The width of a convex set on the sphere

F.J. Cobos

J.C. Dana C.I. Grima A. Marquez

Departamento de Matemética Aplicada |

Universidad de Sevilla {Spain)

e-mail:{cobos }dana|grimalalmar}@cica.es

Fax: +34-5-4557878

Abstract

We study the relationship between some alter-

" native definitions of the concept of the width
of a convex set on the sphere. Those relations
allow to characterize whether a convex set on
the sphere can pass through a spherical interval
by rigid motions. Finally, we give an optimal
algorithm to compute the width on the sphere.
Key words: Width, sphere, rigid motions,
convex sets.

1 Introduction

In the plane, the width of a finite set of points
is the minimum distance between parallel lines
of support of the set [8]. This concept and
the computation of the width of a finite set of
points have applications in several fields such
as in robotic (more specifically in collision-
avoidance problems [18]), in approximating
polygonal curves (see [9], [10] and [11]}, etc.
Moreover, the width of a set is familiar in Op-
erations Research as a minimax location prob-
lem, in which we seek a line (the bisector to
the lines of support given the width) whose
greatest distance to any point of the set is a
minimum.

The definition of the width of a finite set in
the plane can be extended to Euclidean spaces
of dimension greater than two. So, if we con-
sider a finite set of points P in the space RY,
the width of P is the minimum distance be-
tween paralell hyperplanes of support of P [8].

As the width of a finite set in the plane is
the width of its convex hull [8], many authors

have studied the width of convex polygons,
because convex polygons are simple sets and
they have many applications in pattern recog-
nition [1], image processing [14] and stock cut-
ting and allocation (see {5], [16] and [6]). By
using the rotating caliper technique [15] or ge-
ometric transforms [3] it is possible to find the
width of a convex polygons in linear time and
space.

We will see that it is possible to adapt the
rotating caliper technique to design an algo-
rithm for computing the width of a set in the
sphere. The study of the width in non-planar
surfaces is motived by motion plannig [13], and
more concretely a subfield of motion planning
of considerable practical interest as it is plan-
ning the motion of an articulated robot arm,
since, as it is well known, in most cases the
points accesible by them are not, in general, in
the plane but in a non—planar surface.

G. Strang [17] proved that the width of a
convex set in the plane is equivalent to the con-
cept of door of the set. The door of a set is
the minimun closed interval such that the set
can pass through it by a continuous family of
rigid motions (translations combined with ro-
tations). Nevertheless, in dimension three this
is not true and H. Stark has contructed con-
vex sets which can pass through a door, either
square or circular, although no projection of
the set will fit in the doorway (see [17]). We
will see that, with regard to this problem, the
behavior of the sphere is exactly the same as
in the plane. '

In addition to the problem of the door of

‘a set, there exist another problems that can

159

be solved knowing the width of a set. For in-
stance, it is easy to see that the line center

(that line minimizing the maximum distance to ‘

each point of a set) is the median (the equidis-
tance parallel to the a pair of parallels) of the
pair of support giving the width.

The goal of this paper is to try to general-
ize these concepts to convex sets on the sphere
and, in addition, to seek necessary and suf-
ficient conditions that those convex sets may
verify to pass through a spherical interval by
rigid motions on this surface, and the relation-
ships between the concepts described above.
These conditions and relationships allow us to
design an algorithm which solves the problem
of the width of a finite set of points on the
sphere. '

Our generalizations will use the concept of
convex set on the sphere. We can define as
in [12] that a set C in the sphere is convex if
given two points of C' the minimun geodesic
joining these points is contained in C.

The angular length of a geodesic arc joining
the points P and @ on the sphere is the angle
between the two radii joining the center of the
sphere with the points P and @ respectively.
-Observe that no convex set on the sphere con-
tains a geodesic arc with angular length greater

than 5

2 Width on the sphere

Before trying to generalize the concept of width
of a finite set in the plane to the sphere, if we
want to give a similar treatment of this idea, we
will examine several alternative definitions that
~ are considered in the plane, keeping in mind
that we will try to preserve those properties
when trying the extension to the sphere. So,
firstly, we would replace the idea of lines of
support of a set by geodesics of support of a
set. In this way, if given a convex set C on
the sphere, we will call meridians of support
of C' to the meridians which intersect C' and
leave the set on one hemisphere. We will call
lune of support of C to the region delimited by
two meridians of support of C that contains

C. As, in the sphere, two differents meridians

have two points in common and they define
only one great circle called equator, thus a lune
of support defines one equatorial arc.
According to these-definitions, we can say
that, given a convex set C' on the sphere, the
time width H{C) of C is the minimun length
between the equatorial arcs defined associated

~ to lunes of support of C.

The main difference between this definition
and the definition of width in the plane is that;
in the plane, two parallel lines of support have
empty intersection, whereas on the sphere two
meridians of support have two points in com-
mon. If we want to preserve the property that
the afcs of support of a convex set have émpty
intersection, similarly as in the plane, we could -

-give another possible definition. Given a con-

el

160

vex set C on the sphere, we will call parallel
of support of C to a parallel which intersects
C and leaves the set on one cap, where a cap
is a part of the sphere divided by this paral-
If we use the idea of pair of parallels of
support, we will conserve the concept of par-
allelism that we had in the plane (in the sense
that they have empty intersection), but note
that parallels in the sphere are not geodesics.

According to the definition above, we can
say that given a convex set C on the sphere,
the tropical width T(C) of C is the minimun
distance between all possible pairs of parallels
of support of C. Observe, that with this defi-
nition the tropical width of a set in the sphere
can be used, as in the plane, in Operations Re-
search as a minimax location problem, in which
we seek a great circle (the equator of the paral-
lels of support given the tropical width) whose
greatest distance to any point of the set is a
minimum.

On the other hand, and folloWing the pa-
per of Strang [17] who proved that the width
of a convex set in the plane is the minimum
length of an closed interval for the set can pass
through it by a continuous family of rigid mo-
tions, we can give other definitions of width
in the sphere as follows, given a convex set C
on the sphere, the door P(C) of C is the min-
imun length between all possible closed arcs of
meridians for the set C can pass through them

by continuous family of rigid motions (transla-
tions combined with rotations) on the sphere.

G. Strang proved that the width of a convex.
set coincides with its door in the plane. But,
as it was pointed out in the introduction, in di-
mension three this is not true and H. Stark has
contructed convex sets which can pass through
a door, either square or circular, although no
projection of the set will fit in the doorway
(see [17]. Thus it is interesting to ask if the
behavior of the sphere is, in this point, similar
to the plane or to the three dimensional space.

In the sphere, we have the following proper-
ties

Lemma 1 Let C be a convez set on the sphere.
Then, P(C) < T(C).

Proof: It suflices to consider the arc of meridi-
ans orthogonal and contained between the par-
allels which define 7(C). The length of this arc
is greater or equal than P{C) and, obviously,
less or equal than 7(C). O

Lemma 2 Let C be a convex set on the sphere.

Then, T(C) < H(C).

Proof: Let # be the lune that defines H(C).
This lune is defined by meridian arcs which
intersect C'in two points P and Q. We consider
the parallels tangent to C in the points P and
(). The distance 7™ between these parallels is
equal to H(C), so T(C) < T* = H(C). O

Therefore, P(C) < T(C) < H(C). Next
theorem says, that, as it happens in the plane,
these three numbers agree in the sphere.

Theorem 3 A convezx set C on the sphere can
pass through a meridian arc of length P(C} if
and only if H(C) < P(C).

Proof: If #(C) < P(C) and as C is contained
in the lune which its equatorial arc has length
H(C), obviously C can pass through this equa-
torial arc by rigid motions. To prove the con-
“verse, assume first that the boundary 8C of C
is smooth, through every boundary point there
is a unique tangent line on the sphere, and it
varies continuously along 8C. Let I be an arc

16l

of meridian of length P(C) and denote by S
the spherical surface. As C can pass through
I, it is possible to define a continuous compo-
sition of motions M : [0,1] = S where M (0}
is the situation of C before going into / and
M(1) the situation after passing through I.
For all ¢ € [0, 1], we can define two applications
fi:[0,1] = [0,%] and f3 : [0,1] — [0, 7] as fol-
lows: fi(t) and f(t) are the angular lengths
between the points P and P and the points
P, and P respectively, where P, and P, are
the intersection of 8C with the arc I and P is
the intersection between the tangents to C' in
the points P, and P, (see Figure 1).

hi{¢)

f2(t)

Figure 1

The application f1 + f2 : {0,1] — [0,27] is
continuous and f1{0) + f2(0) = 0 and f;(1) +
f2(1) = 2, so there exists £* € {0, 1] such that

[+ fa(t) ==
If fi(t") = fult™) = g then the meridian
arc which defines #(C) is contained in J, so

H(C) < P(C). Blse, filt") - 5 = 2 = Aalt").
Suppose that f1(t*) > -;E and so fo(t") < g—

Then, the situation is as in Figure 2.

Figure 2

As the angles in the points A and B are of
ninety degree, the length of the meridian arc
joining P and @ is greater or equal than the
length of the meridian arc joining A and B.
So, H(C) < P(C)

The conclusion remains true for a convex set
C even if 8C is not smooth. We will proceed
introducing a sequence of smooth convex sub-
sets C,, converging to C. As C passes through
T so do the C,, and their time widths must sat-
isfy H(Cr) < P(C). Therefore, H(C) £ P(C)
and the theorem is proved. W

" Then, the three definitions of width we have
considered agree and we can talk about the
width of a set. _

As an inmediate consequence of Theorem 3
we get, ' ’

162

3

Corollary 4 The minimum eguatortal arc of
a convez set C is included in C.

Algorithm of the width on
the sphere

Recall, that in the plane the width of a con-
vex polygon is the minimum distance between
parallel lines of support passing through an
antipodal vertex-edge pair (to each antipodal
vertex-edge pair, we associated the lune define
by the meridian containing the edge and that
containing the vertex such that the equator arc
joins the vertex with the edge). In the sphere
this is not true and it can be achieved in an an-
tipodal edge-edge pair as Figure 3 shows, but
we have

Lemma 5 The width of a convexr polygon is
the minimum distance between meridians of
support passing through either an antipodal
verter-edge pair or an edge-edge pair.

Proof: It is an inmediate consequence of Corol-
lary 4. ' a

Figure 3

In any case, Lemma 5 says us that it is pos-
sible to adapt the rotating caliper algorithm
to find the width of a convex polygon C (the
number of events is linear). Thus we can give
the following algorithm '
WipTH(C) _
1.- Find an initial antipodal vertex-edge pair.
2.- If the associated lune to the vertex-edge pair
contains C, compute its equator arc, otherwise

compute the equator arc of the pair edge-edge
associated to the original vertex-edge pair (this
edge-edge pair is defined from the vertex-edge
pair by considering the edge incident with the
vertex that is not contained in the lune).
3.- Use rotating caliper to generate all pairs as
in (1)-(2). .
4.- Compute the minimum obtained in previ-
ous steps.

It is straightforward to check the following
result

Theorem 6 Algorithm wWinTH(C) computes
the width of a convez polygon C in optimal lin-
ear time.

"References

f[1] S. G. AKL AND G. T. ToussaINT. Ef-
ficient convex hull algorithms for pattern
recognition applications. Proc. 4th. Int.
Joint Conf. on Pattern Recognition (Kyoto,
Japan). 1978, pp. 483-487.

2] J. C. Dana, C. 1. GRIMA AND A.
MARQUEZ. Convex hull in non-planar sur-
faces. 13th European Workshop on Compu-
tational Geometry (CG’97). University of
Wuerzburg, Germany. 1997.

(3] K. Q. BROWN. Geometric transform for
fast geometric algorithms. Dep, Comput.
Sci., Carnegie-Mellon Univ. 1979.

[4] L. DANZER, G. GRUNBAUM AND V. L.
KLEE. Helly’s theorem and its relatives.
Proc. Symp. Pure Math. VII (Providence,
R. L), American Mathematical Society,
1963.

{5] H. FREEMAN. Computer processing of
line-drawing images. Comput. Surveys
(1974}, no. 6, pp. 57-97.

(6] H. FREEMAN AND R. SHAPIRA. Determin-
ing the minimum-area encasing rectangle
for an arbitrary closed curve. Comm. ACM.
18 (1975), no. 7, pp. 409-413.

[7] H. Hopr anND W. RiNow. Uber den
Begriff der vollstindigen differentialge-
ometrischen IFliche. Math. Ann. (1931), no.
63, pp. 209-225.

(8] M. E. HouLe AND G. T. TOUSSAINT.
Computing the with of a set, IEEE Trans.
on pattern analysis and machine intelli-
gence, vol. 10, no. 5, 1988, pp. 761-765.

[9] K. IcHiba anND T. KivoNo. Segmenta-
tion of plane curves. Trans. Elec. Commun.
Eng., Japan, vol. 58-D, 1975, pp. 689-696.

[10]) H. Ima1 AND M. IRI. Polygonal approxi-
mation of a curve: Formulations and solu-
tion algorithms. Computational Morphol-
ogy. Amsterdam, The Netherlands: North-
Holiand, to be published.

[11] Y. KurozuMl AND W. A. Davis.
Polygonal approximation by the minimax
method. Comput. Graphics Image Process-
ing, vol. 19, 1982, pp. 248-264.

[12] K. MENGER. Urtersuchungen iiber allge-
meine Metrik. Math. Ann. (1928}, no. 100,
pp. 75-163.

{13] J. O’'RouURKE. Computational Geometry
in C. Cambridge University Press, 1994.

[14] A. ROSENFELD. Picture processing by
computers. Academic Press, NY. 1969,

[15] M. L. Suamos. Computational Geometry.
Ph. D. dissertation, Yale Univ. 1978.

[16) J. SKLANSKY. Measuring concavity on a
rectangular mosaic. IEEE Trans. Comp.
(1972), no. 21, pp. 1355-1364.

[17] G. STrRANG. The width of a chair. The
American Mathematical Monthly, vel. 89,
no. 8, 1982 pp. 529-534.

[18] G. T. ToussaINT. Movable separabil-
ity of sets. Computational Geometry. Ams-
terdam, The Netherlands: North-Holland,
1985,pp. 335-375.

163

Diameter of a set on the cylinder

F.J. Cobos J.C. Dana C.]. Grima A.Marquez |
Departamento de Matematica Aplicada I

Universidad de Sevilla (Spain)

e-mail:{cobos|danalgrimalalmar}@cica.es.

Fax:+34-5-4557878

Abstract

We present an algorithm that computes the
- diameter of a set of n points in the cylin-
der in optimal time O(nlogn); this algo-
rithm uses as a fundamental tool the far-
thest point Voronoi diagram.

1 Introduction

A well-known measure of the spread of a set
is its diameter (i.e., the maximum distance
between two points of the set). Intuitively,
a cluster with small diameter has elements
that are closely related, while the opposite
is true when the diameter is-large.
concept has led to several related problems
producing a remarkable amount of litera-
ture (see, for instance, {1,6,7,17,18]). But
most of the efforts have been concetrated in
the plane or euclidean spaces, and, in many
cases the set of points in which we are in-
terested are not in an euclidean space but
confined to some surface (or a more gen-
eral space) and the usual techniques are not
valid anymore.

It is known that the computation of the
‘diameter' of a set of n points in every
Euclidean space requires Q(nlogn) oper-
ations. The usual procedure to compute
in optimal time the diameter in the plane
uses the fact that the diameter of a set of
points is equal to the diameter of its con-
vex hull [9], then it is enough to compute

This.

all antipodal pairs and, in a convex poly-
gon, this task can be completed in linear
time, thus the total running time of the al-
gorithm is O(nlogn). Unfortunately, this
method cannot be used in the space since
the number of antipodal pairs in the space
is O(n?). And, in fact it is not known a
O(nlog n) algorithm in dimension 3 (as far

as we know, the best result for the run-.

ning time of a deterministic algorithm for
the three-dimensional diameter problem is
an (O(nlog®n) algorithm due to Amato,
Goodrich and Ramos [2]). In this paper,
we will show that although the procedure

- followed in the plane cannot be applied in
“the cylinder, it is possible to get an opti-

mal algorithm in that surface by using the
farthest point Voronoi diagram.

The main obstacle in the cylinder is that
the convex hull of a set of points is, in gen-
eral, too big [4], and therefore, it is not use-
full as a tool for other problems. In fact,
it is not difficult to find examples of sets

of points in the cylinder such that their di-
ameters are not equal to the diameters of

their convex hulls. Therefore, it is needed
another technique to get an optimal algo-
rithm, in this paper our goal is achieved by
using the farthest point Voronoi diagram in
the cylinder. The structure of this work

‘is as follows, next section will be devoted
“to summarize some results of 4] about the

164

convex hull of a set of point in the cylinder.
In Section 3 we will develop the farthest-

point Voronoi diagram in the cylinder, and
in Section 4 we will present our algorithm.
We will finish with some conclusions, re-
lated problems and open questions.

2 Convex hull in the

cylinder

Several extensions of convexity to non-
planar surfaces (or to non-euclidean spaces)
have been considered in the literature. Most
of them are based on metrical concepts, and
more concretely, in the family of geodesics
of the surface. In order to describe the fam-
ily of geodesics, as usual, we identify the
cylinder with the quotient space obtained
from the plane by identifying those points
with the same ordinate such that their ab-
scisae differ in an integer number. With
the metric obtained from this definition, the
geodesics joining two points in the cylinder
can be identified with the segments in the
plane joining a fixed representative of one
of the points and all of the representatives
of the other point. We say that generatrices
{(z,y) : 2 = 20} and {(z,y) : = = 20 +1/2}
are opposite generatrices.

Using this representation, we can de-
fine the strip of a set of points P =
{(z1, 1), (22, 32), - -, (Zn, ¥a)} in the cylin-
der with y; € y; < ... < y, as the open
strip O delimited by the maximal circles in
the extreme points of P with respect to the
ordinates (O = {(z,y) : 1 < ¥ < yn}):
Equally, we define the m-top of P as the
minimal arc containing all points of P with
the ordinate y, if that arc is shorter than a
half of the circle or the whole maximal cir-
cle if that arc is greater than a half of the
circle or the single point (z,,y,) otherwise
(equivalently the m-bottom).

Then, as Hopf-Rinow’s Theorem [10]
proves that there exists always the shortest
geodesic joining two points, we can define

165

as in [14] that C C § is metrically convex if
given two points of C' the minimum geodesic
in S joining those points is contained in C.
And, as usual, given a set P of points in S5,
the metrically convez hull of P is the small-
est metrically convex set containing P.

It is possible to give the following charac-
terization of the metrically convex hull

Theorem 1 {4]. The metrically convex
hull of a set of N points P in the cylinder

15

1. The convez hull of P in the plane
P is contained between two oppossite
generatrices.

2. The open strip delimited by the points
P union the m-top and the m-bottom
of P otherwise.

Moreover, this metrically convez hull can be
computed in O(Nlog N) time in the first
case and in linear time in the second case,
and it can be decided in which one of the
cases we are in linear fime.

Thus, Theorem 1 says that in many cases
convex hull is too big for many purposes.
In fact Figure 1 shows a set of points in the
cylinder such that the diameter of the set is
not equal to the diameter of its convex hull.

Figure 1

3 Voronoi diagrams on

the cylinder

As it has been said in the introduction, the
main tool in our algorithm to compute the

diameter will be the farthest point Voronoi
diagram. As in the euclidean spaces, given

a set of points S in the cylinder, we de--

note by Vj(¢) the locus of points farther
to #; € S than to any other point of S.
The set of all those loci is called the far-
thest point Voronoi diagram of S, vors(5).
Several methods to compute that structure
are known in the plane and there exists
a direct method, based on the divide and
conquer scheme analogous to the algorithm
for the closest-point diagram, which achives
the result in optimal O(nlogn) time. On
the other hand, Mazén presented in {13] an
optimal algorithm to compute the closest-
point Voronoi diagram of a set of points in
the cylinder. Her method to considers three
copies of the cylinder,and it constructs the
diagram of the sets of 3n points, the dia-
gram in the cylinder is the resulting dia-
gram in the central copy. Therefore, it is
not difficult to see that this method can-
not be used to generate the farthest-point
Voronoi diagram in the cylinder. Then we
will try the divide and conquer approach.

chain. In this order, we suppose that the
original set S has been split in two parts
S, and S; by a parallel ¢ and if 2; € S;
j ='1,2, we denote by Vf (z;) to its Tegion

in vory(S;). Then, '

Lemma 3 If V}(z:) N Vi(z;) e # @, then
the bisector between x; and T; appears in the
dividing chain of Sy and Sz.

Lemma 4 The orthogonal projection of the
dividing chain of S; y Sz on ¢ is @ homeo-
morphism '

Lemma 3 is the key to construct an al-
gorithm in the cylinder similar to the algo-

~ rithm in the plane.

Lemma 2 The bisector of the points P=

(z1,11), @ = (2,42) in the cylinder with
2y < T3 with y1 < ya, is given by the bisec-
tors in the plane of the points P and Q and
Q and P' = (z; + 1,31) (see Figure 2).

L ®
/\Q/Wg
[] | [
J2 P
Figure 2

As far as the key step in the divide and
conquer algorithm is to construct the divid-
~ ing chain, we give some properties of that

Algorithm DIVID-CHAIN(Sy, Sy, ¢):

(1) For p € c. Find z; € Sy y z; € 53 such
that p € V}z1) 0 Vi(z2) N Let z = 2y,
Y = Ta.

(2) Construct the bisector between and y.
(3) Determine the portion of bisector com-
puted in (2) that is in V}(z) 0 VF(y).

(4) Compute the extremes of the portion
already computed of the dividing chain and
update the points z and y. '

Lemma 5
Algorithm DIVID-CHAIN (81, Sa, ¢) computes
the dividing chain between Sy and S, sub-
sets of S linearly separated by parallel c in
linear time.

Then We conclude

Theorem 6 The farthest-point Voronos di-
agram of n points in the plane can be con-

~ structed in optimal O(nlogn) time.

4 Diameter of a sets of

points in the cylinder

Obviously, if the diameter of S is d(u,v) for

 certain u,v € S then u € Vi{v). Therefore,

166

the algorithm to compute the diameter will
be
Algorithm DIAMETER(S)
(1) Construct the farthest-point Voronoi di-
agram of S.
(2) Localize in which region of the diagram
is each point of 5. :
(3) Compute the distance between each
point of S and the point defining the re-
gion obtained in (2).
(4) Report the maximum obtained in (3} as
the diameter.

It is straightforward to check the validity
of the algorithm DIAMETER(S) and then we
have

Theorem 7 [t is possible to compute the
diameter of a set of n points in the cylinder
in optimal O(nlogn).

5 Open questions

Although an optimal algorithm to compute
the diameter is presented, some open ques-
tion arise related to the problem considered
in this work.

First of all, it would be interested to find
a structure that, as the convex hull in the
plane, allows to find from it the diameter
in the cylinder in linear time (observe that
from the farthest-point Voronoi diagram we
find the diameter in O(n log n) time). More-
over, 1t seems to be that our tecnique can
be applied to other surfaces but building the
farthest-point Voronoi diagram colud be a
difficult task.

Another interesting question that has
been studied extensively in Euclidean
spaces is, how many times can the maxi-
mum distance between n points occur? It
is known that in the plane it can occur at
most n times [5], and in the space 2n — 2
times [8]. The case of the cylinder is not
the same as in the plane since it is possi-
ble to give a structure where the maximum

can occur 4/3n. This structure split the
n points in three subsets of n/3 points each
and each of those subsets are a regular poly-
gon in a parallel in such a way that those
polygons in the top and in the bottom par-
allels have their vertices on the same merid-
ians and the other polygon has its vertices
on the equidistan meridians to those con-
sidered before, see Figure 3.

Figure 3

It remains to solve if this example is op-
timal or to find better bounds.

On the other hand, it is possible to
answer completely a related question how
many times can the maximum distance be-
tween n points occur?

Theorem 8 The minimum distance be-
tween n points in the plane can occur at
most 3n — 6 times.

Proof: It is easy to see that the graph of the
minimum distance between points in the
cylinder is planar. Thus, by Euler’s formula
3n—6 is an upperbound and Figure 4 shows
that this upperbound can be achieved. O

Figure 4

References

[1] S.G. AKL AND G.T. TOUSSAINT.
Efficient convex hull algorithms for

167

pattern recognition applications. Proc.

4th. Int. Joint Conf. on Pattern Recog-

nition (Kyoto, Japan). 1978, pp. 483~
487. -

[2] N.M. AMaTO, M.T. GOODRICH AND
E.A. RAMOS. Parallel algorithms for
higher-dimensional convex hulls. Proc.
35th. Annual IEEE Sympos. Found.
Comput. Sci. 1994, pp. 683-694.

(3] F.J.

Copos, J.C. Dana, C.L

GRIMA Y A. MARQUEZ. Voronoi

diagrams in non-planar surfaces .
Preprint. '

[4] J.C. Dana, C.I. GRIMA Y A.
MARQUEZ. Convex hull in non—planar

surfaces. 13th European Workshop -

on Computational Geometry (CG’97).
University of Wuerzburg, Germany.
1997.

[5] P. ERDOS. On sets of distances of n
points. Amer. Math. Monthly {1946),
0. 53, pp. 248-250. |

[6] H. FREEMAN. Computer processing of
line-drawing images. Comput. Surveys
(1974), no. 6, pp. 57-97.

[7] H. FREEMAN Y R. SHAPIRA. De-
termining the minimum-area encasing
rectangle for an arbitrary closed curve.
Comm. ACM. 18 (1975), no. 7, pp.
409-413.

[8] B. GRUNBAUM. A proof of Vazsony-
i’s conjecture. Bull. Res. Council Israel
(1956), no. 6(A), pp. 77-78.

9] J.G. HockiNg Y G.S. YOUNG.
Topology. Addison-Wesley, Reading,
"MA, 1961.

[10] H. HOPF AND W. RiNow. Uber den
Begriff der vollstindigen

differential-geometrischen Fliche, Co-
mentarii Math. Helvetici (1931), no. 3,
209-225. '

[11] M.E. HouLe Y G.T. TOUSSAINT.
Computing the width of a set. IEEE
Trans. on pattern analysis and machine
intelligence, vol. 10, no. 3, 1988, pp-
761-765.

[12] D.T. LEE. Farthest neighbor Voronoi
diagrams and applications, Tech.
Rep. No. 80-11-FC-04, Dpt. EE/CS,
Northwestern Univ., 1980b.

[13] M.L. MAZON. Diagramas de Voronoi
en caleidoscopios. Ph.D. Thesis, Dpto.
de Matemadticas, Estadistica y Com-
putacién. Univ. de Cantabria, San-
tander 1992.

[14] K. MENGER. Urtersuchungen iber all-
gemeine Metrik, Math. Ann. (1928),
no. 100, 75-163.

[15] J. O’ROURKE. Computational Geom-
etry in C. Cambridge University Press,
1994.

[16] F.P. PREPARATA Y M.I. SHAMOS.
Computational Geometry. An Intro-
duction. Springer-Verlag, 1985.

[17] A. ROSENFELD. Picture processing by
computers. Academic Press, NY. 1969.

[18] J. SKLANSKY. Measuring concavily
on a rectangular mosaic. IEEE Trans.
Comp. C (1972), no. 21, pp. 1355
1364. ' .

168

Testing Roundness of a Polytope and Related Problems

{extended abstract)

Artur Fuhrmann *

Abstract

In this paper we study the problem of computing the
smallest-width annulus for a convex polytope in R%
This generalizes a topic from tolerancing metrology
to higher dimensions, of which the planar case has
been investigated by SwansoN, LEE and Wu. We
show this problem to be equivalent to the problem
of computing different variants of Hausdorff-minimal
spheres. We can formulate the latter problem as a LP-
type problem with combinatorial dimension 2(d + 1)
(for the planar case: 4) and prove the uniqueness of
Hausdorff-minimal spheres for arbitrary convex bod-
ies.

The result is an expected linear-time algorithm in
the size of the input, for all these problems. In con-
clusion we describe positive and negative results con-
cerning an extension from spheres to ellipsoids.

1 Introduction and Definitions

In manufactoring, people are interested in ascertain-
ing the deviation of a produced physical shape from
its technical specification. This deviation is then
compared with a given tolerance. The introduction
of new quality-testing machines into the production
process let arise an interest in algorithms that com-
pute certain charecieristic values of physical shapes.
One of these, recommended by the American National
Standarts Institute {ANSI), is the so-called Minimum
Radial Separation (MRS) that is determined by the
minimal possible difference of radii of two concentric
spheres containing the surface of the object in be-
tween. LE and LEE{l] considered a planar convex.
polygon as an input and presented an O(n?)-time al-
gorithm. They also conjectured O(nlogn) to be a
lower bound for the time-complexity of the problem.
SwWaNSON, LEE and WU[6] improved this result by
an factor of n and presented a linear-time algorithm.

*Universitit des Saarlandes, Fachbereich 14, Informatik,
Lehrstuhl Prof. G. Hotz, Postfach 151150, 66041 Saarbriicken,
Germany. Fmail: fuhrmann®@cs.uni-sb.de, Fax: +49 681 302
4421,

Both works use Voronoi diagrams, a fact that compli-
cates a generalization to higher dimensions.

Another type of problems considered hete are prob-
lems concerning approximations of convex polytopes
by spheres. They arise as subproblems in many fields,
such as collision detection, motion-planning or ray-
tracing. Qur solution can be used in different ways.
For example, we are able to approximate convex poly-
hedral patches by spherical caps. The planar case of
this problem arises in the build-up phase of the Arc-
tree, a spatial data-structure that is described in the
book of SAMET[3].

We start by introducing some definitions and nota-
tions. A sphere in d-space with radius » and center ¢ is
given by 8,(¢c) := {x e R?| (x—c)T (x—c)—r? < 0}.
As mentioned before, we use the Hausdorffmetric
6% (., .) to measure the quality of an approximation.
The exact definition and some basic properties follow
later. This paper addresses the following problems:

Problem 1 (minimum-width annulus).

Let ? C B¢ be a convex polytope.

Find an optimal pair (§,8") of concentric spheres,
with § € P C &', that minimizes the difference of
their radii.

Problem 2 (Hausdorff-minimal spheres).

Let P C R? be a convex polytope. _
Find an optimal sphere 8* that minimizes 67 (8*, P),
subject to

{1} no further constraints.

(1) the constraint ‘§* C 9.
(iii) the constraint ‘8* D P’.

Both problems intend not only to find the specific
geometric figure, but also the aptimal value * of the
difference of radii or 67, respectively. For a better
understanding consider problem 2.{#:). It could
easily be mixed up with the well-known I-cenier
problem that asks for a sphere with minimal radius,
containing a set of points. There are convex bodies,
for which we can get a good improvement to the
Hausdorfl-distance by only slightly increasing the
radius of the smallest enclosing sphere.

le9

l-center problem Hausdorf-minimal sphere

Subsequently, we review some well-known facts
from convex geometry that can also be found in stan-
dard textbooks, as BONNESEN, FENCHEL[7]. Let ||.||
be any norm of R4 The Heusdorff-distance of two
bounded sets of points 5,5’ C R? is given by

55(S,5") := max{3B(5, 8,62 (5", 9)},
with 38(5,8") = supesinfyest || x — ¥ |

which is called the directed Hausdorff-distence.
The Hausdorff-distance between two convex bodies

€@ ¢ R4 is easily explained by using the notion

of the parallel-body of € et distance €:
G :={xeR?|3yecC:fx-y| e}

Note, that 4 (€, @) < ¢ is equivalent to € C €. The
analogous statement with equality is true, iff there

. exists no such inclusion for any parallel-body at a

smaller distance than e.

A hyperplane h is called supporiing for €, if
AN € # B holds and € completely lies in a closed half-
space defined by h. Convex bodies have the property,
that there is a supporting hyperplane in every point
of their surface. MINKOWSKI used this property to
define an arbitrary convex body € by a supporting
function sg, given by :

se(n) := sup n”x, for all n € R4

xe€
For example, a sphere 8,(c) can be defined by s(n) :=

cIn+rvnTn. The following properties will be useful
in section 3.

Observation 1. Let @, € C RY be two convex bodies.

and se,se: their corresponding supporting functions.
The following statements hold:

(i) EC € <= se(n)<se(n)foralneR?

(i1) The supporting funciion of the parallel-body of €
at distance ¢ is given by se,(n) := se(n)+el|n||.

2 LP-type Problems

In this section we will give the formal definition and

"review the most important facts about LP-iype prob-
lems, first introduced by SHARIR and WELZL[5).

Definition 1. Let an optimization problem be speci-
fied by a pair (C, w) consisting of a set C of constraints
and a function w : 2¢ — W with values in a linearly
ordered set (W U {—o0}, <), with —o0 < w for all
w € W. A minimization problem (C, w) is LP-type, if
the following constraints are satisfied:

Monotonicity. For any A, B with A C B C C,
we have w(A4) < w(B).

Locality. For any A C B € C with w(4) =
w(B) # —oo and any ¢ € C, the following im-
plication is true:

w(B) < w(BU{c}) == w(d)<w(dU{c}).

We set w(B) := —oo, if we want the value for a set
B C C to be undefined. A subset A is called a basts,
if w(A') < w(A) holds for all proper subsets 4’ C A.
A basis A C B is called a basis for B, if it has the
property w(A) = w(B)}. The combinatorial dimension
of (C,w) is the maximal cardinality of any basis and
is denoted by dim(C, w). A LP-type problem is called
basis-regular, if all bases have the same cardinality.

We need some further notions. A constraint ¢ € C
is called wiolated by B C C, if w(B) < w(B U {c})
is true. If w(B) > w(B\ {c}) holds, ¢ is said to be
ezireme in B. Every basis for B contains all extreme
constraints of B.

The intention behind LP-type problems is the ex-
istence of problems that cannot be formulated in the
form of a linear program, but have very similar com-
binatorial properties. A classical example is the 1-
center problem. (Compare the work of SEIDEL[4] with
WELZL[8].)

The time complexity for solving a LP-type prob-
lem (C,w) is expected linear to [C], if the following
two primitive operations take constant time (in size

of |C}). Better bounds, mainly a subexponential one

for the dependence on the combinatorial dimension,
are known for problems that satisfy basis-regularity.

Violation test. Decide whether a constraint ¢ is
violated by 4 basis B, i.e. whether
w(B) < w(B U {c}) holds.

Basis computation. Compute a basis for a con-
straint ¢ and a basis B.

The properties of the above framework lead to the
fact, that a typical algorithm that solves a LP-type

170

problem works in a dual manner. The posed mini-
mization problem is solved by steadily increasing an
intermediate result. :

3 Equivalence

In this section we want to show, that problem 1 and
all three variants of problem 2 can be solved at once,
by finding a solution for one of these four problems.
This is correct, only if the Euclidean norm underlies
the Hausdorff-distance, We assume the latter for the
rest of this paper. The following result states an inter-
esting geometric correspondence between Hausdorfl-
minimal spheres and minimum-width annuli for arbi-
trary convex bodies.

Theorem 1. Let € C RY be a convez body, ¢ € R

and let all subsequent spheres have the same center

¢ € €. The following stalements are equivalent, if the

Euclidean norm underlies the metric §¥(. |).

(i} There ezists a sphere Sppe 2 C with
5H(8,~+E, e) S [

(ii) There exists a sphere 8, C € with 64(8,,C) <e.

(i) There exists @ sphere with
5H(S,a+e/2, G’) S 6/2.

(iv) There ezists a pair (S,,8.4¢) of concentric
spheres with 8, C € C 8,4..

Sr-!-s/Z

Proof. First, we prove the following equivalence:

forallr >¢ > 0.

(1)

This can easily be shown by using supporting func-
tions and their properties as introduced in section 1.
Let 8 := 8,4, then we have for all n € R

se.(n) = se(n) +evnTn > ss(n)
se(n) > sg(n) —evnTn (2)
= cTn +rvaTn

(i} = (ii). Suppose statement (%) is truc, i.c. there
exists a sphere 8,4, with C C §,,, C €. Since we
have fact (1), this is equivalent to §, C € C 8,4,
which implies claim (%).

(i) = (ii}. We need to prove € C 8., and
Srtefa © Ceza. The first part follows directly from
§#(8,,€) < e. By considering formula (1) with fac-
tor £/2 we see, that the second part is equivalent to
8. cC.

(ii) = (iv}). This corresponds with the previous
thought.

(1v) = (i). Here we have 8, C € C 8,,. which
implies 8,4, C C, after an application of (1). This
satisfies statement (7). O

‘Sr-l-e Q es = 81‘ Qe,

=

Remark 1. As an immediate consequence of the the-
orem, all four statements remain equivalent, if ‘<’ is
changed to ‘=". This settles the equivalence between
all four problems, as pointed out in the beginning of
the section. .

If we take a close look at formula (2), we observe a
correspondence between the geometric object and the
norm underlying the Hausdorff-distance. This means,
that theorem 1 remains correct, if we change the norm
to Ly and the sphere to the Lj-unit-sphere, for exam-
ple.

4 Formulation as a LP-type
problem

4.1 Formulation

In this section we want to show how to formulate
problem 2.(#7i} as a LP-type problem. This settles
the time complexity of problem 1 and 2 to be linear
in the size of the complexity of description of the given
polytope.

The input, a polytope P C RY, is expected to be
given in two ways: As the set P := {pi,...,pn} of
its vertices and as the set H := {hy,... hy} of its
defining hyperplanes. All single objects differ from
each other. TFor each h; we have the corresponding
normal vector n; of unit length, pointing out of P.
We introduce the following parameterization for H
denoted by H(e) := {hi(g), ..., hm(e)}:

hi(e) == {x €R? [nfx < ki +¢},
with JI7(0) := i2, b7 (0) = P

Observation 2. Lei § D P be a sphere and ¢ > (.
It holds:

§H(8,P) <

The crucial point is the existence of cylindrical and
spherical parts on the surface of P,. They have a
smaller radiug than 8, hence they cannol interseel
with 8 and can be ignored.

We now define the pair (C, w) as follows: The set of
constraints is C := PUH. For aset B € C we denote
Bp:=BNPand By := BN H. We want to mini-
mize a factor ¢, such that there exists a sphere § with
Bp C 8 C By(e). The optimal factor ¢* for B is de-
noted by e*(B). If there exist several optimal spheres,
we define the smallest one to be the optimal sphere
8*(B), with radius r*(B). That means, that we lexi-
cographically minimize the pair (¢, r) and denote the
optimal pair for B by (¢*,r*)(B).

In certain cases, the optimal sphere may not exist
and degenerate to a hyperplane. In order to avoid

— PCScH ().

171

this, we restrict the maximal possible radius of any
sphere by a very large constant . This does not affect
the over-all solution of the problem. Formally, we set
W= R x R, and ‘<’ to the standard]exlcogra.phlc
order. The function w is given as follows:

' L Jmoeo 1pr-@orBH—®
w(B) = {(s*,r*)(B) else.

4.2 Uniqueness

We are left to show, that the minimization problem
(C,w), defined as above, satisfies the conditions of
definition 1 and has restricted combinatorial dimen-
- sion. ‘The monotonicity of (C,w) is easy to see and
requires no further explanation. For locality we dis-
cover, that w(A) = w(B) > —oc0,for AC B CC, im-
plies 85(A) = 8*(B), if §*(A) and 8§*(B) are unique.
In order to show uniqueness, we use an old tool from
convex geometry that was already used by PosT(2]
and WELZL[8]. See also BONNESEN, FENGHEL[7].

Definition 2. Let 8o, 81 C R9 be two spheres given
implicitly by fi(x) = (x ~ ¢;)T(x — ¢;) = rf £ 0, for
i = 0,1. The conver combination of 8y and 8, with
factor A € IR is defined by: '

comby (8, 81) :=
{x e R*{ fa(x) := Afo(x) + (1 = M) fi(x) £ 0}.

It can be checked, that comby(8¢,8:) is really a
sphere for A € [0;1], iff 8§01 81 # 0. We need the
following characterizing lemma.

Lemma 1. Let 8y # 8; and 8y := comby (8, 81) be
as above, and lel their radii be denoted by ro,r; and

ra, respectively. IfSoN8y # 0, we have for0 <A < L.
(i) 8gN&; C 8, C8US,.

(ii) 88, N (350 U 881) =88, N J8;.

(ili} ry < max{rg,r }. _

Proof. (i). Let x € 8 N §;, ie. fi(x) < 0 for
i =0, 1. Because of the positiveness of A and (1 —2),
the immediate result is fy(x) < 0, as well as x € 8.

The assumption x ¢ 8y U 81, i.e. fi(x) > 0, directly
implies fo(x) > 0. :

(ii). Let x € 08p N 38; which is equivalent to
fi(x) = 0, for ¢ = 0,1. This means, that fi(x) =0
and x € 88, N (88 U 88;). No further points of
88,88, are allowed to lie on the surface of 8;. Con-
sider such a point x, with fi(x) # 0 for i = 0 or 1.
By the same arguments as before, we have f (x} # 0.

(iii). Can be checked algebraically. Details omit-
ted. O

Theorem 2. Let (C,w) and 8*(B) be defined as
above, with B C C and w(B) > —oco. Then the sphere
8*(B) is unigue.

Proof. Let e* := ¢*(B). We suppose, that there exist
two different spheres 8y, 8; that are optimal for B.
That is, they have the same radius r*(B) and the
property Bp C 80,81 C By (e*) holds. -

Since both spheres are distinct, they have to in-
tersect in a way, that none of both is equal to
conv(8o,8;). We consider 8,75 := combys(80,81)
which contains Bp and lies inside §; U 8;, as stated
in lemma 1.(i). Moreover, lemma 1.(#ii) implies, that
81/2 has a radius < R and therefore is feasible in our
context. We use the observation, that no common
point of 8¢ and 8; can lie on the surface of their con-
vex hull. Then lemma 1.(7i} implies, that 8,/ lies
in the interior of conv(8g, 81) and does not touch its
surface. Hence, no hyperplane of By (e*} can sup-
port 81/3. This contradicts optimality, since &* can
be reduced. _ O

Remark 2. Actually, we need the lexicographical min-
imization of the radius only for sets B with ¢*(B) < 0,
but such values cannot appear as a Hausdorff-distance
(unless both objects are equal). By using similar tech-
niques and the general notions for arbitrary convex -
bodies, as defined in section 1, we can also prove the
following general result.

Theorem 3. Let C ¢ R? be a conver body. The opli-
mal sphere 8% that minimizes ¥ := :S_H(S*,_ C), subject
to 8* D €, is uniquc.

This holds for any norm underlying the Hausdorff-
distance. In the special case of the Euclidean norm
and with the help of theorem 1, we showed the unigue-
ness of all three kinds of Hausdorfi-minimal spheres
and of the minimum-width annulus for arbitrary con-
vex bodies. '

4.3 Combinatorial dimension

The last question not answered concerns the size of
the combinatorial dimension of (C,w). We use the
fact, that a constraint ¢, that is extreme for B C €,
is also geometrically in a kind of extreme position.
We claim:

172

Lemma 2. Let (C,w) be defined as above, and lel ¢
be an extreme consiraint for a subset B C C with
w(B) > —co. Then the geometric object correspond-
ing to ¢ touchkes the surface of 8*(B).

Proof. We present a proof for the more difficult case
¢ € By. For ¢ € Bp the fact can be seen by analogous
arguments. The geometric object corresponding to ¢
is a hyperplane h € H, parameterized by £* := ¢*(B),
for short: h(e*) € By (e*).

Suppose, the sphere 8y := §*(B) has no point in
common with A{e*). This immediately contradicts
optimality, if |By| = 1. Let |By| > 2.

Now, we consider 8; := 8*(B\ {c}) and distinguish
two cases. The first case applies, if one of both spheres
1s contained inside the other. Since w(B\{c}) < w(B)
holds, the both spheres have to be distinct. The
sphere &; proves to be a betier sphere for the con-
straints of B, if we have 8; C 8y. If 8§ C 8; holds, the
- sphere 85 must be better than §; for the constraints
of (B '\ {c}). Both results contradict optimality.

For the second case, consider 8y := comb,(8g, 81}
which describes a continuous movement from 8y to
81, determined by A. Hence, there must exist a
A" € (0;1), such that h~(e*) contains §y/, but h(e*)
does not touch 88;:. Observe, that the situation here
is the same as in the proof of theorem 2. None of the
spheres 8¢,8; is equal to conv(8y,8;). We can ap-
ply lemma 1 in the same way to ensure the feasibility
of 8y« for B. We see, that no hyperplane of By (e*)
supports 8,r, which contradicts optimality. |

Theorem 4. Let the pair (C,w) be defined as above.
Then dim(C, w) < 2(d + 1) holds.

The following proof consists of a new logic/geometric
argument. A similar, but more simple statement
is proven in WELZL[8] by a perturbation argument
whose application is not obviously correct for our case.

Proof. Suppose, there exists a basis B € C with
|B] > 2(d+1). Then [Bgl>d+2o0r |Bp|>d+2
holds. We take a look at the first case; the second
is simplier and can be proven by similar arguments.
Due to the cardinality of By, the values of all sets
considered in this proof are defined.

First we show, that there exists a set A C B with
the property

Vh e A3h' € A\{h}:

3

w(B\ {h}) = w(B\{h,}k'}) > - ®)
We use this property in the following way to achieve
a contradiction: Argumenting with pigeon-hole-
principle, we can claim, that there exists a constraint

h € A whose corresponding b’ € A\ {h} has the prop-
erty w(B\ {h}) > w(B\ {#'}). (For an indirect proof
of this, one may imagine the set A as the vertices of
a finite graph and the correlations ‘A — R as di-
rected edges. Since every vertex has a leaving edge,
there must be a cycle.) Using statement (3), we have
w(B\{h}) = w(B\ {h, k') > w(B\ {¥'}). By mono-
tonicity, this implies w(B \ {h, k'}) = w(B\ {h'}).
Hence, we can examine both sets and the constraint
k' for the condition of locality. We see, that it is
not fulfilled, because A’ is extreme in B, but not in
(B\ {h}). We have a contradicition.

This corresponds to the logical part of the proof;
statement (3) shall be proven geometrically. We
set £ := e*(B) and consider an arbitrary 2 € By.
Since B is a basis, we know by lemma 2, that
h(e*) supports 8*(B). The sphere 8%(B \ {A}) must
intersect h(e*), as can be seen by a distinction of
cases similar to the proof of lemma 2.

.

y, -
v/
/ (s*(B\{h})

We assume, that all normais of the hyperplanes in
By are in general position, i.e. interpreted as points, .
no (d+ 1) of them are allowed to lie in a single hyper-
plane. Then we can show, that there exists a hyper-
plane &' € (B \ {h}), parameterized by c*(B \ {h}),
that does not support 8*(B \ {h}). (To see this, we
can suppose the converse. Consider the unique sphere
that is supported by (d+1) hyperplanes. If all hyper-
planes are translated by the same distance (that can
also be 0) in the reverse direction of their normals,
they define a new, but concentric sphere that cannot
intersect A(e*). Explicitly, this can be shown by ar-
guments of linear algebra.) Lemma 2 implies, that A’
is not extreme for {B \ {h}). This proves (3) with
A:= By.

If the hyperplanes of By do not have the property
of general position, as defined above, we are able to
prove the existence of a set A C By, with |4| > 4, as
needed for (3), by induction over d. We omit further
details here, O

Remark §. We cannot prove basis-regularity. Simi-
lar problems as the 1l-center problem are not basis-
regular, too. '

In the planar case we can even improve our result
and show dim(C', w) < 4 by using fundamental prop-
erties of circles. We conjecture, that dim(C, w) < d+2

173

holds for all d. This is justified by the following ob-
servation: A sphere is uniquely defined by k points
and I parameterized hyperplanes, with 4+ k =d -+ 2,
iff all objects are in general position., We can pro-
cede as before to establish an upper bound of (d + 2}
for the combinatorial dimension under those special
assumptions.

4.4 Algorithmic issues

An algorithm for solving a LP-type problem is given
by SHARIR and WELZL[5]. The input for this random-
ized and recursive algorithm is the set of constraints
C and an arbitrary initial basis A. The output is a
basis for C'. '

It is not difficult to find an initial basis A, even with '
e*(A) > 0. We only need to find a pair of adjacent.

and non-coplanar facets of P, defined by hyperplanes
hi,ho € H. Let p; € P be a vertex that lies in both
facets, and ps € P be an arbitrary further vertex. We
set B := {h1, ha, P1,p2} and use A := basis(B) as
the required basis.

Obviously, both primitive operations can be imple-
mented in constant time, for our problem. A result
of SHARIR and WELZL[5] helps us to establish the
following, summerizing result:

Corollary 1. Let P C R4 be a polytope and N be
the size of its complexity of description. Problems 1
and 2 can be solved in expected time O(22¢N).

5 Extensions to ellipsoids

In general, ellipsoids are very economical approxima-
tions to polytopes, with regard to the complexity of
description. For applications to collision-detection we
are interested in finding an enclosing ellipsoid £* that
minimizes the Hausdorfl-distance. Until now, notions
like smallest enclosing or minimum spenning ellip-
soids denoted ellipsoids with minimal volume. (See
(8], [2].) We only want to mention our results shortly;
for details the reader is again refered to the full paper.

Summerizing, the following holds: Restricting us
to the planar case, we can solve the problem by the
methods of section 4. We: observe, that ellipses can
touch the spherical parts of the parallel-body, if the
Euclidean norm underlies the Hausdorff-distance, for
example. For reasons of complexity, we neglect this
detail.

We define a LP-type problem (C,w) in the same
way as before. Again we are able to prove uniqueness,

Theorem 5. Let € C R? be a planar conver body.
The optimadl ellipse 8* that minimizes 6H(S* €), sub-
ject to 8 D B, is unigue.

To show this, we use techniques similar to the proof
of theorem 3. We distinguish several cases according
to the number of common points with common tan-
gents on the boundaries of two optimal ellipses.

Finally, the combinatorial dimensiocn must be
shown to be restricted. '

Theorem 6. Let the poir (C, w) be defined as above.
Then dim(C, w} < 8 holds.

This statement is proven in & completely different
way. We study the planar subdivision generated by
an ellipse and some supportmg lines that correpond
to a basis.

There are negative results concerning a straightfor-
ward generalization to higher dimensions:

Remark 4. There exist convex bodies that admit un-
finitely many Hausdorf-minimal ellipsoids.

Acknowledgments

The anthor would like to thank Giinter Hotz for his
encouragement and support, and Frank Follert and
Elmar Schomer for several helpful discussions and for
reading preliminary versions of this paper.

References

[1] LE, V. B, anD LEE, D. T. Out-of-roundness problem
revisited. IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-18, 3 (1991), 217-223. '
Post, M. J. Minimum spanning ellipsoids. In Proc.
16th Annu. ACM Sympos. Theory C‘omput (1984),'
pp. 108-116.

SameT, H. The Desi_r,m and Analysis of Spatial Datla
Structures. Addison-Wesley, Reading, MA, 1990.

SEmEL, R. Linear programming and convex hulls
made easy. In Proc. 6th Annu. ACM Sympos. Comput.
Geom. (1990), pp. 211-215,

SHARIR, M., AND WELZL, E. A combinatorial
bound for linear programming and related problems.
In Proc. 9th Sympos. Theoret. Aspects Comput. Sci.
(1992), vol. 577 of Leciure Notes in Compuler Science,
Springer-Verlag, pp. 569-578.

Swanson, K., LEg, D. T., AND Wu, V. L. An op-
timal algorithm for roundness determination on con-
vex polygons. Comput. Geom. Theory Appl. 5 (1995), ~
'225-235,

T.BoONNESEN, AND W.FENCHEL. Theorie der kon-
vezen Kdrper. Springer-Verlag, 1934.

WELZL, E. Smallest enclosing disks (balls and ellip-
soids). In New Results and New Trends in Computer
Science, H. Maurer, Ed., vol. 555 of Lecture Noies

in Computer Science. Spnnger—Verlag, 1991, pp. 359-
370.

23

(3]
4]

[5]

[6)

Yl

174

On hardness of roundness calculation

Sergey P. Tarasov *
Computing Center of RAS, Vavilova 40, Moscow, Russia

e-mail:

Abstract

We prove that it is N P-hard to approximate within
high enough (but polynomial in the input size) ac-
curacy roundness (or minimal width annulus or
equivalently minimal deviating sphere) of a rational
pointset in R™. We establish some simple combi-
natorial properties of the optimal pointsets. As an
application we discuss stability of the Voronoi dia-
graim. '

Key words: computational geometry, roundness,
N P-hardness, the Voronoi diagram.

1 Introduction

The question of finding minimal width annulus of
a finite pointset arise often enough in the context
of computational geometry, see, e.g. [6, 7, 8]. Sim-
ilar problem arise in the Voronoi diagram stability
computations [9].

Let U € R" be any finite set. Denote by
DEV,(U), respectively by DEV;(U), the minimal
distance in Hausdorff metric from U to the set §
of all Euclidean spheres or respectively to the set
H of all (n — 1)- dimensional affine hyperplanes
of R*. Formally (s € §) & (3c € R*,r €
Rls=(y € R* : {ly—¢|| = 7)), DEV(U) =
inf, . s {maxy,ev dist(u;, s)}, where || -|[is the Eu-
clidean norm and dist(u;,s) denotes the minimal
Euclidean distance from a point u; to a sphere s.
DEV;(U) is defined analogously. Note that by def-
inition DEV, (U) equals half of the width w(U) of
U. Analogously DEV,(U) equals half of the width
annulus or roundness sw(lU') of U, where round-
ness by definition equals minimal distance between
a pair of concentric spheres one that contains U
and the other does not.

While considering complexity issues of the prob-
lems like width or roundness computation it is stan-

*Supported in part by grant RFFI 96-01-00662

sergeyQ@ccas.ru

dard to adopt binary or Turing model of computa-
tion in which the input data should be represented
as a finite number of binary strings that are pro-
cessed by some Turing machine. The size of the
input is a total size of the strings involved. The
time or space complexity of the algorithm are de-
fined in terms of the time and space complexity of
the corresponding Turing machine. In particular
this enables to speak about polynomial {in the size
of the input) algorithms.

It is proved in [10] that it is NP-hard to ap-
proximate with high enough polynomial in the in-
put accuracy the width of a rational simplex, and
hence, the problem of computing the width of a
polytope even if it is a rational simplex is in gen-
eral intractable.

In this note we reduce the problem of approxi-
mate computing within high enough polynomial in
the input size accuracy of the roundness of a ratio-
nal pointset to the problem of bounding the width
of a rational simplex. Thus roundness computation
is also in general intractable.

2 Main construction
as

Our geometric con-

struction is very

similar to that of

[10, Theorem 5.5}

But instead of sim-

plex used in [10]

we consider bipyra-

mid. Namely take |

an arbitrary non- |

degenerate (n — 1}-

dimensional ratio-

nal simplex T, _; =

conv{ay,...,an}in

[

Fig. 1.

We are grateful to P.Gritzmann for the discussion of
simplex width problem.

175

the subspace L = {z = (z1,...,z.) € R*|z, = 0}.
Let b = 1/n(Y -, a;) be its barycenter and D its
diameter in L. L = {2 = (z;..
0}. Let b = l/n Soig ai) be its barycenter and
D its diameter in L. Note (see e.g. [10]} that the

square of width of T,—1 in L and the square D®

of the diameter of T, are rational numbers not
exceeding 32n?l, where [is the size of the input, i.e.
total number of bits necessary to encode all ratio-
nal vertices of the simplex. Set ax = b+ he, and
K = {a,...,an,a4,a-}, P = conv(K}, where e,
is a standard basis vector and h = 2151%" Thus
P is a bipyramid with apexes a4+ and the base
T._1. We want to show that if it is possible to ap-
proximate roundness of K within accuracy greater
than 2-64"“ then we can upper-bound (n — 1}-
dimensional width w(T") of T,,—; and our result will
follow from the following fact proved among all in

1q].

Proposition.
complete:

Instance: A positive integer n; n + 1 rational
points forming a simplez in R™; a positive ratio-
nal A '

Question: Is X an upper bound for the square of
the width of T?

Recalling that (n — 1}-dimensional w1dth of the
simplex Tn_1 in L is a rational number and its size
is bounded by 32n% we conclude that in order to
prove N P-hardness of roundness computation it is
sufficient to prove the following inequality

sw?(K) < w(Tho1) < sw?(K) + 278" (1)

The left inequality in (1) is evident as K (and P)
is located between a pair of parallel hyperplanes
that are orthogonal to L and supporting T,,_1. The
distance between these planes is w(T,—1).

Let prove the right inequality of (1). First as-
sume that the center ¢ of concentric spheres which
specify width annulus is located at the infinity (i.e.
corresponding concentric spheres are parallel hy-
perplanes). Let Hy and H_ be parallel supporting
hyperplanes of P whose distance equals the width
of K. One of the vertices ay and one of the vertices
of T'—1 should necessarily lie in one of the sup-
porting hyperplanes. Thus if we denote by a the
angle between the directional covector of the sup-
porting hyperplane and the hyperplane (z|z, = 0)
then tana < 2. Therefore sw(K) = w(K) >
w(Tp—1) cos(a) and w?(Ta-1) < sw(K) + D*R-2
Thus right inequality of (1) holds in this case.
Let now the center ¢ be located at a finite point.
Place the origin at point b. Wé may assume that

flea || < lfea-|l-

The following problem is NP-

o Ty) € R 2o = -

Let ¢ be Hy H,
the projec- s c
tion of ¢ w
on L. Let t
denote. the b
lengths €o
of the g1 r
segments by
and ¢y by &
and t, res-
pectively.
Let width annulus of K be realized by concentric
spheres Sg and S;, sw(K) = R—r, with the center
at ¢ and of the radii R and r, respectively. Let Q be
two-dimensional plane passing through the points
{c,as,a-}. Let g = SRNQNL and p= S, NQYNL.

We claim that the angle 8 = Zcbeg is small
enough. Use the inequality jea_| — Jeay| < w.
In our notation it can be rewritten as follows

Fig. 2.

Vb +)2 + 5% - \/(h——t)2 + 52 < w . This im-
plies (as |bef < < |bel+ D r > &) that -
T D) < F‘:‘:f?_'_p < w and sinfg = TETtET < I"I_"bczip <y

and tan 8 < 2'” . The same inequality holds for the
angle Zepep. '
It can be checked that [ypi2 - sw(K)? <
2sw(K)?tan #° (as § and r~! are small enough).
Now let Hy, Hs be such a pair of orthogonal to
the line geo hyperplanes that g € Hy and Hj is
a supporting hyperplane to P and P lies between

" H, and H,. By construction H; is also supporting

hyperplane to P. Denote the distance between H;
and Hs by %. Let v be an arbitrary vertex of K in
H,. By the above v lies on the (n — 2)-sphere S,
centered at ¢y and of the radius p > rcos(Zegeg) >

. Moreover the distance between v and the line
gcn is < D. Therefore w(T,-1) < @ < |gp| + 2D
w(Th-1) < |opl? -}-321‘1 < suw?(K) +64DT- and
the right inequality of (1) holds.

This proves the following theorem.

Theorem 1. Approzimate computation of the
width annulus or roundness of a system of n 4+ 2
rational points in R™ within high enough (but poly-
nomial tn the size) accuracy is N P-hard :

3 Combinatorial properties of
roundness!
1t is clear that width and roundness computation of

the finite system of points U = {us,...,w} C R*
can be reduced to solving some finite-dimensional

I This section is wri_tfen jointly with M.N.Vyalyi

176

optimization problems. Some simple combina-
torial properties of the width of the polytope
P = convez(U}) in an arbitrary finite-dimensional
normed space (Minkowski space) are established in
[11]

Proposition 2 [11]). Let Hy and H. be par-
allel supporting hyperplanes of P = convez(U)
whose distance is equal to the width of P (we as-
sume that w{P) > 0). Let P, = PN H, and
P. =PnH_. Then dimPy + dimP_ > n—1,
with dimPy = dimP.. = n — 1 when P is centrally
symmetric. Let H denote the hyperplane that is
parallel to and equidistant from H, and H_. De-
note by PT, P~ C H the sets lying at the distance
w({P)/2 from Pt and P~ respectively. Then the
sets Pt and P~ are not strictly separated in H.
Moreover, if a unique supporting hyperplane passes
through any boundary point of the unit ball of the
space involved (i.e. the ball is smooth) then Pt
and P~ are not even weakly separated in H.

We shall show that similar characterization of
roundness can be obtained in the Euclidean case.
Clearly determining DEV,(U) is equivalent to
finding global infimum of the function §{y) =
supucully — u|| ~ infuev|ly — ull. Denote this infi-
mum by A. By definition DEV, (U) = A/2.
Let the infimum of DEV,(U) be attained at a
finite point ¢. Then c is the center of the optimal
- sphere S*(C*, r*). The radius may be recovered by
the formula r* = {(mazyev||C* —u||+min.cv||C*—
ull}/2.
If the infimum of DEV,(U} is attained at the
infinity then the optimal sphere is a hyperplane and
~sw(U) = w(U).

If « is a point and .S is any sphere then the closest
to & point on S is called a projection and is denoted
by °. Thus =% = Argminyes(]|z — v||). The pro-
jection map is one-to-one except for the center of
the sphere involved.

If the infimum of DEV,(U) is attained at a finite
point then let project the extremum points on the
optimal sphere. We distinguish two subsets:

Ain = {v]v = v%" Ju € Argmin{]|C* — u||)}

A% = {ply = us.,‘u € Argmaz()|C* — u|])}

If the infimum of DEV,(U) is attained at the
infinity then let define the subsets A;, and A°%
using notation from the Proposition 2 as follows:
A = UNH_+nw(U) and A™ = UnH;—nw(U),
here n — is a unit normal to H+ chosen in such a
way that A;,, A C H = i“'—';i'—

Theorem 2. Let sw(U) > 0. Then
(i) Ain and A" are not linear separated.

(ii) JAin} + | A% > n + 2.
Proof. Let prove T

{i). In view of the —
Proposition 2 it is >
enough to consider

the case where in- c,
fimum of DEV,(U) ‘e

is attained at finite

point. Assume on / PT A\

the contrary that % % H
there exists a sep-

arating hyperplane Fig. 3.

Q = {zlgz = go} such that gz|s,, < ¢o and
gz]aout > gp. Denote by s (n—2)—sphere formed by
intersection of @ and S, so that s = SNQ. Now for
a positive £ small encugh the sphere centered at the
point C* + €q and passing through the sphere s has
smaller deviation from the set U. A contradiction.

Now let prove (ii). First let consider finite
case. Let L = affine hull{Ain, A°*). Now if
Ain] + |A%| < n+ 2 then it immediately follows
from (i) that dimL < n (otherwise, sets A;, and
A°Y® can be linear separated as they form simplex). '
If necessary arbitrarily extend L to hyperplane (i.e.
dimL=n-1). HC—C) # 0 thenlet p=C - Cy,
where C; is a center of the (n — 2)-sphere LN S.
Otherwise, set p = p, where p is orthogonal to L,

Proceeding as in (i) it is easy to check that for
a positive £ small enough the sphere centered at
the point C* + ep and passing through the sphere
L N S has smaller deviation from the set U. A
contradiction.

Let now the optimal sphere be hyperplane.

The preimages of points in A;, and A°** under
projection map are not contained in any hyperplane
and form a n-dimensional simplex A (otherwise A;,
and A°%* would be linear separated in H that con-
tradicts Proposition 2}. Let S4 be the sphere cir-
cumscribed around A and centered at O.

Using notation H"
of the Proposi-

tion 2 let Sy = S -
S4 N Hy and
S_=SanH_ -
be (n—2)-sphe- 0=0+An n o
res-

sections of 54
by the hyper-
planes Hy H_ +
of the radii ry
and r_, respec-
tively. Let consider a pair of concentric spheres
passing respectively through (n—2)-spheres S, and
S_ centered at the point O = O + An. Here n

UJ’I'

S~

177

is a unit normal to the hyperplane H,; A should
have large enough- absolute value and should have
such a sign so that the distance from O to the
(n — 2)-sphere-section Sy or S_ with smaller ra-
dius were greater (see Fig. 4). Now direct calcula-
tion shows that if the absolute value of A is large
enough then the set U is contained between the con-
centric spheres involved and the distance between
- these spheres is smaller than the distance between
the hyperplanes H; and H_. A contradiction. O
Corollary 1. The inequalities |Ain| > 1 and
|A°%t| > 1 should hold.

Proof. The finite case follows immediately from
(i) of the previous theorem as any point on the
sphere can be linear separated from any finite set.
Infinite two-dimensional case was considered in 7]
and similar to the analysis of the infinite case in
(ii) above can be readily generalized to higher di-
mensions. O - '

Thus in the plane R? an optimal circle (or in-
finite circle— line) minimizing deviation from any
four points should either pass them in alternating
fashion (i.e. the optimal circle pass through {in}
and {out} points alternatingly) or pass through
all of them thus demonstrating a pattern standard
" for Chebyshev-type approximation problems. This
property leads to a straightforward algorithm for
roundness computation of a quadruple of points in
the plane. Partition the quadruple into pairs and
draw mid-perpendiculars to pairs. If they cross at
a point C take the circle centered at C of the radius
equal to half the sum of distances from C' to pairs.
Otherwise (if mid-perpendiculars does not cross)
take an infinite circle— line orthogenal to both bi-
sectors and passing at equal distances from pairs.

Project points on the circle (or line) involved and
check alternation condition. Repeat this procedure
for all partitions of the quadruple into pairs and
choose among all circles satisfying alternation con-
dition the one with the minimal distance from the
quadruple.

For example, for the quadruple of points that
consists of the vertices a,b,c of a regular triangle

and its barycenter there are three optimal circles

of radius 7481'1 centered at points 22 42 o0
respectively ([is the edge length). The roundness
of this configuration equals to sw = 71‘211 .

Note that Corollary 1 (and the analogous state-
ment for the plane [7, Theorem 2} is false for in-
finite U. For example, let U = [(—1,0),(1,0)] UV
(0,£) C R? consists of a segment and a point that
is located near enough to the segment. Then the

width and roundness of the configuration are equal’

tog.

Concluding this section we note that Theorem 2
trivially results in a pseudopolynomial in the di-
mension (and polynomial when the dimension is
fixed) algorithm for computation roundness of a
configuration of (rational) points. Analogous pro-
cedure also exists by the Voronoi diagram argu-

_ ments similar to stated in [6, 7, 8]. Polynomial

solvability in fixed dimension also follows from ef-
fective variants of the well-known Tarskii algorithm
(see, e.g. [12]).

As it has been already mentioned width and
roundness computations arise among all in the
framework of stability of the Voronoi diagram
which we discuss in the next section. '

4 Stability radius of
the Voronoi diagram in the
Euclidean case '

Let P = {p1,-..,px} be a set of sites in n-
dimensional FEuclidean space R". Recall that the
Voronoi diagram V of P (see, e.g. [1]) is the
partition of R™ into k so called Dirichlet regions
Py,..., P, where P, = {z € R™ : |l —pi|| <
|z —pjli, 5 =1,...,k}, and || - || denotes the usual .
Euclidean norm in R".

All definitions below are borrowed from [9],
where some general Tesults are obtained for the

stability. of Voronoi diagrams not only for the Eu-

clidean norm, but also for arbitrary star-shaped
and regular in the sense of [2] distance functions.
Some stability questions for plane geometric objects
are discussed among all in [5]. In particular, [5] sug-
gests a method for computing the ‘tolerance of plane
Delaunay triangulations, a quantity similar to our
stability radius. :

We first define the intersection hypergraph H{P)
of the Voronoi diagram V. The vertices of H(p)
are the Dirichlet regions Pi,..., P , and the hy-
peredges of H(p) are the emptyset and all those
collections of the regions P; that have nonempty -
intersection in R". The hypergraph H({P) is thus
by definition a simplicial complex.

Two Voronoi diagrams are called equivalent if
they have identical intersection hypergraphs.

Let M =R" x R® x ... x R" be the configura-

k times
tion spuce of the diagram.

We shall assume throughout this section that
the distance between two points P = (p1,...,Pk)
and @ = (g1, .- ., qx) of M equals to dist(P, Q) =
maxi=1,. k{|lpi — ¢ll}. In other words we assume
that if the sites are perturbed independently then

178

the extent of a particular perturbation is measured
by the maximum Euclidean distance between the
original and the deviated positions of sites in the
base space. '

A diagram V (treated as a point P = (p1,-- ., Px)
in the configuration space} is called stable [9] if
all diagrams in some neighborhood of P in M are
equivalent.

The infimum of the distance in the configuration
space from a point P to the set of the nonstable con-
figurations is called stability radius of the Voronoi
diagram V and is denoted by Stab(V).

As usual let denote by B(C,r) and S(C,r), re-
spectively a ball and a sphere of radius r and hav-
ing center C. Now we’ll use the notion of the empty
ball introduced by Delaunay (a ball B(C,r} C R"®
is called empty if it has no sites inside).

A set of sites lying on the boundary of soine
empty ball is called a combinatorial empty sphere.

Denote by I'(P} the hypergraph of combinatorial
empty spheres. It has sites as vertices and combi-
natorial empty spheres as edges.

By Delaunay duality hypergraphs H(P) and
I'(P) are isomorphic. = Thus we immediately
conclude that diagram is stable iff all its
subconfigurations— combinatorial empty spheres—
are stable and no new combinatorial empty spheres
arise in some neighborhood of P in the configura-
tion space.

So to test the stability of the diagram we should
single out subconfigurations of sites that are not
combinatorial empty spheres but fall on the bound-
ary of some empty ball after some arbitrary small
perturbations. In a recent paper [9] the configu-
rations not lying on the boundary of any ball are
labelled as antispheres. Moreover we call an anti-
sphere unstable if in a no matter how small neigh-
borhood of it in its configuration space there is a
combinatorial empty sphere. It was proved in [9]
that for a general class of distance functions unsta-
ble antispheres are strongly related to the bound-
ary of some supporting cone of the unit ball of the
space involved. Thus in our Euclidean case all an-
tispheres are simply subsets of sites lying on partic-
ular facets of the convex hull of the sites of the di-
agram. This observation immediately follows from
simple lemma.

Lemma 1. Let U be a configuration of sites not
belonging to any sphere and let U; C S(Ci, i) be a
sequence of configurations that are arbitrarily close
to U in its configuration space as i tends lo infinity.

Then r; = oo when i = oc. '

So a criterion for the stahbility of the Voronoi dia-
gram in the Euclidean space R" may be formulated

as follows.

Let | = dim(affine hull (P)). If the set of sites
is not full dimensional (i.e. if I < n) then clearly
the Voronoi diagram is stable iff the sites form a
nondegenerate simplex or | = |P| — 1.

Otherwise two conditions shouid hold.

1. Geometrically dual to the Voronoi diagram
Delaunay complex should be a triangulation of the
convex hull of the sites of the diagram. (Of course
this rather obvious condition has been widely used
already by Voronoi himself in the theory of types
of quadratic forms [3). Delaunay made it geometri-
cally transparent via the theory of “la sphere vide”,
see, e.g. [4].)

2. Each subset of sites belonging to the same
facet of the convex hull of the diagram should be
affinely independent. :

* Therefore to test stability of the diagram or more

generally to calculate its stability radius we should
take minimum of the stability radii of all combi-
natorial spheres and antispheres {that are immedi-
ately at hand as by product of the diagram con-
struction). Now we specify the sets of combina-
torial spheres and antispheres involved a bit more
precisely.

Let K, be the complex of alt n—dimensional sim-
plices of Delaunay triangulation. Let K., be the
complex of all (n — 1)-dimensional boundary sim-
plices of the convex hull of the sites of the diagram.
For k € K, let Uy = {u;} be the set of neighbor-
ing sites from the star of k in the triangulation. For
k € K1 let Ux = {u;} be the union of neighboring
sites from the star of k in the boundary triangula-
tion induced by Delaunay triangulation and the site
that complements k to the unique n—dimensional
simplex of Delaunay triangulation.

Theorem 3. The following formula holds for
the stability radius of the diagram: Stab(V) =
min{minge g, mingcu, DEVy{u; U k), mingek,_,
minu,.eukDEVh(u,‘ U k)}

Proof. Note that in general we should test sta-
bility of maximal by inclusion spheres and minimal
by inclusion antispheres only. .

Let az < b be any linear inequality defining
facet of the convex hull of the sites of the dia-
gram. The corresponding supporting hyperpiane
(x € RPjaz = b) and the complementary closed
halfspace (z € R™|az > b) are called an infinite
empty sphere and an infinite empty ball, respec-
tively.

Now let consider the set of all geometric empty
spheres circumscribed around n-dimensional sim-
plices of the Delaunay triangulation and let enlarge
it by the set of all infinite empty spheres. By stan-

179

dard argument for the Delaunay triangulation the
surface of any geometric empty sphere is completely
covered by neighboring empty balls (including infi-
nite ones).

This enlarged set of all geometric empty spheres
varies under perturbation of sites but as long as
diagram remains stable no new geometric empty
spheres. can arise or disappear. Thus geometrically
diagram looses stability iff some pair of geometric

empty spheres coincide. This means that one extra .

site should fall on the boundary of the first geomet-
ric empty sphere involved or vice versa. Due to cov-
ering property of empty balls this extra site should
belong to one of the neighboring geometric empty
spheres. If two finite geomeiric spheres coincide
then with necessity this extra site should be oue of
the neighboring sites from the star of the simplex
involved in the Delaunay triangulation. Let two
infinite spheres coincide. Denote by F the simpli-
cial facet that generates one of the infinite spheres
involved. Then extra site should belong either to
the set of neighboring sites from the star of F in
simplicial boundary complex of the convex hull of
the sites of the diagram or be the site that comple-
ments F to the unique n—dimensional simplex in
Delaunay triangulation.

Combining these observation together we get the
resulting formula for the stability radius. O

So to compute the stability radius we come up
against two optimization problems that we state
slightly more generally. We put specifications of
our problems in square brackets.

1. To find a [finite] sphere s having minimal de-
viation DEV,(U) from a given set U, i.e. to find
width annulus [of » + 2 nonconspheric points not
belonging to any affine hyperplanel.

2. To find a (n — 1)-dimensional hyperplane h
having minimal deviation DEV;, (U) from a given
set U, i.e. to find width [of » + 1 points in general
position].

It is well known that number of simplices in De-
launay triangulation is O(k/"/?!) and thus is poly-
nomial if the dimension of the space involved is
fixed. Hence, it follows from the discussion above
that if the dimension is fixed then the stability ra-
dius of the Voronoi diagram can be approximated
with arbitrary accuracy in polynomial time and, in
particular, in linear time in the plane.

But it also follows that in general approximation
of the stability radius with arbitrary polynomial in
the input size accuracy is N P-hard a problem even
for a rational simplex. '

References

[

(

[1} F. Aurenhammer. Voronoi diagrams - a sur-
vey of a fundamental geometric data structure,
ACM Computing Surveys, 23 , No. 3, (1991),
345-405.

[2] F. Clarke. Optimization and nonsmooth anal-
ysis, John Wiley&Sons, N.-Y., 1983.

[3) G. F. Voronoi. Recherches sur les paral-
leloédres primitifs Crelle J., 134, 198-287,
(1908); 136, 67-179 (1909).

[4] B. N. Delaunay. ~ Petersburg number tﬁeory
school, Academy of Sciences, M.-L., USSR,
1947.

M.Abellanas, F. Hurtado and P. Ramos. Re-
drawing a graph within a geometric tolerance,
Graph Drawing,eds. R:Tamassia and I.Tollis,
in Graph Drawing. Lecture Notes in Computer

science. Springer, Berlin-Heidelberg 1995. '

[5)

[6] P. Agarwal, M. Sharir. Efficient randomized
algorithms for some geometric optimization.
problems, Proc. 11th Annu. Symp. Comput.

Geom., 1995, 326-335.

M. Smid, R. Janardan. On the width and
roundness of a set of points in the plane, Proc.
7th Annu. Canad. Conf. Comput. Geom.,
1995.

[7)

"K. Swanson. An optimal algorithm for round- -
ness determination of convex polygons. Proc.

3rd. WADS, Lecture Notes in Computer Sci-

ence, vol. 709, Springer-Verlag, Berlin, 1993,

601-609.

M. Vyalyi, E. Gordeev and S. Tarasov. The
stability of the Voronoi diagram, Comp. Maths
Math. Phys., 36, 1996, 405—-414.

(9]

P. Gritzmann, V. Klee. Computational com-
plexity of inner and outer j-radii of poly-
topes in finite-dimensional normed spaces,
Math.Prog., 59, 1993, 163-213.

10]

P. Gritzmann, V. Klee. Inner and outer j-
radii of convex bodies in finite-dimensional
normed spaces. Discrete Computational Ge-
ometry, 7, 1992, 255—-28(

11]

12] U. Faigle, W. Kern and M. Streng. Note
on the computational complexity of j-radii of
polytopes in R™. Math.Prog., 73, 1996, N1.

180

Applied Geometry and Computer Graphics

Eugene Fiume

Department of Computer Science

University of Toronto
10 King’s College Circle
Toronto, Canada
MS5S 3G4

elf @dgp.toronto.edu
Abstract

‘It has become a priority in computaticnal geometry
to strive for greater impact by searching for ways
of applying techniques from computational geometry
to “real” computation. Likewise, some problems in
computer graphics can greatly benefit from applied
computational geometry. However, I argue that this
important effort requires computational geometers to
first acquire a clear understanding of the pragmatics
and culture of the application. I will illustrate this
point through the use of story about a classic geomet-
ric visibility algorithm. 1 will then enumerate several
. problem areas within computer graphics that could
significantly benefit from collaboration with compu-
tational geometers.

1 Some History

It is difficult to speak of a “classical” algorithm in
computer graphics, for the earliest seminal work in
our field is that of Ivan Sutherland on Sketchpad in
1963, less than 35 years ago. But few would deny
that Gary Watkins® dissertation, the shortest Ph.D.
thesis I have seen in computer graphics, is a classi-
cal algorithm. Often cited as a 1969 technical report
from the University of Utah, the birthplace of com-
puter graphics, only a privileged few have seen the
original work. Most of us will have to be content with
the standard presentation found in good introductory
graphics texts. To their great discredit, some texts
entirely omit a discussion of this algorithm, since it
has sadly fallen into disuse. Nowadays, this kind of
material seems to be better covered in computational
geometry texts. '

181

and
Alias|Wavefront Inc.
110 Richmond St. East
Toronto, Canada
M5C 3Pi

elf@aw.sgi.com

The thesis described a beautiful visibility algo-
rithm that would now be classified as being line
sweep. In computer graphics, we call it a scanline
algorithm, because the sweeping line corresponds to
a scanline, or row, of image pixels. The fundamen-
tal data structures are: an active edge table (AET),
which maintains the edges of polygons, sorted from
left to right, that overlap with a given scanline of an
image to be rendered; and a scanline bucket, which
gives the list of polygons that enier at a given scan-
line. Upon imposing a scanning direction of, say, top
to bottom, a three-dimensional polygonal input scene
could be processed in one pass, and the AET could
be incrementally adjusted in going from one scanline
to its successor. In particular, if y denotes a given
(integral) scanline, and z denotes the (fioating point)
position of an edge along that scanline, then for the
next scaniine given by y — 1, could be incremen-
tally adjusted, or the edge could be removed from the
AET if that scanline has passed both of its endpoints.

This algorithm had several shortcomings, many
of which were corrected in later work: it could not
handle polygons that interpenetrated, it could choke
on nonplanar polygons,! it didn’t work for concave
polygons, and it could have some severe robustness
problems with nearly horizontal edges, sliver poly-
gons, and other corner effects. Nevertheless, this
algorithm changed the way computer graphics was
done: it made clear the importance of efficient, ap-
plied geometric algorithms to computer graphics.

Naturally, many people wanted to understand the
computational complexity of the algorithm. A sim-

"Because polygonal representations are often derived from
polynomial surfaces, we cannot guarantee the planarity of
quadrilaterals in computer graphics. Even on our worst days,
however, we can manage to give users planar triangles!

ple analysis suggests that for n input k-gons with &
constant, there could be ©(n?) fragmented polygo-
nal spans overlapping with an edge; the requirement
to sort these edges would result in an §(n%logn)
lower bound. Certainly this would be the common
wisdom from computational geometry. Watkins’ al-
~ gorithm guarantees that each pixel in the image will
be visited exactly once. Depending on whether the
output resolution is seen as constant or variable, one
may wish to factor the pixel fill cost into the overall
complexity of the algorithm.

Watkins was pragmatic. He saw that polygons
making up the input scene generally had significant
spatial coherence, and he capitalised on that. He ob-
served that in updating the AET, generally a small
number of new edges were being added to an al-
ready sorted list, or that there would be a small num-
ber of interchanges. He thus heuristically employed
exchange-sort and incremental updates to the AET,
usually giving a practical sublinear scanline update
complexity. Subsequent empirical analysis showed
that configurations achieving the worst case of O(n?)

polygons are rare, and that having much fewer than .
~ O(n) polygons in the AET was common. Thus we
expect that Watkins’ algorithm usually runs in close
to linear time.

Elegance, speed, quality. Together with another
lovely algorithm by his contemporary, Warnock,
Watkins® algorithm had all the makings of forever
being a dominant algorithm in computer graphics.

. But life is not fair. In short order, Watkins’ and
" Warnock’s algorithms were summarily dispatched
by a brute force, inelegant, apparently slow, easy-
to-code algorithm called the depth-buffer algorithm.
More commonly, it is called the z-buffer algorithm,
because z corresponds to a depth value after a change
of basis to a left-handed co-ordinate system and after
perspective transformation. It is depicted in Algo-
rithm 1.

*The term coherence in computer graphics is a heuristic
catch-all, referring to-the idea that even in complex environ-
- ments, there tends to be significant correlation within many of
the quantities we compute or measure. For example, we would
expect illumination, shadows, depths, and visibility to vary only
by small amounts as we compute nearby pixel values. Excep-
tions are relatively infrequent. This is reflected by the view that
an array of pixels, which are piecewise constant colour values, -
represents a sufficiently dense sampling of our virtal environ-
ment. :

182

First, we initialise.
VY pixels (i,j) € image
depth[i,j] « oo
colour[i,j] +— background
Now resolve image space visibiliry.
¥ polygons P
V pixels (1,j) € P
if Zp(i,}) < depth[i,j]
depth[i,j] < Zp(i.j)
colour(i,j] + Shadep(i,])

Algorithm 1: The depth buffer algorithm.

In practice, the point-in-polygon problem is re-
duced- to a constant-fime linear interpolation. Sim-
ilarly, the computation of depths and shading are
based on linear interpolation.

Why did the z-buffer algorithm supplant Watkins?
There are several reasons. First, the z-buffer algo-
rithm is exceptionally simple, with fixed bounds on
output complexity based mostly on image resolution
(see below). This makes it ideal for hardware. Sec-

‘ond, as scene complexity (as measured by the num-

ber of polygons) increases, their projected size on
the image plane tends to decrease.3. Thus the actual
number of pixels filled tends to be independent of
the number of input polygons. Third, much of the
computation can be done in low precision. Fourth,
it is possible to extend the z-buffer algorithm to per-
form anti-aliasing (which was always possible with
Watkins® algorithm), a breakthrough that permitted
high quality hardware renderings to be produced.-

Fifth, interpenetrating polygons are not problematic:
the algorithm only depends on resolving the depth
function of a pelygon at each pixel. Often overlooked
is that with high depth complexity, i.e., when many
polygons having different depth: values overlap with
a pixel, numerous expensive shading computations

. are wasted for invisible polygons (cf. the last lines

of the above algorithm). That is, unlike Watkin’s al-
gorithm, the number of pixels visited is not constant
(although the number of distinct pixels is constant).
By the time 3D graphics standards such as
OpenGL started appearing in the 80’s, elegant ren-
dering algorithms based on Watkins and Warnock es-

3In fact, polygons are often much smaller than a pixel in size.

sentially disappeared. By a strange twist of irony,
Watkins’ algorithm was in fact implemented in hard-
ware in the 1970’s. James Clarke, who went on to de-
sign the core graphics architecture of the SGI graph-
ics workstations, learned about graphics hardware by
studying the hardware implementation of Watkins’
algorithm at Utah. Clarke was the inventor of the
Geometry Engine and champion of the z-buffer ap-
proach. But there is a happy ending, as we shall see.
There are a couple of points I would like to make
about this folk story. The first one is that in computer
graphics, we cannot assume that using algorithms
of lower asymptotic complexity will give us better
real performance. The use of the asymptotically-
slower exchange sort in Watkins’ algorithm is impor-
tant when we recall the performance of quick-sort,
for example, on nearly sorted input. The second is
that the best or most elegant algorithm doesn’t al-
ways finish first. In computer graphics, models of
computation are certain to change on us, which may
well change the objective definition of best. Indeed,
the constant need for greater throughput drives us to
- explore different models of computation and to em-
ploy algorithms that better match these models.
1 would like to drive home the point of asymp-
totic complexity. One of the most interesting geo-
metric problems in computer graphics is the compu-
. tation of shadows in polyhedral environments arising
~from area light soorces. Several years ago, George
Drettakis and I were involved in the design of an
intricate shadow algorithm. It consisted of a se-
quence of geometric operations. The composition
of the worst cases of the constituent algorithms we

‘employed resulted in an overall multiplicative worst -

case of the components, giving an absurd O(n!®) up-
per bound. In an area where O(n?) algorithms are
considered functionally intractable, this would be a
disaster. However, we were never able to gener-
ate a worst case that came anywhere close to worst
case, and in fact our algorithm stubbornly exhibited
strongly subquadratic performance. James Stewart
and Sherif Ghali, also from the graphics lab at the
University of Toronto, concurrently developed an-
other shadow algorithm with better worst case per-
formance than ours; again their implementation so
clearly outperforms the worst case analysis that it
gives one pause as to the real value of such analy-
sis for practical algorithms. I am certainly not the

183

first to have spoken of this credibility gap.

An obvious analogy here can be drawn to scien-
tific computation. The error bounds for numerical
algorithms are derived so as to apply to a broad func-
tion space, including pathological functions that do
not readily occur in practice. The extent to which an
error bound is dominated by the behaviour of a nu-
merical algorithm on rare pathological functions de-
termines the relevance of that bound. An identical ar-
gument can be made regarding the relevance both of
specific geometric algorithms and of geometric com-
plexity analysis to computer graphics.

2 Finding a Middle Ground

In numerical analysis, it is no easier to define objec-
tively the “relevant functions™ of an application as a
restriction on, say, the class of L?-integrable func-
tions, than it is for ws in computer graphics to de-
fine a “typical scene”. This complicates the transfer
of innovative algorithms in computational geometry
to computer graphics. One might get lucky and find
that the 2-D visibility problem for, say, star polygons
is just the right class of input for some graphics ap-
plication; more likely, the domain of typical inputs
we will want in graphics will cut raggedly and non-
inclusively through cleanly specified classes of input.
While computational geometers were right to follow
research trajectories that focused on specific classes
of polygons, there is little to suggest that the resulting
algorithms ‘on these classes are necessarily relevant
to computer graphics.

The match between computer graphics and com-
putational geometry is not perfect. If we accept the
argument that geometric algorithms must be better
adapted to problems to computer graphics, and if we
agree that one cannot in general define the class of
typical graphical inputs, then it foltows that applying
geometric algorithms to computer graphics requires
becoming aware of the “culture” of computer graph-
ics. This is both a social and technical process. With-
out such a cultural awareness, the synergies between
our communities will be suboptimal. Naturally, the
better situation is profound mutual awareness, but [
will focus on one-way awareness for now.

3 The Computer Graphics Culture

It’s never easy to define a “culture”, and I will leave
it to some strand of anthropology to make it precise,
but there are some properties of a computer graphics
culture that are fairly easy to isolate.

Having an eye for images. The ability to look
critically and analytically at images seems like a self-
evident property of the graphics culture. It is rather-
more of a skill than first appears. We all have, in
fact, a tendency to accept images too readily. The
analysis of computer-generated images and the abil-
ity to account for artifacts in them is the most im-
portant aspect of our craft. It won't do simply to
say “It doesn’t look right” without a reason. Com-
puter graphics people love to practise a form of vi-
sual forensics by tracing image artifacts back to the -
algorithms that were used to compute the image. Re-
call, for example, that Watkins’ algorithm did not
handle interpenetrating polygons. The z-buffer algo-
rithm blindly handles them by accident; because the
regular z-buffer algorithm is only aware of the orig-
inal edges, not induced edges given by interpenetra-
tion, the algorithm will happily anti-alias the original
edges, but not the interpenetrations. These signatures
are very evident. Furthermore, while it is possible to
treat computer graphics more abstractly as a math-
ematical science, without a passion for making and
assessing images, it is difficult to believe that the sat--

_isfaction of getting a particular visual effect right will
offset the intimidating effort required to achieve it.
Computer graphics people know and appreciate the -

. difficulty of creating images.

Knowing the “pragmatics” of error. A com-
puter graphics person knows that, whether through
incomplete models, imprecise algorithms, or plain
and simple hacks, significant numerical errors will
always exist in our results. We are attuned to un- .
derstanding the nature of errors and we try to di-
vert error into the least evident visual manifestation
possible. Some of this knowledge is folklore, while
some is based on reasonably good science. We know
“that broadband noise is generally iess perceptible to
a viewer than coherent noise (often called aliasing).
Furthermore, in animation, we know that artifacts
that flash on and off are much more annoying vi-
sually than a consistent error one way or the other,
even if the numerical error is higher with the latter

184

approach. Errors are not all the same. This topic
could alone fill several theses (and is in the process
of doing so).

Having an awareness of hardware. The Occam’s
Razor of computer graphics is that when an algo-
rithm can be implemented on a system such that it
lies on a better point of the cost/performance curve,
then it is the preferred algorithm. This does not mean.
to suggest that we have a good definition for either
cost or performance, but we have various indicative
scalar measures for these multidimensional qualities.
We differ from other areas of applied computer sci-
ence only in that the architectural sweet spot for our
graphics applications can change dramatically and
dynamically. Furthermore, our need for both inter-
active performance and offline performance adds ex-
tra wrinkles to algorithm development. It is not easy
and somewhat dangerous for algorithm development
to follow too closely the fashions of hardware, but it
is important to be aware of how algorithms in gen-
eral will map to broad classes of hardware. We need
to remain attuned to the trajectory in which hardware
is going.

The idea that the development of algorithms can
be divorced from their implementation is an accept-
able simplification and abstraction for beginning un-
dergraduates in computer science. It is inappropriate
and downright wrong to cling to this notion when de-

- veloping real graphics software. This comes from a

fervent computer scientist!

Hardware can greatly affect the choice of graphics '
algorithm. The z-buffer algorithm, as we discussed
earlier, completely dominates other visibility algo-
rithms for this reason. Even if we did not have spe-
cialised computer graphics hardware to tip the scales,
the design of microprocessors also has a great effect
on our choices. For example, it will probably always
be the case that algorithms having data structures that
can be contiguously laid out in memory with a mini-
mum of pointers will have far superior memory cache -
performance than heavily linked structures with little
memory locality.

Using heuristics and experience. The demands
of high-performance graphics systems requires every
trick in the book. Need I say more?

4 Synergies

All this said, there are many problems in which syn-
ergies between computer graphics and computational
geometry can be realised. I will not give references
to specific results, and instead encourage potentially
interested researchers to leaf through recent proceed-
ings of SIGGRAPH, Eurographics, and Graphics In-
terface, while also looking at the relevant computer
graphics journals. In the remaining space, I will out-
line some problems for which two heads may be bet-
ter than one. Most of these problems are already well
defined problems in computer graphics.
Parameterisation of irregular polygonal
meshes. Although curved surfaces are the most
significant modelling primitives in design applica-
tions, polygonal meshes have begun to dominate
in entertainment applications (e.g., games), terrain
models, and real-world data extracted by scanning
instruments. Unlike traditional, regular polybedral
models, many new models are composed of meshes
of polygons (typically triangles) of highly nonuni-
form density, aspect ratio, and area. The topology of
these meshes is often uncertain a priori. This makes
the two-dimensional parameterisation of such sur-
faces extremely difficult. Such a parameterisation is
essential to the process of mapping two-dimensional
textures onto these surfaces. A parameterisation
of a mesh of polygons given by a set of vertices
{V; € R?} assigns a pair of values U; = (u;, ;)
to each V;. A large set of rules can be applied to
the choice of these U;, such as topological consis-
tency, shape preservation, and so forth. Ultimately,
however, most such parameterisations involve some
kind of optimisation process in which the three-
dimensional points V; are “flattened” onto the plane
with U; being the projection of V; on that plane.
Unfortunately, very few surfaces can be flattened
exactly, which pushes solutions of these problems
toward an interesting blend of optimisation, discrete
and continuous geometry, and topology.
Multiresolution algorithms and data represen-
tations. An increasingly common response to the
endless need for increased data complexity is the use
of data structures and algorithms that operate on, or
construct, various levels of detail of data. The scale
at which an algorithm operates at any given time
is matched to factors such as the desired visual de-

185

tail, machine speeds and bandwidths, data distribu-
tion, and so on. This opens up several interesting
problems in geometry, including the need for new
data structures, intersection and collision resolution,
parameterisation, and surface tessellation, interroga-
tion, manipulation and modification.

Query problems for subdivision surfaces. Sub-
division surfaces are an important class of new mod-
elling primitives that has recently arisen in computer
graphics. In this case, an initial mesh of polygons is
repeatedly (and possibly selectively) subdivided ac-
cording to a set of rules. Each iteration of these rules
provides a refinement of the initial mesh, thus giv-
ing an inherently multiresolution representation. Un-
like traditional surfaces which are written in terms
of smooth, generally polynomial, basis functions, an
analytic form for the limit surface may not be avail-
able. In addition to those already mentioned above,
there are some additional problems associated with
subdivision surfaces, such as computing or approx-
imating areas, tangents, trims, and intersections of
parts of subdivision surfaces.

Mesh simplification. Because polygonal meshes
have become so prevalent in computer graphics, we
must also deal with the case of overly complex
meshes. Reducing the number of polygons in dense
meshes is an interesting problem that requires a sig-
nificant amount of applied geometry so as to best pre-
serve qualities such as curvature, tangency, area, etc.
in the reduced model.

Incremental visibility. There is an increasing de-
mand for making dynamic changes to complex ge-
ometric models. Given the size of many geometric
models, even making a pass through all the data may
impede interactive performance. New algorithms are
required to effectively isolate changes in the visibility
graph. One hopes that through a coherence assump-
tion, the size of the changes is substantially smaller
than the overall model.

Visibility and shadow computation for curved
surfaces. Despite the trend toward polygonal mod-
els, many models still include algebraic and paramet-
ric surfaces. There are very few visibility and shadow
computation algorithms operating directly on curved
surfaces. Note that quadric shadow boundaries can
arise even in polygonal models. The shadow bound-
artes for higher-order geometric models and light
sources will be mathematically fearsome.

Silhouette computation and adaptive tessella-
tion. It is easy to tell that much of computer graph-
ics software is Canadian, because many of us refer
to a characteristic problem of seeing the polygonal
approximation to curved regions as “nickeling”.. By
looking at the tessellations of curved geometric mod-
els into polygons, it is very clear that the place at
which faceting is most evident lies at the silhouette
of an object. This is an interesting geometric con-
struction, since it involves computing the outline of
a projected geometric surface. Silhouette computa-
“tion has been an active area of research both in com-
puter vision and computer graphics, and yet substan-
tial progress in this area for the purposes of graphical
rendering has not been forthcoming.

5 Conclusion

‘There is a somewhat happy ending to the Watkins’
story. Plane sweep techniques, essentially two-
dimensional generalisations of Watkins’ algorithm,
are quite prevalent today in the implementations of
new illumination algorithms. Rendering systems of
the future may well be the offspring of a marriage
between z-buffer and Watkins’-style algorithms.
Computer graphics and computational geometry

are areas that have a lot to share, but finding the right
match between our areas of expertise and our cul-
tares is less obvious that it at first seems. Computer
graphics is an extremely pragmatic area, filled with a
concern for the final image, and less concerned with
the elegance of the complexity structure of geomet-
ric algorithms. Not all computational geometers will -
find our methods appealing, but I hope I have con--

_ vinced some of you that it might be worth the effort
to walk with us and get to know us better. -

Acknowledgements/Disclaimer

The history reported in this paper is folkloric, and
while it has been the subject of several conversations
with some computer graphics “pioneers”, I accept all
‘blame for inaccuracies. ' '

186

Reconstruction of 3-D Surface Object from its Pieces

GOKTURK UgoLUK I. HAkk1 ToROSLU

Dept. of Computer Engineering
Middle East Technical University, Ankara

ucoluk®ceng.metu.edu.tr
toroslu@ceng.metu.edu._tr

Abstract

The problem of reconstruction of broken surface objects embedded in 3-D space is handled. A coordinate
independent representation for the crack curves is developed. A new robust matching algorithm is proposed
which serves for finding matching pieces even when some brittle pieces are missing.

1 Introduction

The handled problem appears heavily in field archeology where reconstruction of hollow objects becomes a
tedious and laborious task. It is the problem of jigsaw puzzle assembling of 3-D surfaces with no texture or
color hints provided.

Previous work of [1, 2, 3] and the work of Wolfson {4] attack the 2-D problem and propose appropriate
matching algorithms. Although Wolfson's algorithm is not the most efficient (O{nlogn +en)) it is especially
well designed to deal with noise. In his work, 2-D objects are represented by shape signatures that are strings
which are obtained by polygonal approximation of the boundary curve. Freeman [5} describes 2-D shapes by
a set of critical points (like discontinuities in curvature) and computes features between consecutive critical
points. This method is weak in treating curves that do not possess such points. Ayache and Faugeras [6]
attack a more difficult problem where rotation, translation and scale change is allowed. Their matching
algorithm is based on finding correspondence between sides of polygons that approximate the 2-D shape
curves. Another special feature based recognition technique is the one developed by Kevin et el.. This
technique makes use of breakpoints and carry by nature the handicap mentioned for [5].

Works dealing with 3-D also exists. Kishon and Wolfson 7] introduce the arclength, curvature and torsion
as signatures of a 3-D curve but decide not use torsion because its requirement to the third derivative. The
matching problem is attacked as a longest substring search problem in their work. Kishon, in his work [8]
proposes a spline fit which enables the easy incorporation of torsion as a stable signature. In [9)], Schwartz
and Sharir propose various metrics (like color on the boundaries) and a smoothing operation on the data.

There exists real world problems where a 2-D solution is insufficient (Reconstruction from broken pieces
of solid objects is one of them) so a 3-D solid model is inevitable. Furthermore, in many of those real world
problems a perfect match between two subjects is not possible. Environmental aging effects, imperfections in
the digitization environment, the accumulation of systematic errors in numerical operations all contribute to
this imperfection. Therefore, a robust, fault tolerant partial matching is required. This work proposes such
a solution. In our work 3-D surface piece objects are represented by their boundary curves. These curves are
parameterized by their curvature and torsion scalars which are calculated from the discrete 3-D boundary
data and quadratically added to form a circular string of a single value. A noise tolerant matching algorithm
serves to find the best match of two such circular strings even for cases where the match is fragmented.

2 Mathematical Representation of the Problem

We will assume that the object which will be reassembled has no thickness, hence can be represented by a
surface in a 3-D Euclidean space. The pieces of a surface structure embedded in a 3-D space are surfaces with
boundaries that are closed curves of the 3-D space. Since a matching over these closed curves corresponds
to the task of reassembling, a coordinate independent parameterization of these curves are very desirable.
The fundamental theorem of the local theory of curves (see {10, 11]) reads as

Given differentiable functions x(s) > 0 and 7(s), s € 1, there ezists a regular parameterized curve
7 : T+ R? such that s is the arc length, k(s) is the curvature, and 7(s) s the torsion of 7.

187

v

Moreovei", any other curve 7, satisfying the same conditions, differs from 7 by a rigid motion; that
is, there exists an orthogonal lmea.r map 0 of R®, with positive determinaent, and o vector € such
that 7 = Q of+ 2.

What we can conclude from this theorem is exactly what we were 1ook1ng for:

If two different curves which are parameterized by their arc length produce the same torsion and
curvature values then we can conclude that these curves are the same (modulo rotation and trans-
lation).

Furthermore, the converse is also true. Curvature is defined as
N'l

k=

~ Torsion is defined as

T = 2-2_ ['F’F”F”I]

where the square brackets [---] have the special meaning of

A, Ay A
[A’B'C"] =|B, B, B
C. Cy C:

Furthermore the prime denotes differentiation with respect to the arc length s:

— - gf)
T ds i

As known s is defined by:

t g ¢
s(t) = f ds = / Vdi-di = / Vdz? + dy? +dz?
0 0 0

Where ¢ is the parameter of the curve that maps each value in an interval in R into a point r(f) =
(z(1), ¥(t), z(t)) € R? in such a way that the functions z(t), y(f), z(¢) are differentiable.

Intuitively speaking, the curvature at a point on the curve is the measure of how rapidly the curve pulls
away from the tangent line at that point (so in a close neighborhood of that point we will have a deviated
tangent line). '

Tangent is nothing else than the change in the position vector 7
namely 7'. The magnitude of the change rate of this vector [7"is
called curvature.

Consider at any point on the curve the plane formed to include the vectors 7/ and 7" (at that point). This
plane is called the osculating plane of that point. Again intuitively speaking, the torsion at a point on the -
curve is the measure of how rapidly the curve pulls away form the osculating plate at that point {so in a
close nelghborhood of that point we will have a deviated osculating plane).

188

FBINF"(5) i"(f+iai!‘\-i‘:j::u)
armal of the oeculati ‘}h_: B
A r At 5 T Gl
g LA P(ors))
A \ L7
B . _

- -
/ L [Geculating plisc o porition B) / \

{Orcxdaring plane u paidios B+AS

g 1

Osculating plane is the plane that contains the 7' and 7" vectors.

Of course this plane changes from point to point. torsion is the

scalar measure of the rate of deviation of this plane (the deviation

of the normal of the plane). torsion is defined as the change in

the magnitude of this deviation. This is so because calculation

reveals that the direction of the change is always in the direction

of 7

In the discrete case we have instances of r which are labeled with an index i. We assume that the labeling

is done such that for any two r; and r;y; instances there exist no provided ry value that corresponds to a
‘curve point that is between them. Hence, the index is the discrete form of the curve parameter. Differentials
will be replaced by differences with the following definitions

Az =3; — i1 Ayi =y — yi1 Ay = ¥i ~ i1

As; = \/Az? + Ay? + Az?

So for the arc length we have s; = 3 _, As;. Once obtained the tuples (7}, s;) the 7,7 #" are calculated
for equally spaced (ds) points in the usual manner. To avoid local divergent behaviors the derivatives are
calculated as an average value in a given radius of neighborhood. Experimentation has shown that a &s
value which is large enough to accommodate ~ 20 As; values performs very well. .

The x; and 7; values form a 2-dimensional feature vector §;. The sequence of feature vectors & forms
the shape signature string. Since the objects dealt with are defined to have closed boundary curves, in all
algorithms operating on the shape signature strings the assumption that these strings round over (i.e. be
circular) will be made. '

3 The Matching Algorithm

The broken pieces might have worn off contours. Therefore matching the algorithm shall be

e robust in matching (i.e. fault tolerant),

¢ allow the non-existence of some minor pieces.
In Figure 1 two pieces with some missing portion and the affect of this on the string representation is
illustrated. In the chosen representation, this corresponds to

e accepting numerical matches with an e tolerance,

e being able to resume the match after a gap of non-matching data. _
The devised algorithm to match two curves represented respectively by the strings &7 and (S (& and
7; are feature vectors) is as follows: we define a matrix A as Aj; =|| & —#; ||. So A is a symmetric with
nonnegative entries.

In the following algorithm a two dimensional array M is filled out. M will be holding the start and end

positions of the matching segments. So, one index takes values as start or end. The second index runs
through an enumeration of the found matching segments. Mot and Mg™? hold the start and end position

" informations of the found pth segment, respectively. A position information of a start (or end) is a pair of
indices, namely the row and column numbers of the A matrix where the segment starts {or ends).

189

: Non-Matching
Matching - Matching

ESSSSNTHATIIISSSSSS 4 Swing,
¢ Curve,
; ﬁ Curve,
\\\ TS ::o:::o!m ENY & Sting,

Matchlng - Matching
Non-Matching

Figure 1: Two matching segments having a missing part

match() + {8 « min{R, C}
p+0
fori+— 1..:Rdo _ -
forj«1...Cdo .
if Ay A Apredecessor(:. i) =€ then
- { (k1) « (3,9)
m 0
repeat {m —m +1
(k1) & successor(k,l) }

until m >S5 V Ay >¢
p+p+1
Mstart — (Z,])
ME““ + predecessor(k,l) } } }

predecessor(z i)« { ifi=1lthenk+ Relsek«i—1
ifi=1lthenl+ Celsel+j—1
return (k,1)} }

successor(i, j) + ((i mod R) + 1,(j mod C) + 1)

From know on, denotationally, we will represent segments by a naming {e.g. a, B or ;). Each segmemt,
naturally, has four values associated: its start position (a row and a column number) in the matrix A and
its end position (4 row and a colurnn number). These are represented by the appropriate combination of an
superscript which is either start or end and a subscript that is either row or column.

The next task is to determine, among the segments found, which can follow which. As was stated, due
to the circular structure of the matched curves a special treatment is necessary in finding the answer to
this question. To avoid the halting problem of the algorithm we impose a canonical order onto the concept
of following. The canonical order we will impose says that if a segment 3 is following a segment o then
afnd < gstart Of course this is ‘a necessary but not sufficient’ criteria that has o be met. (The converse
is not always true: you can have non-following two segments o and § where % < g2iert still holds). To
complete the definition of the following segments we consider tlie possible positions of a segment o (which is
~ going to be followed by) in the A matrix (light shaded areas are forbidden zones for the following segment

to start in due to the imposed cenonical order but it may end in there; dark shedes are the regions where an
overlapping would occur, so the following segment shall have no points in there).

CaSE:L CASE:II Case:III Casg:IV

190

Start and end point-wise, CASE IV and CASE V are not different from each other, so they will be considered
as the same. We define a comparison operator < that will admit two segments as operands and return True
if the right operand is a following segment of the left one and False otherwise. Formally this operator can be
defined as (we are making use of the mathematical notation for representing closed/open/semiclosed sets; in
our ceses sel elements are integral values):
a=<f « ifwrappedrou(a) then SBIL0" € (afpd, adlilt) A Biva € (B2, agiert)
else G54 € (afis, Rl A Beod € (Brtart, RJU (1, agtert
A
if wrappedeor(a) then B8 € (afsf, affi™) A BIE € (B3, agi™)
else ﬁc“.ﬁ?’* € [LaZi)u (ai.’}ﬁ C]
A
if ﬁ:g?rt c (aend C] then ﬁcnd c [Lasturt) U (aend

col col col col

else B27¢ € [1, adlemt

Where we have defined wrappeds(x) + x3°™ > x$™ |, sefrow,col}

The < operator will yield always the correct answer for the cases where a is following 3 or visa versa. For
segments, though, that have overlapping regions the answer is undetermined. Hence we are able to define a
partial order among the set of all found segments, namely the M array. So, we will perform a topological
sort on the M array where < is the ordering criteria. A simple bubble sort will do the job (< stands for
‘content ezchange’):

sort_M (} + for j + 1...lastindex(M) do
for i « 1...(lastindex(M) — j) do
if M1 <M; then M; & M,

The remaining of the algorithm is basically a search for the longest path in a graph where vertices are the
- segments and unidirectional edges between these vertices are introduced from segments to the following
segments. The weights on the vertices are nothing else than the lengths of the segments. The task of
finding the longest match is converted into a task in which the longest path of the described graph is found.
The longest path will yield a maximal weight (length of segments) sum of the vertices (segments) on the
path. To start a search for the longest path we have to identify the starting and terminating vertices of the
graph (i.e. those segments which are not following any segment and segments which are not followed by any
segment). By two linear scans over the M array we are able to identify and mark those segments:

mark_terminatings() + { for ¢ « 1...lastindez(M) do mark_as_terminating(M;)

tart
T [Mla.stindem(M)],s.t;
sPa%e
c— [Mlastmdez(M)]cat
for i « (lastindex(M) —1)...1do
if M7 <7 A M ,]ng < ¢ then remove_termmatmgmark(M)}
else if [M]70 > r A [ML]®5™ > ¢ then

{ r - [M]a;;art
c e [M,]‘ art } }

col

mark_startings() < { for i « 1. lastindesu(M) do mark_as_starting(M,)
bl = Ml]
C+ {Mllcol
for i « 2...lastindez(M) do
if [M,]if,'::t > 7 A M > ¢ then remove_starting.mark(M;)
else if M2 <7 A ML < c then
{r« M7,
C 4 []col } }

For convenience we introduce two dummy vertices, namely at start My and at end M, (where A =
lastindexz(M) + 1) with length zero and satisfying the conditions

1"011.?

Vi 3 marked_as_terminating(M;) : My < M;
Vi 3 marked_as_starting(M,) : M; < M,

191

The following greedy algorithm uses dynamic programming to find the longest path. Gradually it fills out
an array that we will name as longest:

find longest_path() « for i « Iastmde:c(j...0do - -
longest; - max{ w(length(My)) + longest; | M <M;}

length is a function returning the count of match points of the segment given as argument to it:

length(a) « if a?i2T < af.;‘ﬁ, then ofPd — offort else R + ofhd — gftert

row row

w(} is a function which defines the weight contribution of the count of match points for a continuous match
segment given to it as the argument. The idea is to allow a penalty treatiment for short matches. If no such
pena.lty is favored then it is possﬂ)le to simply define w(m) =

4 Conclusion

We presented a method for matching two closed space curves which are holding discrete feature values, in
a robust manner. Unlike in other related works the problem of the proper treatment of missing parts in a
match is put under focus and a complete solution is proposed. The reconstruction of the object is just an
exhaustive search over all ‘pieces’ and choosing the best fittings. The idea is simple:

¢ Find the best match. -

e Join the matching portions (perform in parallelthe necessary bookkeeping).

e Removing the parts of the joint obtain the representation of a single piece.

e Add this new obtained piece and remove the two pieces which were joined from the database, hence
reducing the count of pieces by one, continue until only one piece is left.

For a possible implementation we would propose a visual workbench approach in which the user has a full
control over the matching parameters and the matching itself and the availability of an undo operation over
the construction history. A project of such an implementation has been started.

Further efforts-can go into the implementation details where a suitable data representation and eflicient
retrieval mechanisms will be the mainr concern.

References
[1] H.Freeman and L. Garder. A pictorial jigsaw puzzles: The computer solution of a problem in pattern recogaition.
IEEE Trans. Electron. Comput., EC-13:118-127, 1964.

[2] G. M. Radack and N. 1. Badler. Jigsaw puzzle matching using a boundary-centered polar encoding. Comput.
Graphics Irnage Processing, 19:1-17, 1982,

[3] H. Wolfson, E. Schonberg, A Kalvin, and Y, Lambdan. Solving jigsaw puzzle using computer vision. Ann. Oper.
Res., 12:51-64, 1983.

[4] H. Wolfson. On curve matching. IEEE, Trans. Patfern. Anal. Machine. Intell., 12:483-489, 1990.
[5] H. Freeman. Shape description via the use of critical points. Pattern Recogn., 10:159-166, 1978.

[6] N. Ayache and O. D. Faugeras. Hyper: A new approach for the recognition and positioning of two-dimersional
objects. IEEE, Trans. Pattern. Anal. Machine. Intell., 8:44-54, 1986.

[7] E. Kishon and H. Wolfson. 3-d curve mdtching. In Proceeding of the AAAI Workshop on Spatial Reasoning and
Multi-sensor Fusion, pages 250-261, 1987.

[8] E. Kishon, T. Hastie, and H. Wolfson. 3d curve matthiug using splines. In First Buropian Conference on
Computer Vision, pages 589-591, 1990.

[9) J. T.Schwartz and M. Sharir. Identification of partially obscured objects in two and three dimension by matching
noisy characteristic curves. IEEE, Trans. Pattern. Anal. Machine. Intell., 8:44-54, 1986.

[10} M. P. do Carmo. Differential geometry of curve and surfaces. Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

[11] A. Goetz. Iniroduction to dtﬂ‘erentw.l geometry of curve and surfeces. Prentice-Hall, Englewood Cliffs, New
Jersey, 1970. : o

192

Sampling and Reconstructing Manifolds
Using Alpha-Shapes

Fausto Bernardini*

Chandrajit L. Bajajt -

Department of Computer Sciences
Purdue University?

Abstract

There is a growing interest for the problem of recon-
structing the shape of an object from muitiple range
images. Several methods, based on heuristics, have
been described in the literature. We propose the use of
alpha-shapes, which allow us to give a formal charac-
terization of the reconstruction problem and to prove
that, when certain sampling requirements are satisfied,
the reconstructed alpha-shape is homeomorphic to the
original object and approximate it within a fixed error
bound.

In this paper, we give a formal proof of sampling
requiremnents for the reconstruction of l-manifolds in
R?2, and briefly sketch practical applications of alpha-
shapes to the reconstruction of three-dimensional CAD
models from digital scans.

1 Introduction

Cheaper, easier-to-use 3D digitizers are foster-
ing a prowing interest for the problem of shape-
reconstruction. Automatic methods for reconstructing
an accurate geometric model of an object from a set of
digital scans have applications in reverse engineering,
shape analysis, virtual worlds authoring, 3D faxing and
tailor-fit modeling.

Range or optical-triangulation laser scanmers pro-
duce a regular grid of measurements, which can be
easily converted to a rectangular or cylindrical surface
model when a single scan suffices to capture the whole
object’s surface. However more often multiple scans
are required, and the results must be merged together.

*Current address: IBM T. J. Watson Research Center
P.0. Box 704 Yorkitown Heights, NY 10538
fausto@watson.ibm.com

Tbajajcs.purdue.edu

West Lafayette, Indiana
47907-1398 USA

http://www.cs.purdue.edu/research/shastra

Several approaches have been proposed to reconstruct
the shape of an object from a collection of digital scans.

Turk and Levoy [11] proposed to “zipper” together
several meshes obtained from separate 3D-scans of an
object. More recently, Curless and Levoy [5] presented
an approach to merge several range images by scan-
converting each image to a weighted signed distance
function in a regular 3D grid. The zero-contour of the
signed distance function, which can be easily extracted
with a marching cubes algorithm [10], represents the
reconstructed surface.

A different class of methods try to rely on spatial lo-
cation of points only, without any assumed knowledge
of connectivity between sampled points. Boissonnat [3]
proposes two methods to build a triangulation having
the given points as vertices. Following his first ap-
proach, one starts with creating an edge between the
two closest points. A third point is then chosen and
added, so that a triangle is formed. Other points are
successively added and new triangles are created, and
joined to an edge of the current triangulation bound-
ary, until all points have been included. The second
method is based on the idea of first computing a De-
launay triangulation of the convex hull of the set of
peints, and then sculpiuring the volume by removing
tetrahedra, until all points are on its boundary, or no
tetrahedra can be further removed.

Choi ef al. [4], described a method to incremen-
tally form a triangulation interpolating all data points,
based on the assumption that there exists a point from
which all the surface is visible. After a triangulation
is built, it is improved by edge swapping based on a
smoothness criterion.

Veltkamp [12] introduced a new general geometric
structure, called y-graph. The vy-graph coincides ini-
tially with the convex hull of the data points, and is
progressively constricted (i.e. tetrahedra having bound-
ary faces are deleted) until the boundary of the y-graph
is a closed surface, passing through all the given points.

Hoppe ¢t al. [9] compute a signed distance function
from the data points, and then use its zero-contour as

193

an approximation of the object. To define the signed

distance from the unknown surface, they compute a -

best-fit tangent plane for each data point, and then
find a coherent orientation for the surface by propagat-

ing the normal direction from point to point, using a -

precomputed minimum spanning tree to favor propaga-
tion across points whose associated normals are nearly
parallel. :

One of the most difficult problems of shape recon-
struction from unorganized points is understanding
how to “connect-the-dots” so as to form a surface that
has the same topological (e.g. number of handles) and
geometric (e.g. depressions and protrusions) character-
istics of the original. All the methods listed -above are
based on geometric heuristics. While these methods
have been shown to be successful on several examples
and practical applications, they fail to provide require-
ments on the sampling that guarantee a provably cor-
rect reconstruction. _

Alpha-shapes were introduced in the plane by Edels-
brunner et al. in {7} and then extended to higher dimen-
sions [6, 8], as a geometric tool for reasoning about the
“shape” of an unorganized set of points. They offer the
dual benefit of having a solid mathematical foundation
and of being relatively easy to cornpute. We have devel-
oped several automatic reconstruction methods based
on alpha-shapes and algebraic-patch fitting [1, 2.

In this paper we formalize the shape reconstruction
problem, give a set of sufficient conditions for recon-
structing an object using alphaa-shapes, and discuss
some practical considerations.

2 Statement of the Problem

Reconstructing the shape of an object from an un-
organized “cloud” of points is in general an under-
constrained problem. Consider the simple 2D recon-
struction problem illustrated in Figure 1: Several so-
lutions are possible, and it is difficult to identify the
“best” among them. It is therefore of interest looking
at the following problem: What are the characteristics
of a sampling S (a finite set of points) of the surface
of a solid object M, such that M can be reconstructed
from S unambiguously and within predefined approxi-
mation bounds?

In particular, we consider the following reconsiruc-
tion problem: Starting with a sampling of the surface
B of a solid, we want to compute a triangulated sur-
face K that has the “same shape” of B, and such that
a suitably defined distance D(K, B) of K from B is
bounded by a given . A useful dlsta.nce measure is for
example

D(K, B) = inllp— ql|.
(K, B) Prg[a;{x]gé%lllp al|

Stated formally:

Problem 2.1 Let B be a compact 8-manifold without
boundary (in particular, the boundary of a solid M),
and S C B a finite set of points (sampling). Consiruct

" (geometric) simplicial complez K, such that K(®) =

S, K is homeomorphic to B, and D(K,B) < ¢, for o
fized € GR,E > 0.

The pair (K,h), where K is a simplicial complex
and h is a homeomorphism k : [K] — B is called a
triangulation in algebraic topology?

An algorithm aimed at reconstructing the shape of
an object from point data alone must have a way of in-
ferring spatial relationships among points. Character-
istics of the sampling that guarantee an unambiguous
and correct reconstruction depend on how the data is
interpreted by the algorithm.

We have already mentioned that alpha-shapes allow
us to find spatial relationships between points of an un-
organized set. The relationships are based on proxim-
ity. Clusters of points close to each other are grouped
to form edges, triangles and tetrahedra, and more com-
plex structures made of collections of these simple con-
stituents. :

The question we need to answer is therefore the fol-
lowing: What are sufficient conditions of a sampling
that guarantee that there exists an « such that the cor-
responding a-shape satisfies the requirements of Prob-
lem 2.17. '

3 Sampling Requirements

We can look at the two-dimensional case to get some
insight into the problem. Figure 2 illustrates the dis-
cussion that follows. In this case, we are sampling a 1-
manifold B (observe that B is a collection of “loops”).
Intuitively, we can think of the points of the sampling
as “pins” that we fix on B. We now use a disk probe
of radius p = /e to “sense” the manifold. The probe
must be able to move from point to point of § on the
surfacé, touching pairs of points in sequence, and with-
out touching other parts of B. The pairs of points will
be connected by segments of the alpha-shape, and will
form loops homecmorphic (and geometncally close) to
each component of B.

Clearly, a necessary condition is that no twe adjacent '

points of the sampling are farther away than the di-
ameter of our disk-probe, because otherwise the probe
would “fall” inside the boundary of our solid object.
We also need to make sure that all, and only, the edges

1For notation see the full version of the paper, available on the
World Wide Web page for CCCG97. The notation used for
alpha-shapes follows that used in reference [6]. :

194

L
L]

FiGURE 1: An example of ambiguous 2D reconstruction from points. From left to right: A
point sampling and three, equally acceptable, reconstructions.

(b)

FIGURE 2: Sampling requirements for 1-manifolds in R?. (a) The sampling density must be
such that the center of the “disk probe” is not allowed to cross B without touching a sample
point. (b) The radius p of the disk probe must be small enough that the intersection with B
has at most one connected component. (c) Examples of non admissible cases of probe-manifold

intersections.

connecting pairs of adjacent points are a-exposed. To
do this, our probe needs to be small enough to be able
to isolate a neighborhood of a point p on B, or, equiva-
lently, discern “adjacent” points on B from points that
are close in the Euclidean sense but not on the surface.
These requirements are formalized in the following

Theorem 3.1 Let B C R? be a compact 1-manifold
without boundary, and S C B a finite point set. If

1. For any closed disk D, C R? of radius p, BN D,
is either (a) emply; (b) a single point p (then p €
bd(D,)); (c) homeomorphic to a closed 1-ball I,
such that int(D,) N B = int(I);

2. An open disk of radius p centered on B contains
at least one point of S,

then the alpha-shape Sy of S, & = p?, is homeomorphic
to B and

D(S4, B) = maxmin||lp—¢|| < p.
(S B) PGSHEBIIP gll<p

Observe that B is in general a collection of 1-spheres
B;. We will prove the theorem by showing that for each

1-sphere B; C B there is a homeomorphic component
in 84, and then showing the bound on the distance.

Before we prove the theorem, we need a few lem-
mas. In the lemmas that follow, B, B;, and § are
those defined above. The symbol D, is used as above
to indicate a closed disk of radius p. We refer to the
two conditions stated in the theorermn as conditions 1
and 2. We often refer to two points p,¢ on a compo-
nent B; of B, and use the symbols X,Y to indicate
the two closed 1-balls on the 1-sphere B; having p, ¢ as
boundary peints. Obviously X UY = B;.

Lemma 3.1 Letp,q be two poinis on B. If there exisis
D, such that p,q € bd(D,), then D, B s a 1-ball I,
end bd(I} = {p, q}.

Proof: Since D, contains two points of B, by condi-
tion 1 it must intersect B in a (closed) 1-ball I, with
p,g € I. Suppose p ¢ bd(I). Then p € int(I). But
p & int{D,) N B, therefore condition 1 cannot be satis-
fied. °

Lemma 3.2 Lei p, q be two poinis on B;, and let X, Y
be the two I-balls on B;, bd(X) = bd(Y) = {p,q}. If

195

there ezisis D, such that p,g € bd(D,), then either
D,NB=XoerD,NB=Y.

Proof: By Lemma 3.1, D, N B is a 1-ball whose
boundary is {p, ¢}. Clearly this 1-ball must be a subset
_of B;. There are only two 1:balls on B; having {p, ¢}
as boundary, namely X and Y. &

Lemma 3.3 Leip,q be two points on By, and let XY
be the two 1-balls on B;, bd(X) = bd(Y) = {p,q}. If
mt(X)NS =0 then |[p—g|| < 2p.

Proof: Suppose that ||p— ¢}| > 2p. Since X is a 1-
ball connecting p and g and ||p — g|| > 2p, there exists
a point ¢ € X such that ||p —¢|| = p. Consider D,
centered in ¢, and observe that p € bd(D,). Since D,
contains two points of B (p and c), it must intersect B
in a 1-ball I, and p must be a boundary point of I, by
condition 1.

The other boundary point of I must be contained in
the 1-ball Z between ¢ and g. Notice that ¢ cannot be
in int(D,) because {|p — g|| > 2p. Also, there are no
other points of S in Z C int(X). Therefore int(D,} is
an open disk of radius p centered on B that contains
no points of §, contradicting condition 2. o

Lemma 3.4 -Let p, g be two points on B;, and let X, Y
be the two I-balls on B;, bd(X) = bd(Y) = {p,q}. If
int(X) NS = 0 then there ezisis D, such that p,q €
bd(D,) and D,NB = X.

Proof: Notice that by Lemma 3.2, either D,NB = X,
or D,N B =Y. It will therefore suffice to show that
there must be a point of X other than p,¢in D,. .

By Lemma 3.3, [ip — ¢]] < 2p, and therefore there
‘are two disks Dy ,,.D,, , such that p,q € bd(Dy), k =
1,2, whose centers lie on the opposite sides of the line
through p,q. Assume that there are no points of X
other than p,q in either of these disks.

Consider the line through the midpoint of segment
‘p,q and orthogonal to the segment. This line must
intersect X at a point ¢, which lies outside the two
disks. It is easy to see that |lc—p|| = |lc—¢|| > v2p >
p. Then take the disk D, centered in ¢ € X. Since it
contains a point of B in its interior, it must intersect
B in a 1-ball I containing ¢, by condition 1. Observe
that I cannot include p or g because of the bound on
the distance. Therefore, I must be a proper subset of
X. Since X does not contain points of S in its interior,
int(D,) violates condition 2. ' o

Lemma 3.5 Let p, g be two points on B;, and let X, Y
be the two I-balls on B;, bd(X) = bd(Y) = {p,¢}. If
int(X) NS = O then there exist two disks Dy, Ds,
such that p,g¢ € bd(Dy,),k = 1,2 and D1, N B =
D2,P NB=X.

Proof: Let the two disks Dy, be as in Lemma 3.4.
By that same lemma, one of the two disks, say D,
must be such that I4 , N B = X. Then assume that
for the other disk D , N B # X. By Lemma 3.2 we

“must have D; ,N B =Y. All of B; is then contained

in the union of the two disks.

Now consider a disk D,(t) centered in ¢ = tey +
(1 —t)ca, where ¢y, c2 are the centers of Dy , and D2 ,,
respectively. For 0 < ¢ < 1 the disk moves from a
position coincident with Dy, to one coincident with

Dy, For each 0 << 1, D,(t) contains p and ¢, and

therefore, to satisfy condition 1, must contain all X or
all Y, but can never contain both.
For any point € int(X) the function

fo(t) =tz —c@)li—p

is continuous, and negative for ¢ = 0. Since D,(1) N
int(X) # int(X), there exists T € int(X) such that
fz(1) > 0. Then there is a 0 < £ < 1 such that fz(f) =
0. Let = be the point for which is minimum the ¢ that
makes fz{?) zero. '

Then X lies all in D,(2), and T lies on the boundary
of D,(f). Since T € int(X), and p,q € int(D,(%)),
I = D,(I) N B contains Z in its interior. But then
condition 1 cannot be satisfied. o

Lemma 3.6 Consider two points p,g € S. Ifp € B;
and ¢ € Bj, i # j, then the segment o7, T = {p, ¢} is
not a-ezposed.

Proof: For o7 to be a-exposed there must exist a
D, such that p,q € bd(D,). But then D, N B must be
a 1-ball by condition 1, which is impossible since p, ¢
belong to different components of B. o

Lemma 3.7 Consider two points p,q € S, with p,¢ €
B;, and let X,Y be the two I-balls on B;, bd(X) =
bd(Y) = {p,q}. If both int(X) and int(Y) contain
points of S, then the segment or, T = {p,q} is not
c-ezposed.

Proof: If there exists D, such that p,g € bd(D,),
then by Lemma 3.2 D, must contain either int(X) or .
int(Y"). Since both contain points of S, o7 cannot be a-
exposed. If the disk D, does not exists that o7 cannot
be a-exposed. _ . o

Lemma 3.8 Consider two points p,g € S, with p, g €
B;, and let X,Y be the two I-balls on B;, bd{X) =
bd(Y) = {p,¢}. Ifint(X) NS5 = 0, then the segment
or,T = {p,q} is a-ezposed. Moreover, or does not
bound the interior of Sy (or, equivelently, or is o sin-
gular simplez of the alpha-complez K,).

Proof: By Lemma 3.4 there exist two disks Dy ,, D3,
such that p,¢ € bd(D,} and D}, N B = X,k = 1,2,

196

Since int(X) does not contain points of §, o7 is a-
exposed, and there are two weighted points z,y, wy =
wy = p? that identify o7 as a-exposed.

o

Lemma 3.9 There are at least three points of S on
each B;.

Proof: B; cannot have 0 points on it, because oth-
erwise condition 2 would be violated for any int(D,)
centered on B;. Suppose B; has only one point p of S.
Then take D, centered in p. By condition 1, D, in-
tersects B; in a 1-ball I containing p. Then consider a
point ¢ € B; — I, and a disk D, centered in c. Clearly
this disk camnot contain p. Therefore, int(D,) does
not contain ant point of S, violating condition 1. For
the case of only two points of § on B; one can repeat
the reasoning in Lemma 3.4 and conclude again that
condition 1 would not be satisfied. o

We are now ready to prove Theorem 3.1:

Proof: (i) S4(S) and B are homeomorphic.

By Lemma 3.9 there are at least three points of S on
each connected component B; of B. For each of these
points, say p, there are exactly two other points of S on
B;, say q1,q2, such that the two 1-balls on B; having
g (k = 1,2) as boundary do not contain any other
point of §. Therefore, by Lemmas 3.6-3.7, for each
point of § there are exactly two incident 1-simplices in
Su- Observe that these segments cannot intersect each
other in their interior. This could be easily proved here,
but it will suffice to notice that the segments are part of
the 1-skeleton of a simplicial complex. The a-exposed
segments form a one l-sphere for each component of B.
We can then build a homeomorphism by mapping each
segment o7, T = {p, ¢} to the 1-ball X C B; that has
p, ¢ as boundary points and contains no other points of
S.
(il) D(82(S), B) < p.

Each segment or,T = {p,q4},p,¢ € B; of &, is
mapped by the homeomorphism to a 1-ball X C B;.
This ball, by Lernma 3.5, is contained in the intersec-
tion of the two disks Dy ,, Dap, p,g € bd(Dy,,), k =
1,2 (see Figure 3). It is easy to see that for a point
z in this intersection, the maximum distance é to the
closest point on the segment o is 6 < p. Since this is
irue for all segments of &, the bound holds. o

Notice that locally the error bound can be made arbi-
trarily small. In fact, for each segment o7, T = {p, ¢},
if {|lp — g|| = 24, the maximum local error is

§<p—/p*—d?

which has limit zero as d tends to zero.
Therefore, while a p-dense sampling will suffice to
reconstruct the manifold B with distance bounded by

FIGURE 3: The maximum distance §
of a point ¢ on the segment p, g to the
closest point of B is bounded by p.

p, we can always make the approximation error arbi-
trarily small in any region C C B by simply sampling
(' at a higher density. Also note that the expression

for é converges to zero quadratically, that is it is suf-

ficient to double the density of the sampling to reduce
the error by a factor of four.

The conditions above restrict the domain of applic-
ability of our reconstruction tool to surfaces whose ra-
dius of curvature is larger than p, as otherwise the
ball-intersection requirement would be impossible to
satisfy {see Figure 4}. Note however the following: (i)
This restriction parallels the band-limited requirement
in Nyquist’s sampling theorem; (ii} p can be made (at
least in theory) arbitrarily small. The price to pay
to reconstruct small-scale features is to use a high-
density sampling, which is reasonable. On a more prac-
tical side: (iii) the sampling density of laser scanners
is usually much smaller than object features of inter-
est {otherwise large measurement errors would occur);
(iv) points are not sampled on the sharp feature, but
in its proximity; and (v} data collected in preximity
of sharp (or high-curvature) features is usually subject
to noise, and therefore not reliable. Accurately recon-
structing sharp features (for example to segment the
surface into a collection of smooth faces) requires an
elaborate analysis of the data and/or additional knowl-
edge of surface characteristics.

4 Conclusions

While the theorems above give us sufficient conditions
for a sampling to allow_a faithful reconstruction using
c-shapes, in practice one has often to deal with less

197

(a)

FIGURE 4: A small neighborhood of regions of curvature higher than p can be incorrectly

reconstructed by the alpha-shape S,3.

Bold segments represent “extraneous”

alpha-exposed

1-simplices. (a) A convex sharp feature and a concave high-curvature feature. (b) Extraneous

alpha-exposed 1-simplex (detail).

than ideal scans.

In general, i.e. when the conditions of the theo-

rems above are not satisfied, an alpha-shape is a non-
connected, mixed-dimension polytope. We are inter-
ested in reconstructing solids, and therefore it is con-
venient to define a “regularized” version of an alpha-
shape. The regularization should eliminate dangling
and isolated faces, edges, and points from the alpha-
shape, and recognize solid components.

In (2], we define a regularized alpha-solid,and de-
scribe an automatic method for the selection of an op-
timal & value, with a heuristic to improve the resulting
approximate reconstruction in areas of insufficient sam-
pling density. We are currently working on a proof for
the 3D and general-dimension, weighted points version
" of the sampling theorem. Qther directions for further
research include efficient methods for the computation
of two-manifold alpha-shape from the data points with-
out computing the 3D Delaunay (or regular for the
weighted case) triangulation. It would also be use-
ful to develop a “real-time”, incremental reconstruc-
tion methodology. With this approach, the partially
reconstructed surface would be shown to the user as
points get scanned.

Acknowledgments. Vale-
rio Pascucci and Guglielmo Rabbiolo provided useful
comments on the sampling theorem.

References

[1] Basas, C., BervarDmng, F., AND Xvu, G. Automatic re-
construction of surfaces and scalar fields from 3D scans. In

2

—_

3]

[&]

Computer Graphics Proceedings (1995), Annual Conference
Series. Proceedings of SIGGRAPH 95, pp. 109-118.
BerNARDINI, F., Bajas, C., CHBN, J., AND SCHIKORE, D.
Automatic reconstruction of 3D CAD models from digital
scans. Tech. Rep. C3D-TR-97-012, Department- of Com-
puter Sciences, Purdue University, 1997.

BoissoNNAT, J.-D. Geometric structures for three-
dimensional shape representation. ACM Trans. Greph. 3,
4 (1984), 266-286.

Cror, B.K., 8um, H. Y., Yoon, Y. 1., aNp Legr, J. W. Tri-
anguilation of scattered data in 3D space. Computer Aided
Design 20, 5 (June 1988), 239-248.

CurLBEss, B., AND LBvoy, M. A volumetric method for
building complex models from range images. In Computer

. Graphics Proceedings (1996), Annual Conference Series.

6

=i

7]

(8]
(@]

f10]

(11]

(12]

198

Proceedings of SIGGRAPH 96, pp. 303-312.

EpELSBRUNNER, H. Weighted alpha shapes. Tech. Rep.
UIUCDGS-R-92-1760, Department of Computer Science,
University of Olinois, Urbana-Champagne, IL, 1992.
EpeLssRUNNER, H., KIrRkPATRICK, D. G., AND SEIPEL, R.
On the shape of a set of points in the plane. IEEE Trans.
Inform. Theory IT-29 (1983), 651-555.

EDELSBRUNNER, H., AND MUCKE, E. P. Three-dimensional
alpha shapes. ACM Trans. Graph. 13, 1 (Jan. 1994), 43-72.
Horre, H., DERosE, T., Duckamp, T., McDonALD, J.,
AND STuELZLE, W. Surface recomstruction from unorga-
nized points. Computer Graphics 26, 2 (July 1992), 71-78.
Proceedings of SIGGRAPH 92.

LoRENSEN, W., AND CrINE, H. Marching cubes: A lngh
resolution 3D au.rface construction algorithm. Computer
Graphics 21 (1987), 163-169.

TurkK, G., AND LBvoy, M. Zippered polygonal meshes from
range images. In Jomputer Graphics Proceedings (1994),
Annual Conference Series. Proceedings of SIGGRAPH 94,

‘pp. 311-318.

VELTKAMP, R. C. Closed object boundaries from secatiered
points. PhD thesis, Center for Mathematics and Computer
Science, Amsterdam, 1992,)

Periodic B-Spline Surface Skinning Of Anatomic
| Shapes

Fabrice JAILLET, Behzad SHARIAT and Denis VANDORPE
E-mail : {fjaillet,bshariat,vandorpe}@ligim.univ-lyonl.fr
Address: LIGIM, bat710, Université Lyon I
43 bd du 11 nov. 1918, 69622 VILLEURBANNE Cedex, FRANCE

1 Introduction

In the medical area, great improvements have been
made in digital imagery techniques, as computed
tomography (CT) or magnetic resonance imagery
(MRI). Thus, more and more , the anatomic objects
are described as a set of 2D cross-sections.

Here, we are interested in the reconstruction of the
organs under investigation. This can be achieved by
first extracting from each section a set of closed con-
tours, corresponding to the intersection of the real
surface with the sectional plane. Numerous methods
have been presented, some of them based on “snakes”
[CCg0].

Next, the correspondence problem between linked
contours on adjacent sections has to be solved
[EPO91]. It means that the anatomic shapes have
to be segmented into different branches. Then, the
external shape has to be fitted with either an inter-
polation or an approximation surface.

A lot of methods have been proposed for the surface
fitting problem. The most widespread approach is the
polyhedral model. A set of triangular facets are gen-
erated between adjacent contours [FKU77, MSS92].
Since these methods produced a great number of tri-
angles, some re-tiling algorithms have been developed
[Tur92]. [JS95] proposes to use the triangulation as a
guide to construct a tensor product smooth surface.

Skinning algorithms have been previously proposed
for constructing a piecewise rectangular surface, but
they present some limilations. In [PK96], the section
curves are interpolated, this leads to a great num-
ber of control points to ensure the accuracy, while in
[PTY6] the contours are approximated but they only
handle the case of open contours. Both methods are
time consuming in order to bring the curves compat-
ible for the skinning.

In this paper, we present a method for smooth
closed surface approximation from 2D contours.
Both the section curves and the skinned surface are
approximated. This allows to reduce dramatically

the amount of initial data while preserving the
accuracy. Here, we are interested in single contour
sections, but the handling of multiple contours is
presented in the conclusion. Moreover, the resulting
surfaces can easily be manipulated in an interactive
system, with the help of the numerous techniques
developed for the shape modification of B-spline
curves and surfaces.

The organization of the paper is as follows. In sec-
tion (2), some necessary B-spline formulas are briefly
presented. In section (3), the general surface recon-
struction method is presented, including a description
of the curve fitting and the skinning of the section
curves. The section (4) presents some experimental
results. Finally the paper is closed by a conclusion
section.

2 Closed B-Spline Formulas

A parametric £*" degree closed B-spline curve is a
piecewise polynomial curve defined by:

m+k-1
Ct)= Y. Pimodims) Nimogimsn) (1)
+=0

for any ¢t € I3, where the m + 1 distinct £; are the
control points and the NF B-spline basis functions of
degree k can be recursively defined as:

0 - 1, ift,’St(t,'_H
Nl = [0, otherwise
t—1t;
Nk i = AL .k_l
¢ () oL

tigks1—1 ko1
— N7t
tipkgr —tipr H (®
with 0/0=0, and defined on the knot vector {;, which
is an increasing sequence of knots.

199

For a closed B-spline curve, the knot sequence T'
has the following form:

T= '{t—k: R st—lsltO: v :tm;tm+1: v -stm+k}
k m+1 k
to = 0and t,, =1
toi = teiti — (tm—it1 —tm—i)
tti = tmeiot + (G — i)

(fori=1,...,k) 2)

The previous definitions ensure that the curve is
closed, C'(0) = C(1), and is defined for ¢t € IR with a
C*~1 continuity everywhere.

A biparametric closed B-spline surface can be built
as a tensor product of closed B-spline curves. The
surface defined here is closed in the contour’s direc-
. tion but open in the other one. A surface of degree
k x I can be written as follows:

Slu,v) =
n m+k-1)
Z Z Qimod(mﬂ)dNi;:nod(m+1)(“)N;‘(“)
=0 i=D
with (v € R) and (0 <v < 1) (3)
where the (m + 1) x (n + 1) distinct control points
(;,; define the control net, and the N{°, % N; L are the

spline basis functions in the direction u and v respec-
tively. The NF(u} are defined on a knot sequence

U=ucp, cyUe1, %0, Uy Uty - - -2 Utk 20d
the Nj‘f (v} are defined on the knot sequence V =
{UO = = UL Uy s Uny Ungl = ---:'Uﬂ+t+1}

The u parameter curve is a closed curve (in the
direction of the contours), while the isoparametric
curves in v direction are open (in the longitudinal
direction).

3 B-Spline Surface Reconstruc-
tion

In this section, we describe the proposed method for
the surface reconstruction from a set of planar cross-
sections, each of them containing only one contour.
First, we fit a closed B- sphne curve to each polygonal
contour. Then we perform the surface skinning of
these section curves. This necessitates that all the
section curves are defined on a commeon knot vector.

3.1

The purpose of this section is the construction of
a curve from the points of a planar contour. This

Closed curve fitting

problem has been widely studied in previous re-
search works [Leo91, PT95]. ~ We want to cre-
ate a B-spline closed curve of degree & which ap-
proximates p + 1 given contour points R;. The

number of control points, m + 1, should be spec-

ified, as well as an appropriate knot vector T =
{t_ky. - stotstos oy tmotmil, - o tmpk}. The de-
gree and the number of control points could generally
be refined using an iterative least-square approxima-
tion.

We can rewrite the equation (1) for each point R; of
the contour in matrix form: [R] = [N][P], where [R]
is a vector of dimension (p+1) representing the known
contour points, {N] is the B-spline basis coefficient
matrix of dimension (p+ 1} x (m+1), and [P} is the
vector of dimension {m + 1) of the unknown control .
points of the B-spline curve.

Generally, the matrix [N] is not square {m < p)
and the linear equations system can only be solved
with a least-square approximation method [RF89].
The resolution of [P] = [[N]/[N]]7![N]*[R] gives the
control points-which minimize the error on the curve.

For this, we should assign a parameter value #; to

" each contour poind [;, which should take into ac- _

count its position on the curve. The determination
of this parameterization is very important in curve re-
construction {MIK95], since a bad parameter value or
knot vector can produce unwanted oscillations. The
uniform parameterization is not recommended when

‘the data are unevenly spaced, thus we prefer the

chord-length method intensively employed in CAD.
The following équations [PT95] guarantee that ev-

ery knot span [¢;,1;11] contains at least one #;. This

condition ensures that the system can be solved by

(Gaussian elimination without pivoting. The internal

knots £; for i = 0,...,m are defined as follows:

let d = {p+ 1)/(m+ 1}, then

(B2 ¥ms

where j = int(id) and & = id — 7.

Sl

1
i+ o (i=1,...,1

3.2 Curve compatibility

To achieve the final surface reconstruction, we should
fit a closed B-splinc curve to cach set of contour
points. Then, due to ils tensor product formulation,
the surface skinning requires that all the ¢ + 1 curves
have the same degree and defined on the same knot
vector.

The first condition can be achieved easily by ele-
vating the degree of each curve to the maximum of
the degrees.

200

In return, it is not trivial to define a common knot
sequence for all the curves, because the knot place-
ment will affect the whole surface along the longitu-
dinal direction. In [PT96], the authors have proposed
an algorithm to merge the different knot vectors into
a common one. But the resulting vector can contain
thousands of points, necessitating a further treatment
to eliminate a lot of knots while respecting a given tol-
erance. Since making the knot vectors compatible is
very time consuming, if we assume that the contours
are not too different in shape, we can simply average
the internal knots:

SN
N lnﬂ

where the u} are the j** internal knot of the i**
curve. It is also assumed that all the ¢ + 1 infer-
mediate curves have the same number of internal
knots (m + 1). The complete knot sequence can be
determined using equation (2). This produces gen-
erally satisfying values that reflect the distribution
of the contour points. But some gaps in the knot
sequence may appear when the points are unevenly
spaced or the number of points is very different from
a contour to another. We solve this problem by
re-sampling adaptively new data points in these gaps.

Another requirement for the curve compatibility is
the alignment of the given contours. Since a mis-
alignment can produce twisted surfaces, the choice of
a good alignment is fundamental for the quality of
the resulting surface.

First of all, the contour points should be ar-
ranged in the same order, either clockwise or counter-
clockwise.

Next, the contours should be properly aligned.
That means that a starting point should be found
for each contour. The successive starting points form
the longitudinal spine of the surface.

A good spine should be short in length and planar.
We have developed an algorithm that computes the
longitudinal spine according to the previous condi-
tions, and taking into account the shape of the con-
tours. The results of the choice of a misaligned and
an aligned spine is shown on figure (1).

3.8 Surface skinning

We assume here that all the ¢ + I curves are defined
on the same knot vector, have a common degree k
and m + 1 distinct control points ordered counter-
clockwise. We want to construct a skinned surface
from this set of closed B-spline curves [Woo88, PK96,
PT96]. The resulting biparametric surface should be

(c) Correct
contours

Initial (b) Twisted

contours

(a)

data

Figure 1: Consequence of the choice of a longitudinal
spine

closed in the contours’ direction and open in the lon-
gitudinal one. Equation (3) can be réwritten for each
curve Cj:

Calu) = S(u, va) =

mepkw1 n
Z E szoa‘(m-{»l),} N (Uh) ;mod(m+1) (ﬂ)

i=0 J=0
with (v € R) and (0 < v < 1)

To determine the points Q; ;, representing the con-
trol net of the tensor-product surface, we fit an open
B-spline curve to each column {i = 0,...,m) of the
control points of the intermediate curves. By com-
bining the previous equation with equation (1), w
obtain:

(h=0,..

Phi=3_ Qi;Ni(vs) - q)
Jj=0

The determination of the control points of each lon-
gitudinal curve can be achieved by solving the matrix
system [F;] = [N].[Q;] and the final surface is ob-
tained simply by joining the results together. The
[Flisa (¢+ 1) vector of the known data points rep-
resenting the i** control point on each section curve
Ch, [N] is the B-spline basis coefficient matrix of di-
mension (¢ + 1) x (n + 1), and [Q;] is the vector of
dimension (n 4 1) representing the unknown control
points,

To solve these lincar systems, we should assign a
parameter to each data point Py ;. To take into ac-
count the distribution of the points along the #** lon-
gltudmal curve, we define a parameterization accord-
ing to the chord-length method. To improve the final
skinned surface, we determinate a common parame-
terization for all the columns by averaging the values:

1 =i
t,.=m+121,,

=0

(h=0,...,9)

201

When n = g, the matrix [N] is square and the
n + 1 control points can easily be obtained by {Qi] =
[N]=L[P]). This leads to the well-studied curve in-
terpolation problem [RF89]. The Nf are defined on
the common knot vector {u;} defined at section (3.2).
The N, J’ should be defined on an appropriate knot vec-
tor {v;}. To avoid any singularity in the system, we
use the following technique of averaging the parame-
ters:

UD=...=Q{=0&DdUn+1=...=ﬂn+1+1=1

1 3Hst
vj.,.;':T ;j'ﬁ; G=1...n=1
With this method the knots reflect the distribution
of the f;.

When n < g, the matrix [N] is no more square, the
system should be solved by a least-square approxima-
tion method. This leads to a great amount of data
reduction and is worth to be used when the number
of cross-sections is important. Similar to the knot
placement of section (3.1}, we define a knot vector
for the v direction:
let d = {g+ 1)/(n+ 1), then

vo=...=v;=0_and Ung1 = ... = Uppip1 = 1

Vipl = (l—a).fj+a.fj+1 (i: 1,...,1‘:—!)

where j = ini(id) and o = id — j.

For both interpolating and approximating meth-
ods, the resulting smooth surface is C*~! continuous
in the u direction and C'~? in the other direction.

3.4 Closing Surface

Since the initial data are structured as closed con-
tours in one direction and open in the other direc-
tion, the isoparametric curves will consequently be
closed in one direction and open in the other direc-
tion. However, this may be not satisfying for some
anatomic shapes which are closed volumes, typically
the bladder and prostate in our specific application.
One way to solve this problem is to cap the surface
by a planar polygon but this leads to discontinuities
in shape. Another way is to compute a smooth sur-
face over the capping region and to ensure continuity
with joining patches, as described in [Per92). But this
method requires sophisticated techniques, and more-
over generates two additional patches.
Consequently, we have developed a simple solution
to the closing problem. The idea is to extend the
surface so that all the longitudinal curves converge to
~asame single point. This permits to model the whole

object with a single B-spline surface. For this, we add
a contour reduced to one point on top and bottom of
the object, and we perform the previously described
skinning method, on the new set of contours.

We first compute the gravity center of the two last
(and first) polygonal contours Gg—1 and Gy, and we
take the symmetric of G4—1 about G,, as shown on
figure (2). Then, some constraints can be added at
the chosen end-point to preserve the continuity with-
out altering the shape of the reconstructed object.
An example of closing is shown on figure (3).

£
SN

Figure 2: The closing
method

Figure 3: Closing of the
femoral head

4 Results

The initial data are planar slices representing three
internal neighbouring organs: rectum, prostate and
bladder (Fig. 4(a)). We have reconstructed these ob-
jects with bicubic (k¥ = ! = 3) periodic B-spline sur-
faces with 15 x 10 control points. This has permitted
to reduce dramatically the amount of the initial data,
while producing C? continuous surfaces. A triangu-
lated representation of the surfaces is shown in figure

(4(b))-

(a) Initial data

{b) Periodic B-Spline
surface models

Figure 4: Reconstruction of internal organs: rectum,
prostate and bladder

202

We have also reconstructed hungs from particu-
larly disturbed contours containing approximatively
5000 points (Fig. 5). The lungs have been mod-
eled with periodic biquadratic B-spline surfaces with
30x15 control points. The results on figure (6) show
the quality of the resulting surface.

Figure 5: Some initial contours of the ieft lung

Figure 6: Initial contours and reconstructed surface
of lungs

5 Conclusion

In this paper, an algorithm for the skinning of closed
surfaces has been presented. The method generates
quickly smooth surfaces with high continuity from
planar closed contours. Interpolating can produce
oscillating surface when successive contours have very
different shapes. Thus, both the contour curves and
the skinned surface are approximated, this leads to
an important data reduction.

The methods proposed in previous research works
[PK96, PT96] for curves compatibility, generate a
great number of control points due to the accuracy
and the smoothness requirements. This is normally

followed by a very time consuming phase of redue-
ing the number of knots of the common knot vector
(about 90% of the total skinning time). Thus, we
have proposed a simple averaging method to define
the section curves on a common knot vector. The pro-
duced surface fit well the initial data, while keeping
a small number of control points, and the physicians
have been satisfied of the accuracy of the proposed
model.

We have also proposed to close the surface by
adding new contours to the top and bottom of the
object. However, this method may create distorted
surfaces as soon as the extremity contours are no
more convex (or quasi convex). Thus we are currently
working on extending the surface into an extremity
curve whose shape is close to the planar threadlike
skeleton of the last contour, rather than into a single
point contour as proposed in section {3.4). But many
continuity and curve compatibility problems arise.

Though, in this paper, we have studied the recon-
struction of sections containing only one contour, it is
feasible to modify the method in order to handle the
case of multiple contours. Once we have solved the
correspondence problem of the contours in adjacent
sections, we reconstruct each branch separately.
Then, the branches can be linked together with
Jjoining patches. We can use the techniques described
in [Per92], in order to join the capping regions to
the skinned surfaces. However, the case with many
branches (four and more) is very complex and the
continuity is difficult to ensure everywhere. The
general case remains an open research area.

Finally, the proposed skinning method seems to be
adequate and efficient enough to be integrated in an
anatomical oriented interface (Fig. 7). As the pre-
cision of the reconstruction is not the main require-
ment, our application produces, at interactive time,
realistic models of 3D closed shapes. These help visu-
ally the physicians during the radiotherapy treatment
planning or iso-dose calculation.

Acknowledgments

We would like to thank the people of the NW Medical
Physics of the Christie Hospital in Manchester,UK
who provided us with the CT planar sections, and
particularly Dr. C. Moore and Dr. R. MacKay for
their contribution to this work.

This work is supported in part by the European
BIOMED?2 program.

203

Figure 7: The interface

References

[CCo0)

L. D. Cohen and 1. Cohen. A finite ele-
ment method applied to new active contour
models and 3D reconstruction from cross
sections. In Proceedings of Third Interna-
tional Conference on Computer Vision, Os-

- aka, Japan, 1990.

~ [EPO91]

[FKUT7)

[3595)

[Leo91]

[MK95]

[MSS92)

[Per92]

A. B. Ekoul¢, F. C. Peyrin, and C. L. Odet.

A triangulation algerithm from arbitrary

shaped multiple planar contours. ACM
Transactions on Graphics, 10{2):182-199,
April 1991,

H. Fuchs, Z.M. Kedem, and S.P. Uselton.
Optimal surface reconstruction from pla-
nar contours. Communications of the ACM,
20(10):693-702, Oct. 1977.

J. K. Johnstone and K. R. Sloan. Tensor
product surfaces guided by minimal surface
area triangulations. In IEEE, 1995.

J.-C. Leon. Modélisation et construction de
surfaces pour la CFAQ. Hermés, 1991.

W. Ma and J. P. Kruth, Parameteriza-
tion of randomly measured points for least
squares fitting of B-spline curves and sur-
faces. Computer-Aided Design, 27(9):663—
675, Sept. 1995.

D. Meyers, S. Skinner, and K. Sloan. Sur-
faces from contours. ACM Transactions on
Graphics, 11(3):228-258, July 1992.

E. Perna. Modéles de surfaces pour la
CFAOQ, raccordement de carreauz définis

[PK96]

[PT95)

[PT96]

[RF89)

[Tur92]

[Woo88]

204

par produil lensoriel. PhD thésis, Univ.
Claude Bernard - Lyon I, Oct. 1992.

H. Park and K. Kim. Smooth surface ap-
proximation to serial cross-sections. Com-
puter Aided Design, 28(12):995~1005, Dec.
1996.

L. Piegl and W. Tiller. The NURBS book.

Springer, 1995.

L. Piegl and W. Tiller. Algorithm for ap-
proximate NURBS skinning. Computer-
Aided Design, 28(9):699-706, Sept. 1996.

D. F. Rogers and N. G. Fog. Constrained B-
spline curve and surface fitting. Computer-
Aided Design, 21(10):641-648, Dec. 1989,

G. Turk. Re-tiling polygonal surfaces. In
Proceedings of SIGGRAPH °92, pages 55-
64. Computer Graphics, July 1992.

C. D. Woodward. Skinning techniques
for interactives B-spline surface interpola-
tion. Computer-Aided Design, 20(8):441-
451, Oct. 1988.

Shape reconctruction using skeleton-based implicit surface

Serge PONTIER, Behzad SHARIAT and Denis VANDORPE
E-mail : {spontier,bshariat,vandorpe}@ligim.univ-lyonl.fr
Address: LIGIM, bat710, Université Lyon I
43 bd du 11 nov. 1918, 69622 VILLEURBANNE Cedex, FRANCE

April 24, 1997

1 Introduction

The problem of shape reconstruction of an unknown
object, from a set of data points captured on its sur-
face, has interested a lot of researchers. Some robust
methods have been proposed for solid shapes using
tensor product surface fitting or triangulation for ex-
ample.

Moreover, some research works have been done on the
reconstruction of deformable objects’ shape as well
as the simulation of their behaviour using physically
based models. Particle systems and implicit func-
tions are two examples of the most popular methods
actually used. These methods are currently used in
computer animation, medical applications and com-
puter vision.

This paper presents a methodology for the recon-
struction of human organ's form. The initial data is
a set of stripes obtained by the digitization of CT
scan-sections. To simplify the calculation, we have
chosen to calculate separately the model of each sec-
tion before to fit a three dimensional model through
these sections. -

Our aim is to produce a system which permits
to model human’s organs and to simulate their be-
haviour. Moreover, the calculated model should
be computationally tractable and easily deformable.
Therefore, we have chosen to employ implicit surfaces
generated by skeletons. Thus, we will obtain a vol-
ume description of the organs, and we could use the
method proposed by Gascuel [9] to deform them. In
this formalism, an object O generated by a skeleton
with a field function f is defined by :

0 = {P € R¥/f(P) = is0)
e iso is a given potential for an iso-surface points.

¢ f is a monotonically decreasing function of the
distance from the point P to the skeleton.

Our work can be decomposed into three phases :
the computation of a skeleton for each 2D section, the
calculation of a 3D skeleton from these 2D skeletons
and the definition of a scalar field function.

The second section of the paper discusses the state
of the art of reconstruction techniques which use im-
plicit functions. Section 3 explains our method and
section 4 shows some results.

2 Related works

Several techniques have been published {o present re-
construction techniques using implicit functions.

A first philosophy consists in extracting an iso-
surface covering a set of data points, with the help
of a marching cube algorithm. The difficulty is to
be able to compute a potential at each point in the
space. Wallin [20] uses the X-ray linear attenuation
to assign a potential to any 3D point. Hoppe [10] uses
& function, defined in a region close to the data, which
estimates the signed geometric distance to the un-
known surface. A similar approach, which has been
introduced in [17] consists in reconstructing a cloud of
points with an algebraic difference of two functions.
One function defines an implicit object embedding
the set of data points and the other is a volume spline,
interpolating values of the first function in the data
points.

In another approach, the shape of an unknown ob-
Ject is calculated by the deformation of a primitive
to fit the data points. Pentland [16] and Bajcsy {1]
are the firsts who have employed the superquadrics
[3] for the reconsiruction. Laler, the deformable
superquadrics have been introduced by ‘lerzopoulos
[18]. The reconstruction method proposed by Ter-
zopoulos consists in applying some external forces to
deform the superquadrics. The Bajcsy’s and Ter-
zopoulos’ methods have been improved by several

205

works [11, 15, 2}. Similarly, a methodology of 2D
contour reconstruction using snakes [7] and another
using hyperquadrics [6] have been proposed.

A last class of reconstruction methodologies uses
implicit functions generated by skeletons. Most of
them work with punctual skeletons, which generate
spheres, and use an energy minimization process.
Miller {13] uses a ball which grows as far as it fits
the cloud of points. Muraki [14] employs a union of
blobs to model a set of data points. The blobs are
subdivided and moved to minimize an energy until
they reach the desired precision. This process has
been sped up in {19] then [4]. In order to avoid an

iterative process, Lim {12] describes an object with a -

union of spheres which are obtained from the Delau-
nay graph of the data points. Lastly, Ferley [8] recon-
structs a cloud of points with a skeleton composed of
several B-spline curves which are surrounded with a
non-uniform field. Each curve generates an implicit
surface and the object is modeled with a blended im-
plicit surface.

All these methodologies are difficult to be em-
ployed in our system. The iso-surface can not easily
be deformed. Moreover, the methods using the su-
perquadrics need a formal definition of deformations
and they are slow. Finally, the union of primary el-
ements generates a piecewise function for which the
deformation is difficult to realize and is time consum-
ing.

3 A reconstruction method for.

2D sections

Here, we propose a methodology permitting the cal-
culation of a human’s organ model from a set of pla-
nar data sections. To simplify the obtained model
and to reduce the calculation time of the simulation,

we have chosen to use an implicit function based on

-skeletons. In order to increase the efficiency of our
_ algorithm, we do not model an object with a blended
" iso-surface. Indeed, in our method, although the
skeleton is composed of a set of skeletal elements, the
scalar field function remains identical for the whole
skeleton; therefore no blending is performed and the
objects can easily be modeled with a distance surface.

Rather than calculate directly a 3D skeleton, we
prefer to take into account the structure of the input
data. Thus, we create 2D skeletons, one per stripe,
and later a 3D skeleton is computed from the 2D ones.

3.1 Computation of a 2D skeleton

A skeleton which is a coarse description of a shape is
computationally intractable. In fact, its calculation is
based on an erosion process which is time consuming,.
In order to avoid this, a weighted threadlike skeleton
surrounded by an uniform field is used.

The threadlike skeleton is first calculated with the
help of Vorenoi graph. To each vertex of this graph,
we associate a weight which is calculated according to
the distance between digitized points and the skele-
ton.

3.1.1 The Delaunay graph computation

The first step consists in computing the Delaunay
graph from the set of data points. At this level, sev-
eral problems should be solved. First, the graph must
contain all the contour’s edges. When it is not the
case some points are created in the middle of the
edges which are missing in the Delaunay graph (fig.

1).

(b) the Deiaunéy.

]
i-\ new point
. i)/ new paint
A RN
LY i [S »
14 kY
; B 4
£ e -
+ .
H -
H
H
- - -.-.
e FYle

(d} the Delaunay after
modification.

(c) the modified contour.

Figure 1: The contour’s modification when an edge
does not appear in the Delaunay graph. '

The Delaunay graph generales a convex hull of the
data points (fig. 2). So some triangles must be re-
moved to keep only those which are inside the object.
This process consists in deleting recursively all the
triangles which have a boundary edge which does not
belong to the initial contour.

Finally, to avoid external skeleton, some new points
are created on the edges which are the hypotenuse

206

L 4
Loty edge to delet
i[\ \ ;'/ -\‘\‘\<“‘jg)
AN N, . {
SN
{ o
I‘_.. ‘_'___."

(b) the original Delaunay.

(a) the original contour.

(c) the Delaunay without
external triangles.

Figure 2: Suppression of some Delaunay triangles in
concave area.

of obtuse Delaunay triangles (fig. 3). These new
points are the projection of the third vertex of the
corresponding triangle.

This step is based on the Boissonnat’s work [5].

3.1.2 The computation of the threadlike
skeleton

The threadlike skeleton of a set of points is given
by the internal elements of the Voronoi graph. It is
computed from the Delaunay graph. It is defined by
a set of vertices (gravity center of Delaunay triangles)
and a set of edges (connecting the vertices). The main
disadvantage of this method is its sensitivity to noise.
Indeed, frequently, the obtained skeleton contains a
lot of branches (fig. 4).

The skeleton’s branches are created by some small
triangles on the boundary. Qur simplification scheme
consists in removing the triangles which have two
boundary edges and whose area is smaller than a
" threshold (fig. 5). This implies that the generated
iso-curve does not fit to every digitized points : some
of them are eliminated during this process.

3.1.3 The weighted skeleton

The obtained threadlike skeleton is centered within
the cloud of points. Consequently, the distance to the
skeleton is not the same for each 3D digitized points.
If we use this skeleton a non-uniform field function
should be employed. To prevent this, we propose to

]

(b} the Delaunay and the
threadlike skeleton.

(a) the original contour.

(c¢) the Delaunay and the
threadlike skeleton after
the contour’s modifica-
tion,

Figure 3: Skeleton external element suppression.

N

(b) the non-
snplificd De-
iaunay graph.

Sl

/

(c) the corre-
sponding skele-
ton.

(e) the data
points

Figure 4: A noisy skeleton.

build a “weighted skeleton” which is a non-uniform
offset of the previous threadlike skeleton. We model
this offset by weights. In order to obtain the coarse
description with the smallest size, at least one of the
skeleton’s vertices should have a null weight. In other
words, the object is eroded so far as to touch the
threadlike skeleton at this veriex.

We calculate only the weights of Voronoi vertices
belonging to the threadlike skeleton. The weight of
other skeleton’s points is approximated. The weights’
computation is achieved using the Delaunay graph :

207

e @ : is the projection of P on the skeleton.

e f: is a monotonous decreasing function.

In order to obtain a weight for all the skeleton
points, a linear approximation has been made be-

L tween two successive vertices. As a linear approx-
(a) the data (b) the simpli- {c} the cotre- '

points fied Delaunay sponding skele- imation is used, t'he gene}'ated surface is m'::t really
graph. ton. smooth for the points projected on a Voronot vertex.

To solve this problem, the weights could be interpo-

] i -spline functions.
Figure 5: A simplified skeleton. lated with B-spline functions

4 Results
di.'.st(P,‘ProjE) - fi’“‘" In figure 7, a complex contour of a lung is recon-
if P is the gravity center structed with the help of the proposed algorithm.

of a triangle which has only

one boundary edge E This shows the efficiency of our method.

w(P) =

dist(P,5) — dpnin Otherwise

where : _ ‘, /- N
e w{P) is the weight of the Voronoi vertex P of the 6-/
skeleton. J

o E is the only boundary edge of a triangle.

{3} a contour of
a lung

e Projgp is the projection of P on E.

e S is a Delaunay vertex.

o d;in the smallest distance from a digitized point
to the threadlike skeleton.

(b) the non- (c) the (d) reconstruc-

simplified weighted non- tion with the

skeleton simplified non-simplified
skeleton skeleton

(a) without skeleton sim- (b) with skeleton simplifi-
plification cation
. (e) the simpli- (3] the (g) reconstruc-
Figure 6: The coarse description and the deformation ~ fied skeleton weighted sim- tion .
plified skeleton with the sim-
Zone. plified skeleton

3.2 The field function Figure 7: An example of 2D reconstruction.

The potential of a 3D point P is given by : 3D shapes can also be reconstructed as shown in
— Fi A figure 8. For this, adjacent skeletons are connected

F(P) = f(dist(P,Q) - , N ’ X .

(P) = f(dist(P, Q) w(Q)) by triangles. Thus, a weighted 3D surface skeleton is

* where : o _ obtained. We have solved this 3D skeleton problem

208

for simple cases, but some specific problem have to
be solved for the general case.

(a) the contours (b} the 3D skeleton

A{c) the 3D reconstruction

Figure 8: An example of 3D reconstruction.

5 Conclusion and future work

In this paper, we have presented a methodology per-
mifting to reconstruct the shape of 2D contours, us-
ing the skeleton based implicit function formalism.
For this, we have proposed an algorithm to compute
a weighted threadlike skeleton which gives a coarse
description of the shape. Although the skeleton is
constituted of a set of skeletal elements, an identical
ficld function is used for the whole skeleton result-
ing in a non-blended shape. Finally, some examples
of the algorithm’s extension to 3D space have been
given.

This algorithm permits to have a model with vari-
able complexity. If a precise reconstruction is needed,
no skeleton’s simplification will be performed. The
shape will be described with a complex threadlike
skeleton providing a very large coarse description and
a narrow deformable zone. Consequently, the defor-
mations will be limited. If a high precision recon-

struction is not the main requirement, a very sim-
plified threadlike skeleton can be used and the de-
formable zone is large. So important deformations
could be performed.

Our future work includes the improvement of the
reconstruction of 3D shape. Indeed, our methodol-
ogy works with simple objects, but some problems
can arise for objects with a complex skeleton.

In this paper, we liave shown that sections contain-
ing several contours can be treated easily. Neverthe-
less, sections with holes are not automatically recon-
structed : at least one Delaunay triangle must be
manually removed to obtain the correct reconstruc-
tion. We are currently studying an approach permit-
ting to suppress this step.

Finally, some studies can be made on the deformation
process. Indeed, if the model undergoes some inelas-
tic deformations, it could be attractive to modify the
skeleton’s weights to change the shape of the object.

References

[1] R. Bajscy and R. Solin. Three-dimensional ob-
. ject representation revisited. IJEEFE First Confer-
ence on Computer Vision, pages 231-240, 1987.

[2] Eric Bardinet, Laurent D. Cohen, and Nicolas
Ayache. A parametric deformable model to fit
unstructured 3d data. Technical Report 2617,
INRIA, July 1995.

[3] A. H. Barr. Superquadrics and angle preserv-
ing transformations. IEEE Computer Graphics
Apllication, 1:11-23, 1981.

f4] Eric Bittar, Nicolas I'singos, and Marie-Paule
Gascuel. Automatic reconstruction of unstruc-
tured 3d data : Combining a medial axis and
implicit surfaces. Furographics’95, Sept 1993,

[5] J. D. Boissonnat and B. Geiger. Three dimen-
sional reconstruction of complex shapes based
on the delaunay. Technical Report 1697, INRIA,
April 1992,

[6] Isaac Cohen and Laurent Cohen. A hybrid hy-
* perquadric model for 2-d and 3-d data fitting.
Technical Report 2188, INRIA, January 1994.

[71 B. Derdouri, M. Neveu, and D. Faudot. Re-
construction d’objets 3d déformables. Actes de
GROPLAN 92, Nantes, pages 99-106, Novem-
bre 1092.

209

[8] Eric Ferley, Marie-Paule Gascuel, and Do-
minique Attali, Skeletal reconstruction of
branching shapes. In Implicit Surfaces’96 :
ond International Workshop on Implicit Surface,
Eindhoven, The Netherlands, October 1996.

fo] Marie-Paule Gascuel. An implicit formulation
for precise contact modeling between flexible
solids. Computer Graphics Proceedings, 27:313~
320, August 1993.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-
nald, and W. Stuetzle. Surface reconstruction
from unorganized points. Computeur Graphics,
26(2):71-77, July 1992. notes of SIGGRAPH’92.

[1 1] Ales Leonardis, Franc Solina, and Alenka Mac-
erl. A direct recovery of superquadric mod-
els in range images using recover-and-select
paradigm. In Proceeding of third European Con-
ference on Computer Vision, Stockholm, Swe-
den, May 1994.

[12] Chek T. Lim, George M. Turkiyyah, Mark A.
Ganter, and Duane W. Stroti. Implicit recon-
struction of solids from cloud point sets. In Solid
Modeling 95, pages 393-402, may 1995.

[13] James V. Miller, David E. Breen, William E.

: Lorensen, Robert M. O’'Bara, and Michael J.
Wozny. Geometrically deformed models : A
method for extracting closed geometric mod-
els from volume data. Computer graphics,
25(4):217-226, July 1991.

f14] Shigeru Muraki. Volumetric shape description

of range data using "blobby model”. Computer

Graphics, 25(4):227-235, July 1991.

[15) Jinah Park, Dimitri Metaxas, and Alistair
Young. Deformable models with parameter func-
tions : Application to heart-wall modeling. In
Conf. on Computer Vision and Pattern Recog-
nition, pages 437442, June 1004,

[16] Alex P. Pentland. Perceptual organization and
the representation of natural form. Artificiol In-

telligence, 28(3):293-331, 1986.

Vladimir V. Savchenko, Alexander A. Pasko,
Oleg G. Okunev, and Tosiyau L. Kunii. Func-
tion representation of solids reconstructed from
scattered surface points and contours. Computer

Graphics Forum, 14(4):181-188, 1995.

[17]

[18] Demetri Terzopoulos and Dimitri Metaxas. Dy-
namic 3d models with local and global deforma-
tions : Deformable superquadrics. JEEE Trans-

actions on pattern analysis and machine intelli-
gence, 13(7):703-714, July 1991.

[19] Nicolas Tsingos, Eric Bittar, and Marie-Paule
Gascuel. Implicit Surfaces for Semi-automatic
Medical Organ Reconstruction, chapter Tech-
niques in Modelling Virtual Environments,
pages 3-15. Academic Press, Leeds, UK, juin
1995.

.

[20] A. Wallin. Constructing isosurfaces from ct data.
IEEE CG and A, 11(6):28-33, November 1991.

210

Dynamizing Domination Queries in 2-dimensions: .
The Paper Stabbing Problem Revisited

Michael G. Lamoureux, J.D. Horton, and Bradford G. Nickerson
Abstract:

This paper describes a ®(n) space data structure, the domination map, which supports domination queries on 2-
dimensional data points in ©(Ig a + t) time, for t points in range. If a modified k-d tree structure, described within,
is used to index the domination map, then it may be dynamically updated, with insertions and deletions requiring
@(lg’n) amortized time, when O(n lg n) storage is permitted to store the modified 2-d tree index structure.

An extension to the domination map that supports domination queries on 3-dimensional data points, without
increasing the amount of storage required or the amount of query time needed, is described. It supports dynamic
updates as well when indexed with a modified 3-d structure, and these also require ©(Ig’n) amortized time.

Introduction

Let P be a set of points in a 2-dimensional Euclidean space E2 and let D be the domain of all subsets of P defined
by distinct semi-infinite range queries specified by the Cartesian product of two semi-infinite ranges of the form
[q'.c]. In this paper, superscripts refer to coordinates of a point and subscripts refer to distinct points. Domination
searching with respect to P and D refers to the task of processing P so that for any semi-infinite range query q in D,
the subset of points in P that lie in q can be determined.

The performance of a data structure for domination search is measured based on $(n), the required storage, and
Q(n), the required query time. Let P, (P m q) denote the set to be computed. Two classes of domination search are
distinguishable. In count mode, it is only necessary to compute the cardinality of P,, and in report mode, it is
necessary to determine every element of P, This paper assumes that the queries must be answered in report mode.

The existence of efficient domination search algorithms ([Chaz86],[Chaz87]) motivates the following questions:
{1} how efficiently can a domination query be solved in the worst case in a given space complexity?, (2} how
efficiently can a domination query be selved if only lincar storage is available, and (3) how efficiently can a
domination query be solved when the solution must be dynamic?

This paper develops a ©(n) space data structure that solves domination queries on 2 and 3 dimensional data points
in ©(lg n + t) time, for t points in range, while allowing for dynamic updates in ©(lg’n) amortized time when

O(n lg n) storage is permitted for an index structure. This compares well to the work of [Chaz87] who presents
static linear space algorithms for domination search on 2-d data points in ©(lg n + t) time and on 3-d data points
in ®(g’n +t) time. By allowing an additional factor of O(lg n) for storage, there is a dynamic solution which is of
the same complexity for searches in 2-d and faster for searches in 3-d. :

The results contained in this paper are based on an extension to an optimal solution of the 2-d paper stabbing
problem discussed in [Chaz87]. The paper stabbing problem is defined as follows: suppose that you have n sheets
of paper attached to one corner of your desk; none of them completely hidden behind any other. A query comes as
a needle through the first t sheets at an arbitrary point on the desk.

The solution of [Chaz87] is based on a priority search directed acyclic graph (DAG) structure which is described
below. A description of the domination map, which extends the priority search DAG with a polytope index, and a
k-d tree ([Bent75]) face index for dynamic updates, follows, .

In the initial description of the domination map, it is assumed that the data set is static and that preprocessing only

needs to be done once. This supposes that the cost of the preprocessing operation can be amortized over many
queries and is thus negligible. Afterwards, the domination map is dynamized.

211

The Priority Search DAG

Consider the point p = (p*,p") in the Euclidean planc E*. A point p; dominates a point p,, denoted p, £ p, if
p2* £ pi” and py¥ Zp/. Let P =(p,,pz,....pn) be a sequence of points of the form p; = (p",p) satisfying the
appearance property: for any i,j the relation p; £ p; implies i <j.

The appearance property is equivalent to topological sorting and it mfoxmaliy stipulates that each piece of paper is
at least partially visible for any point q in E%. Define P, as the set of points in P dominating q. The paper stabbing
problem becomes: process P so that for any q in E?, the set P, can be computed.

The priority search DAG is constructed as a planar graph consisting of the visible parts of the rectangles. Without
a loss of generality, the origin is chosen such that all points are in a bounded northeast-quadrant and, for
convenience, all p* (and p;’) are distinct. The priority search DAG is defined as the isothetic planar subdivision
{all boundaries are parallel to an axis) obtained as follows: for each i = 1,...,n in turn, extend a horizontal segment
pih; leftward and a vertical segment p;v; downward from p; until a segment or an axis is reached. The point p; is the
primary anchor point of its incident edges and the points h; and v; are supporting points. When the p;* and p;’ are
not distinct, one vertex functions as two or more of {p;,h;,vi}. An example of a priority search DAG Is given in
Figure 1.

0 v, V3 V3 V4 Vg

Figure 1: An example of a priority search DAG.

A domination query for an arbitrary point q is answered as follows: the DAG is processed for the efficient retrieval
of a face containing the point g in logarithmic time. [Chaz87] indicates numerous methods. The points in range
are located by locating all the edges intersecting the axis of the search region defined by q. (This may be
accomplished with an appropriate graph index or line intersection algorithm.) These are the starting edges of the
query which yield the starting vertices (the first point located along the edge in the positive direction). All posmve
edges from the starting vertices, and from all other points found in range, are traversed until all of the vertices in
range have been encountered, yielding all points in range. [Chaz87] has shown that this can be done in O(Ig n+t)
time, which is optimal.

" The polytope index used in 2-d is the following, developed to work efficiently with the modified k-d tree structure
which is used to dynamize the structure. It is a map index which is somewhat reminiscent of a DCEL which
indexes and keeps track of required indexing information on all of the map elements: vertices, edges, and faces. It
consists of three tables assumed to be accessible in constant time given an appropriate unique element identifier.

The first table keeps track of all the vertices and records the unique identifier, coordinates, type, and incident edges
of each vertex. The second table keeps track of all the edges and records the unique identifier, type, endpoints, and
adjacent faces of each edge. The third table keeps track of all the faces and records the unique identifier and. -
defining edges of each face. :

212

Vertices are of two types: primary, the actual data points, and secondary, the other points in the priority search
DAG. If the edge is horizontal (x), the face below and the face above form the adjacent faces, if the edge is vertical
(¥), then it is the face to the left and the face to the right. Only four edges are stored to define a face, even if more
exist. The two.edges that connect to the primary anchor point in the upper right comer, defining the top-most and
right-most edges, and the two edges that connect to the left end point of the lefimost edge on the bottom of the face,
defining the lefi-most and the bottom-most edges. An edge is primary if it is incident with a primary vertex, it is
secondary otherwise.

For the priority search DAG given in Figure 1, the map index is given in Appendix 1.
The Domination Map

The domination map is the data structure formed from the union of the priority search DAG of [Chaz87], the map
index described above, and the modified k-d tree structure used to index the faces of the priority search DAG
structure. The modified k-d tree structure is constructed as a height balanced structure of ©(lg n) levels in the
static case, and has O(lg n + 1glg n) levels in the dynamic case.

The node structure of the modified k-d tree contains the following information:
a) the data point (real or virtual) used to split the space
b) the dimension being discriminated on (chosen to minimize free helght in the dynamic case)

* The idea is the following: assuming a bounded space, each branch defines a well defined division of the current

~ quadrant into two smaller quadrants. These can be easily computed on the way down the tree. The tree is
constructed on a static data set by using the primary points and secondary points as necessary to repeatedly divide
the space into quadrants until each quadrant is contained in only one face of the priority search DAG. By choosing
the primary and secondary points to divide the space, there will be at most 4n quadrants after the division. Usinga
modification of the algorithm to construct a balanced k-d tree guarantees a maximum tree height of ®(Ig n).

Figure 2 illustrates a height balanced k-d tree which may be used to index the priority search DAG of Figure 1 and
Figure 3 illustrates the division of space. In Figure 1, the discriminators alternate between x and y down the tree
and the labels on the edges represent the division of space effected by the node.

!
Fs e
I

I
1]
X
1]
‘‘‘‘‘‘‘ '9F5' F, o
I t I
L S Rt
1
I ¥
F-9--r-a--, F!
b 3|F5: 6:

F,I Bf-d--r-e F

i
F-1- o Fy! Fai F,)

FF ¥, F Fp F F F F F! R v
Figure 2. The height balanced k-d tree which is used to index Figure 3. Division of space effected
the priority search DAG of Figure 1. by the k-d tree of Figure 2.

In order to effect a domination search on the domination map, it must maintain the underlying priority search
DAG structure - each rectangle must be partially visible. Note that for a point p; not in the structure, and distinct
from all p; in the structure, extending lines p;h; and p;v; in the priority search DAG from the point p; until edges or
axes are encountered will produce a new priority search DAG such that all rectangles are partially visible. Thus,
an insertion can be accomplished if the k-d tree and map indexes can be updated efficiently.

213

Dynamizing the Domination Map

The map index can be updated by using the k-d tree to find the face F; in which the point p; exists. The dropped
segments intersect (1) the lefi-most and bottom-most edges of the face or (2) left and bottom edges of the face
defined by top-most and right-most edges of faces defined by anchor points that are dominated by the anchor point
of the face F;. In the second case, these edges can be found in logarithmic time by checking at most O(lg n)
quadrants to the left and at most O(ig n) quadrants down.

Once the edges have been found, the following updates are made to the map index where the left edge is denoted
L=(LL,LR} with left and right faces LLF, LRF and type 11, and the bottom edge is denoted B=(BL,BR) with
bottom and top faces BLF, BRF and type Bt, and where the new face is denoted NF. Note that each update can be
done in constant time. :

Update the edge table as follows: -

Add: [(h,p).p.yp;NELRF}] Add: [(vj,pj).p.vj.piNFBRF]

Add: [(LLh).s,LLhJLLFNF] Add: [(h,LR),Lth,LRLLFLRF] Del: (LL,LR)
Add: {(BL,v;).s,BL,v;BLF.NF] Add: [(v;,BR),Bt,v; BR,BLF,BRF] Del: (RLRR)

Update the vertex table as follows:

Add: [pjs(pjxapjy)ap’(hjapj)s'a(vjapj)"] Add: [hj9'55,':(hj:pj)s(LLshj)s(hj!LR)] Add: [Vj,‘,S,(BL,Vj),(vj,BR),',(Vj,pj)]
Update: LL [y-RE — (LL.ly)] Update: LR [y-LE — (h;,LR)]

Update: BL [x-RE — (BL,v))] Update: BR [x-LE — (v;,BR)]

Update the face table as follows:
Add: [Fj!(LLshj)s(vj!pj)s(LI-’x-R.E)s{hjspj}}

The next step is to update the k-d tree index structure. This is done by dividing each quadrant intersected by a
dropped segment into two, or three if it is the quadrant that contains the anchor point, quadrants. Since at most
O(lg n) quadrants are intersected, and each may be split in constant time, the time to accomplish a single insertion
is O(lg n) and the worst case storage will be O(n 1g n) as O(lg n) points may need to be inserted into the k-d tree
index to accomplish an insertion.

In a sequence of insertions, it is possible that the k-d tree structure could become unbalanced with the height
increased beyond O(lg n). This is avoided by rebuilding a subtree whenever one side becomes twice as deep as the
other side. With calculations, it can be shown that the entire tree will not have to be rebuilt more than once in a
sequence of O(n) insertions, and subtrees at level x will not have to be rebuilt more than O(2*) times in a sequence
of O(n) insertions. This allows the total rebuilding time over a sequence of n insertions to be bounded at O(n 122n},
bounding the amortized insertion time at O(lg’n).

Deletions are effected as follows. The vertex p;, and its edges x-LE and y-LE, are removed. If the left vertex of x-
LE does not have an incident edge downward, it is removed and its upward edge is extended downward until a
segment (axis) is intersected, and its leftiward edge (and leftward incident vertex) is also removed, otherwise it is
simply removed. If the bottom vertex of y-LE does not have an incident edge leftward, then it is rernoved and its
rightward edge is extended until a segment (axis) is intersected, and its downward edge (and downward incident
vertex) is also removed, otherwise it is simply removed, '

If the removal of an edge causes an attached supporting point to have two edges, it is removed as well and one
incident edge (right or top) is extended until a supporting segment is reached. In the worst case, O(n) supporting
vertices will be removed, and thus the worst case deletion will require O(n Ig n) time to complete as the k-d tree -
index will have to be completely rebuilt. However, this may only occur once in a sequence of O(n) deletions. It is
also the case that the xth worst deletion can only occur O(2") times in a sequence of O(n) deletions, and this will
require rebuilding of the k-d tree on the order of O(n/2%) time, giving a worst case rebuilding time of O(nl g’n) over
a sequence of O(n) deletions. This bounds the amortized deletion time at O(ig’n).

214

Extending the Domination map to 3 Dimensions

The priority search DAG can be extended as follows: assume 2l points lie in a bounded, northeast quadrant and
drop segments towards each bounding plane until either a face of another 3-d semi-orthogonal region is hit or the
bounding plane is reached. From each of these points, drop 2 edges towards the other bounding planes until edges
of a face of a 3-d region are hit or the axis is reached. The priority search DAG now has 6 supporting points and
nine primary and secondary edges for every point in range. Thus, it reguires ©(n) storage.

 The polytope index is extended as follows and requires @(n) storage:

1) The vertex index is extended to keep track of the left and right incident edges parallel to the z axis

2) The edge index is extended to keep track of the left and right incident faces in both relevant planes

3) The face index keeps track of the left and right 3-d semi-orthogonal regions.

4) A region index is added and a region is defined by a unique region identifier, a left, right, top, bottom, front,
and back face.

The k-d tree is builf analogously to the 2-d version, with the only difference that it may require up to 8n cctants to
ensure that an octant only indexes one region. On a static data set, it requires ©(n) storage.

Thus, in the static case, the structure requires @(n) storage. Domination queries require &(lg n + t) as they can be
performed as follows. Use the k-d tree to locate the region that contains the point q in ©(lg n) time. Use the
polytope index to progress rightward, topward, and forward in the direction of the axis to locate all regions that
intersect the axis of the query region. This provides the faces that intersect the query region, and thus the edges.
With the starting edges, locate the starting points from which all rightward, topward, and forward incident edges
are traversed until all vertices in range are located. '

It can be dynamized analogously to the 2-d case, and although the algorithms are more involved, the update and
storage times remain the same with storage bounded by Q(n) and O(a Ig n).

Conclusions

The domination map is a very efficient data structure for domination queries on 2 and 3 dimensional data points,
especially in the dynamic case. In the static case, it is as efficient as the structure of [Chaz87), on which it builds,
for 2-d data and more efficient than the structure of [Chaz87] for 3-d data. In the dynamic case, it retains the same
query times for the small cost of an additional O(lg n) factor of storage in the worst case while permitting
amortized dynamic updates of O(lg’n).

Further work will involve an attempt to extend the structure to handle k-dimensional data and improve the update
algorithms on the modified k-d tree so that only a constant number of regions need to be split without increasing
the overall amortized rebuilding time, thus eliminating the additional O(lg n) storage.

References

[Bent75] Bentley, Jon Louis. "Multidimensional Binary Search Trees Used for Associative Searching”,
Communications of the ACM, Volume 18, Number 9, September 1975, pp. 509 - 517.

[Chaz86] Chazelle, Bernard. "Filtering Search: A New Approach to Query-Answering", SIAM J. Comput., Vol.
15, No. 3, August 1986, pp. 703 - 724 :

[Chaz87] Chazelle, Bernard, and Edelsbrunner, Herbert. "Linear Space Data Structures for Two Types of Range
Search", Discrete Computational Geometry, Vol. 2, pp. 113 - 126, 1987

215

Appendix I
The polytope index for Figure 1.

216

) Label | Type | Iv | rv | LF | RF
Table 1. The vertex table of the polytope index for {hipd | p him | F | Fs
Figure 1. : (hopd| p |hy | F |F
: hs, h F: | F
1d [Coords | Type | xLE | xRE | yE | yRE J—ngz p:)) B
P (1,3) p (hy,p1) - (hy,pi) - (hs,ps) P hs | ps | Fs | X
p: | (2.1) p | (hpy) - (va2.p2) - vip) | p v lpe | Fs | X
p; | (3.5) p_ | (hisps) - thap3) - (hwp i p by |v | Fr | X
ps | (5.2) p_ | (Vsps) - (va,ps) - top) ! p |hlp | Fi | Fs
ps_| _(4.7) p | (hs,ps) - {h7.ps) - vp))l p {wlp|F | F
Pej (T4 | p (P = 1QeP) | - l(up)| p |he|ps |F: | Fs
Pr 66) | p fChoph| - 1 CGapdl - Tvp) | p | valpa| Fa | Fe
h, - 8 - (hypy) | (Ohy) | (hyhs) | (hy.ps) p h, | ps | Fs | X
b - s - (hpp) | (vioho) | (hap)) [wep) | p [ve [pe | Fs | X
hy - § - (ha,pa) | (hihs) | (hah) [wvop) | p [p [F | X
hy - s - (havs) | (vava) | (heps) [(hyv) | s [he | vs | Fo [Fs
hs - s - (hs,ps) | (hs,hs) - (heh)) | s | he | by | Fs | Fy
he | - s - (hevp) | (vsshe) | (heb) O | s O [X | F
hs - s - (hypp) L (hehs) | Bap) T wb) | s v [F] R
V] - s 1 - | ©Ov) - (v1,hy) (h;,hs) s h |h | X | Fs
V3 - s 1 (Vi) | (Vav3) - (a2 [(vibd | s v |h | F | Fs
V3 - s | (vavs) | (va,va) - (vahe) [(hyhd) | s [hsfhs | X { Fs
Va - 8 (Va.va) | (Va,Ve) - (VarPe) 1 (vs,he) s vs | hs 1 Fs | Fe
Vs - s (ha,vs) | (vs,pa) _ - (vs.he) (he,h7) s he | b | Fs | Fy
Ve - 5| (va,he) - - (eps) 1 (O,v)) s 1O0{v| Xt F
Vs - s | (he,ve) | (v7,pe) - (P | (vvy) s [vw|w| XI|F
{V2,V3) 5 vo v | X | Fs
Table 2. '_I‘he edge taplc of the polytope (Va.Va) S vi | val X | Fs
index for Figure 1. (Varve) . v Fve | X | Fe

Table 3. The face table of the polytope
index for Figure 1.

F | x-LE x-RE | y-LE y-RE
Fi 1 (Ohy) | (hypy) | Oy} | (hypy) |-
Fp | (vi,hy) | (va.pp) | (Vi,v2) | Chopy) |
Fi | (hy,hy) | (haps) | (hypy) | (Haps) |
Fs | (vi.ha) | (vepa) | (V3,Va) | (Vs,pa)
Fs | (hy,hs) | (hy,ps) | (haps) | (hsps) |
Fo | (vs,he) | (vepe) | (vs.pa) | (Vi.Pe)
Fy { (hehs) | (va.p7) | (hsve) | (hap7) |

Fast Piercing of Iso-Oriented Rectangles

Christos Makris

Athanasios Tsakalidis

Department of Computer Engineering and Informatics, University of Patras 26500 Patras, Greece AND
Computer Technology Institute P.O. BOX 1122, 26110 Patras, Greece
e-mail address: makri@ceid.upatras.gr

Abstract :
We preseni mew algorithms for the problem of k-
piercing of a set of n iso-oriented rectangles in the
plane for k > 4. Our results are comprised of two
O(nlogn) time algorithms for £ = 4 and k = 5, and
an O(n*~*logn) time algorithm for & > 5.

1 Introduction
Let S be a set of n convex objects in R%. The set S is
k-pierceable if there exists a set of k piercing points
which intersect every member of S. The k-piercing
problem is to determine whether S is k-pierceable
and, if so, to produce a set of k piercing points. One
. important special case of the problem arises when we
.. consider the set S as being comprised from a set of
. axis-parallel rectangles in the plane. The 1-, 2-, 3-
piercing problems for a set of axis-parallel rectangles
have been solved in linear time in [3,4]. For k& > 4
the best known bounds were given in [7] where the
k-piercing problem was solved in O(nlog ~1n) time
and O(n x polylog(n)) space for 4 < k& < 6, and in
O(n*~1log® n) time for £ > 6. The results in [7]
for k > 4 are based on the algorithmic technique
used to solve the 4-piercing problem for a set of axis
parallel rectangles. In a recent paper Michael Segal
([6]) using a different geometric transformation than
that in [7] was able to solve the 4piercing problem in
O(nlogn) time and the k-piercing problem for k > 6
in O(n*~*log* n) time. With his approach he handles
also the 1,2,3-problems but not the 5-problem.
In this paper we will show that by using the same ge-
ometric observations as in [7] but with more appropri-
ate data-structuring techniques and some extra obser-
vations, we can obtain: (i} an O(n) space, O(nlogn)
time algorithm for the 4-piercing problem, (ii) an
O{nlogn) space, O(nlogn) time algorithm for the 5-
piercing problem and (iii} an O(n*~*logn) time al-
gorithm for the k-piercing problem where k > 6, thus
improving the previous solutions in terms of space,
time bounds. The above improvements are based in
the replacement of the sweep routine used in {7] by t-
wo independent processes (i) a preliminary sweep that

produces a set of candidate k-tuples of points and (ii)
a filtering algorithm that removes all the tuples that
do not pierce the set of rectangles. As we will show for
k = 4,5 the above processes are based on dominance
searching data structures in the (k — 2)-dimensional
space, and since 2- and 3-dimensional static domi-
nance searching can be performed in O{logn) query
time we are able to achieve O(nlogn)time bounds.
Before closing this section we state briefly the ba-
sic points of the geometric observations in [7]. Let
S be the set of rectangles we want to test for k-
pierceability., Let L, R,T, B be the lines containing
the leftmost right edge, the rightmost left edge, the
highest bottom and the lowest top edge of the rectan-
gles in 5. Consider the closed left halfplane H% bound-
ed by L, the closed right halfplane H® bounded by
R, the closed top halfplane H7 bounded by T, and
the closed bottom halfplane HZ bounded by B. Let

X denote the closure of the complement of H* for
X = L,R,T,B. Finally let So := (x_rLrT 8 HX.
The region Sy (see fig. 1)) is called the location do-
main of $ a term that is used in order to exhibit the
relationship of Sy with the location of the piercing
points. If Sp is empty then S is traversed by an axis
parallel line. In this case it is known ([7,2]) that for
any k the k-piercing problem can be solved in O(n)
time. Assume now that Sp is not empty. The follow-
ing lemma based on a careful geometric observation
was stated in {7}. '
Lemma 1 Assume that S is k-pierceable but has no
azis parallel traversing line. Then there is a set of k
piercing points in Sy with each side of the boundaery
of So conteining one of the piercing poinis (the sides
are considered as relatively closed, that is, a veriez of
Sp is contained in ils two incident edges)

2 4-piercing of rectangles

We are given a set 5 = {#),52,...,8n} of rectangles
and we want to find if there exists 4 points that stab
S. First we construct in O(n) time the location do-
main Sp of the set S. If Sy is empty then as mentioned
before we can test for 4-pierceability in O(n) time So

217

Figure 1:

assume that S exists. We can decide whether there
exists a piercing set of four points one of which is a
vertex of Sp by taking each such vertex and testing for
3-pierceability the rectangles disjoint from it in linear
time. So we may assume that all the four piercing
points lie on Sp each lying in the relative interior of
a distinct side. This case is handled as follows: Let
t denote the intersection of the rectangle, whose bot-
tom side lies on the line T of Sp, with the line T. Let
Ij=tNs;for j=1,...,n, where 5;{(j = 1,...,n) are
the rectangles comprising the set S. The endpoints of
the intervals I; partition ¢ into at most 2n —1 “atom-
ic” intervals. Qur algorithm proceeds in two stages.
In the first stage a sweep is performed moving on the
atomic intervals from left to right and placing the top
piercing point p; in each of them. For an atomic inter-
val J the set S of rectangles of S that do not contain
p1 remains unchanged as p; varies within J. So we
may assume that p; is the middle point of an atomic
interval. When we pass from an interval J to an inter-
val J/ the set Sy differs from Sy by a single rectangle
being added or removed. At each interval we produce
two 4-tuples (py, p2,p3,p4) of points that are candi-
dates for piercing. So ai the end of stage 1 we have
aset Cof m= O(n) 4-tuples (p1, p2,P3, pa) to test
if these tuples pierce the set S. By an observation
on the type of restrictions these points obey we will
show how this extraction can be done in O(nlogn)
time and O(n) space. Note that stage 1 is similar
to the sweep performed in [7] however here we don’t
test immediately if a candidate 4-tuple really pierces
S. This saves us from the extra logarithmic factors in
both time and space bounds. In stage 2 we examine
if any of these 4-tuples is indeed a 4-piercing tuple
for S. As we will show this problem can be solved in
O(n) space and O{nlogn) time thus getting an over-
all improvement in both time and space bounds.
Stage 1
Let s = [sL : su] X [sp : s7] be a rectangle of S. We
map each rectangle 5 € S to 12 2-dimensional points
(2., 5y;) as follows:
Sz, = 5Ly Sy, = 8B
Sz, = SR; Sy; = 8B
zs = 6B, Sy, = 8B

Szy = 5By Sy; = SR
= 87, Sg’ =S8R
= &L, SV‘ = SL

Sz.

Sy

8z, = 8T, Sy =8B Szy0 = SRy 3910 = 5L
Szg = 8Ly Syy = 8R Sz, = SR 5y, = SL
8y = SRy Syy = SR Sz,y T 8T, Sy, = SL

(i) Construct the partition of the top interval ¢,
as defined above, into up to 2n— 1 atomic intervals
{time=0{nlogn})

(ii) Sweep over these intervals from left to right.

For each interval J, maintain the set S; of rectangles
of § not containing J into 12 priority search trees
PSTi(i = 1,...,12) where PST; stores the poinis
(6z;,5y;) as defined above. A priority search tree
(PST) is a blend of a search tree and a heap that
can store a set P of n 2-dimensional points (z;, ;). A
description of this well known data structure can be .
found in [5]. It can be updated in O(logn) time per .
insertion and deletion and among the others permits
the following query in O(logn) time:
Miny psr(z0 < z < 1) = min{y;3z;(z0 < z <
z1) A((z,y) € P)} (if the heap is built on the inverse
order of the y-axis then a PST can instead support
the query Mazy psr(zo < £ < z1)). The choice of
the heap order for each of the above PST’s can be
easily deduced from the next steps of our algorithm.
Initialize the data structures with the set of rectangles
not containing the left endpoint of ¢.

(iii) Let So(J) be the location domain of S;. It can
be easily verified that the bottom, left and right sides.
of So(/,v) lie on the same lines as the corresponding
sides in Sp and only the top side of Sp(J) changes.
Find the new top side by retrieving the x-coordinate
of the last leaf of PST3 and so constract the Sg(J)
(time=0(1)).

(iv) Our assumptions on the location of the piercing
points, imply that one of the three piercing points
of 5; must be one of the two top vertices of Sp(J)-
We will place the second piercing point at each of
these vertices. Let v{v;,vy) be that vertex, and wlog
assume that it is the top-left vertex of So(J).

(v) Let S{J,v) be the set of all rectangles from Sy
that do not contain v. We need to find Sp{/J,v). It is
easy to see that the bottom and right edges of So(J, v}
lie on the same lines as the corresponding sides in
So. So we mneed to find the new left and top sides of
So(J,v). Since S(J,v):={s € Ss:(s7 < uy)v(sn >
vV (2> vz) V (sr < v:)} we have:
new
top side: —ma.x{mazy _psT, (£ > v;), mazy_psr,(z <
v), mazy_pst,(z > vy), mazy_psr,(z < vy)}
new
left side:=min{miny_pst,(z > vz),miny_psr,(z <
vz), miny_pst, (2 > vy), miny_pst,(T < vy}}

The above relations imply that the new So(J,v) can
be found in O(logn) time. From elementary geo-
metric arguments it follows that the only candidate

218

Figure 2:

points for the remaining two points are the top-right
w and the bottom-left vertex z of Sp(J,v). (Re-
mark: if we took instead the rightmost vertex v’ at
step (iv) then we would have to find the new right
and top sides of Sp(J,v') and so we would have to
query PSTy, PST;, PST3, PSTy (as previously) and
PSTy, PSTio, PST11, PST12 and the remaining two
piercing points would be be the top left v’ and the
bottom right vertex z’ of Sp(J, v')).

(vi) From the arguments of step (v) it follows
that (middle point of J,v,w,z) and (middle point of
Jw'w',2') are the two candidate 4-tuples of points
" contributed by J. We add these 4-tuples into a set C
of candidate 4-tuples of points.

(vii) Move to the next atomic interval J/ of t. Up-
date the 12 PST’s with the insertion or deletion of
the rectangie by which S; and S, differ, and repeat
the above steps to J'.

Since all the priority search trees can be updated
and queried in O{logn) time using O(n) space we con-
clude that stage 1 can be completed in O(nlogn) time
and O(n) space, producing a set C of m = O(n) can-
didate 4-tuples of piercing points.

Stage 2

Let C = {c1,¢2,...,6m} be the set of candidate 4-
tuples after the end of stage 1. We write a 4-tuple ¢;
as ¢; = (pi, p}, p§, pi) where p lies on the top side of
So, ph lies on the right side of Sp, p} lies on the bot-
tom side of So and pj lies on the left side of Sp. We
also implement C as a doubly-threaded linear linked
list. Stage 2 consists of the following steps:

(i) Store all the tuples .in a constant number
A1, Az, ..., Ar of auxiliary'structures where each
structure has query/update time Oflogn) and us-
es linear space. The appearances “& each tuple in
C, Ay, ..., A are linked together w1%§_@_1du'ectmna.l
pointers, ;" %

(ii} For every rectangle s; € S do: !
1. using the structures A;,As,...,A: find the 4
tuples that do not pierce s;.

2. delete all these tuples from A,,...,

A¢ and C,

It is clear that if we have in our disposal these struc-
tures then steps (i) and (ii) can be performed in a total
O(nlogn) tine and linear space and the list C after the
end of stage 2 will contain all the tuples that pierce
S. If C is empty then S is not 4-piercable otherwise
it is. So, the main obstacle in obtaining a solution
is to find the appropriate data structures that will
compute for each rectangle s in S the subset C, of
C consisting of the 4-tuples that that do not pierce
s. The crucial observation that will help us is to look
at the relationship that s, C have with the location
domain Sp. _

We have the following cases (see fig. 2):

(a) 5 completely covers Sp. In this case all the tuples

of C pierce s,

(b) s is contained in Sp. In this case no tuple of C

can pierce s and so S is not 4-pierceable.

(¢} s fully contains an edge of Sp. In this case since

every tuple of C has a point in one side of Sy it follows

that s is pierced by every 4-tuple of C.

(d) s cuts only an edge of Sp, and assume w.l.o.g that

this is the top edge. Then we have:

Ci={c € CI(P'L-; <sL)V (pis > sg)}.

(e) s cuts through two consecutive (in the clockwise

order) edges of Sp, and assume w.l.o.g. that these

edges are the top and the left of So. Then we have:
={ci € Cl(plz > sp) A (p-iy < sg)}

(f) s cuts through two opposite sides of Sp, and as-

sume w.l.o.g. that these edges are the top and the

bottom of So. Then we have:

C' = {C, € C!((plz > SR) A (p3= > SR) V ((plx

sL)AGS, > sa)V{(ple > sR)A (S, < sp)V((Fh, <

s1) Alps; < s1))}

As it is easy to see each of the above cases can be
handled by a constant number of data structures each
storing a set of 2-dimensional points and supporting
queries of the form: given a gquery point (zo,yo) find
all the points (z,y) such that (z @ xo) A(y@ y0), where
@ any of <,>. A priority search tree can support
suck operations in O(logn) query and update time.
So the solution to our problem is to enumerate all the
possible relations of cases (d), (e), (£), (g) and for each
such possible relation to create a PST that stores all
the tuples of C (to be more precise case (d) can be
handled by a simple binary balanced tree). Each tu-
ple ¢; appear in these trees as a two-dimensional point
according to the above relations, and all the appear-
arices of a tuple ¢; in these trees and in C are linked
together by bidirectional pointers. Since the num-
ber of possible relations is constant it follows that we
need a constant number of PSTs. Since a PST can
be updated in O(logn) time and supports queries in
O(logn + k) time (k the-output size) we get the fol-
lowing theorem:

219

LY

Figure 3:

Theorem 2. The 4-piercing problem for n azis par-
allel rectangles can be solved in O(nlogn) time and
O(n) space,

3 5-piercing of rectangles

We are given a set S = {51,82,...,8,} of rectangles
and we want to find if there exists 5 points that stab 5.
First compute in O(n) time the location domain Sy of
S. If Sp is empty then we can test for 5-pierceability
in O(n} time. So assume that Sp exists. We can easi-
ly decide whether there is a piercing set of five points
one of which is a vertex of Sp by taking each such
vertex and testing for 4-pierceability the rectangles
disjoint from it in O(nlogn) time. So we may assume
that we have four piercing points with each point ly-
ing in the relative interior of a distinct side and the
fifth piercing points can lie anywhere in Sy except the
four corners. Let ¢ be the fifth point. We can use a
remark stated in [7] according to which at least one of
the piercing points on the left and right sides of Sp lie
above ¢ or at least one of these points lie below ¢. So
suppose that at least one of these points lie above ¢
and suppose that this point lies on the left side of Sp.
Assume also that the point in the left side is higher
(see fig. 3) than the point in the right side (the other
constant number of cases can be handled in a similar
way). Our algorithm again consists of two stages a
stage 1 that collects a set of candidate 5-tuples and
a stage 2 that filters out from these tuples those that
do not pierce S.

The difference here is that stage 1 is broken in two
phases with the first phase collecting a set C of O(n)
candidate 5-tuples each of which has only three de-
fined points and a phase 2 which fills each of these can-
didate 5-tuples with the two remaining points. Phase
1 is completely analogous to the stage 1 algorithm for
4-piercing while phase 2 uses the geometric observa-
tions stated previously for the stage 2 of the 4-piercing
algorithm. More precisely we have:

Phase 1:

(i) Obtain the partition of the top interval ¢ of Sp,
as defined in the previous section into up to 2n —1
atomic intervals (time=0O(nlogn)).

(ii) Sweep over these intervals from left to right. For
each imterval J, maintain the set S; of rectangles
of S not containing J into 8 priority search trees

PSTi(i = 1,...,8). These priority search trees are
the same as in the 4-piercing algorithm. Initialize the
data structures with the set of rectangles not contain-
ing the left endpoint of .

(iii) Let So(J) be the location domain of S;. We ob-
serve again that the lines incident to the left, right
and bottom sides of So(J) are the same lines L, R, B
defining Sp and only the top side of So(J) changes.
Find the new top side by retrieving the x-coordinate
of the last leaf of P5T; and so construct the So(J)
(time=0(1)).

(iv) Our assumptions on the location of the piercing
points imply, that the next piercing point must be the
top left vertex of So(J). Let v(vz,vy) be that vertex.
(v) Let S(J,v) be the set of all rectangles from 5;
that do not contain v. We need to find Sp(/,v). It
is easily verified that the bottom and right sides of
So(J, v) lie on the same lines as the corresponding in
So. So we need to find the new left and top sides
of So(J,v). Using the eight priority search trees we
can find these sides in O(logn) time. Then according
to our assumptions the third candidate piercing point
must be either the top left vertex w; of Sp(J, v), or the
bottom left vertex w; of Sp(J, v}, or the top right ver-
tex w3 of So{J,v). We add (middle point of J,v,u;,
*,), (middle point of J,v,wz,%,%), {(middle point of
J,v,w3.x,%) in a set C of unfilled candidate piercing -
tuples. With each entry we also store the recta.ngle
So(J,v).

(vi) Move to the next atomic interval J' of t. Up-
date the 8 PST’s with the insertion or deletion of the
rectangle by which Sy and S differ, and repeat the
above steps to J'.

Phase 2: The phase 2 algorithm examines each of
the tuples in C and tries to fill out the remaining two
unfilled points. Let ¢ = (v1, vz, v3,*,%) be an unfilled
tuple where vy lies on the top side of Sp, v; lies on the
left side of Sp and vz can lie either on the right side of
So, or the bottom side of Sg, or the interior of So. As-
sume w.l.0.g. that v lies in the interior of Sp. With ¢
we also have stored the location domain Sg(J, v2) con-
structed in step (v) before and we know that v; lies
on the top left vertex of So(J,vz). Let S(vy, vy, va) be
the rectangles that are not pierced by any of v3, v3,v3
and let So(v;,v2,vs) be their corresponding location
domain. The crucial observation here is that if we
find So(vy, vz, v3) then we have a constant number of
cases where to put the two remaining points of ¢ and
so the tuple ¢ will give rise to a constant number of
candidate tuples with all their points filled. To find
So(v1, vz, v3) we note that the bottom and right sides
of it are the same as Sop(J, v2) so we only need to find
the new left and top sides. We have:

(1) new top side:=max{sg : s € S(v1, v2,v3)}

220

(2} new left side:=min{sg : s € S(v1, v, v3}}

In order to answer the queries (1), (2) we will store
the rectangles in S in a constant number of auxiliary
structures, A;, Az,..., A;. These structures are built
according to the relation the rectangles have with Sp
(as depicted in figure 2) and the specific combination
of the location of vy, v2, v3. Since the number of com-
binations of the locations of vy, v, v3 is constant and
the number of the cases is constant we have a con-
stant number of structures. So, let’s examine again
the cases of figure 2. We have:

(a) The zectangles in this case do not contribute to
S(v1, v2,v3)

{b) The rectangles in this case that are not pierced
by v1,ve2,vs are those that are not pierced by vs.

(c) (i) The rectangles contain the top or left edge of
So. The rectangles in this case do not contribute to
S(v1,v2,v3) (they are pierced either by v; or by v3)
(ii) The rectangles contain the right edge of Sg. The
rectangles in this case that are not pierced by vy, v3, v3
are those that are not pierced by vy, v3.

(iii)The rectangles contain the bottom edge of Sp.
The rectangles in this case that are not pierced by
¥y, ¥z, v3 are those that are not pierced by vz, vs.

(d) (i) The rectangles cut the top edge of Sp. The
rectangles in this case that are not pierced by vy, v, v3
are those that are not pierced by vy, us.

(ii) The rectangles cut the bottom edge of So. The
rectangles in this case that are not pierced by v1, v2, va
are those that are not pierced by vs.

(iii) The rectangles cut the right edge of Sg. The rect-
angles in this case that are not pierced by vy, vp,v3
are those that are not pierced by vs.

{iv) The rectangles cut the left edge of So. The rect-
angles in this case that are not pierced by vi, vz, v3
are those that are not pierced by vz, va.

(e) (i) The rectangles contain the top left vertex of
So: In this case by construction every such rectangle
is pierced either by v»; or by vy (it is impossible to
have rectangles contained in the shaded region of fig.
3)

(ii) The rectangles contain the top right vertex of So.
The rectangles in this case that are not pierced by
vy, 2, v3 are those that are not pierced by vi, vs.

(iii) The rectangles contain the bottom left vertex of
So. The rectangles of this case that are not pierced

by v3,v2, v3 are those that are not pierced by vz, vs. -

(iv) The rectangles contain the botfom right vertex
of So. The rectangles in this case that are not pierced
by v1,v2,vs are those that are not pierced by vs.

(f) (i) The rectangles cut through the top and bot-
tom edge of So. The rectangles in this case that are
not pierced by vy, vz, v3 are those that are not pierced

by v;, va.

(ii) The rectangles cut through the left and right edge
of Sp. The rectangles in this case that are not pierced
by vy, vz, v3 ate those that are not pierced by v2,vs

So overall we conclude that for each case the
rectangles that are not pierced by v;,vz,v3 are
those that are not pierced by at most two spe-
cific points of vy, vs, v3.

Since for a rectangle s € S we have:

& not pierced by points p and q &

& ((sr < pP2)V(sL >) V(T < p) V(s >
)M ((sr < g:)V(sL > gz)V (s7 < @) V(sB >)
and since (AV B)AC = (AAC) V(B A C), we have:
s mot pierced by p,q & V,_, gterm; , where
term; = (s, ® pi,) A (si; ® gi;) and s;,, 8, can be
any of 51, sR, 5T, sp and p;, any of p;,py and ¢;, any
of ¢z, qy and ® any of <,>.

From the above discussion it follows that in order
to answer the questions (1), {2), for an unfilled tu-
ple ¢, we need to preprocess the set of rectangles for
each of the cases (a},(b),(¢), (d}, (e), (f) in a constant
number of structures storing three dimensional points
(z,y, z) and able to answer, for a given pair (z,,2)
queries of the form:
findmin(maz).z{z,,23) = wmin{maz}{z|{(z,y,2)
corresponds to a rectangle, and {(z®z1) A (y®22))}.
Then we collect the minimum (or the maximum) of
all the (constant number) of answers and we get the
answer to (1), (2). Structures sunitable for this kind
of queries are proposed in [1] where it is shown how
to preprocess a set of three dimensional points in
O(nlogn) time and space such that such queries can

"be answered in O(logn) time. These structures use

the power of the RAM model of computation since
they are based on computing least common ances-
tors in O(1) time. So we have shown that we can, in
O(nlogn) time and space, collect a set C of m = O(n)
5-tuples of candidate piercing points.

Stage 2 Stage 2 uses again the same case observations
as in stage 2 for the 4-piercing algorithm. However
now we follow the reverse approach that is we store
the set S in a constant number of data structures and
test each tuple of C separately as follows:

1. Store S in a constant number of data structures
A1, Az, Age

2. Take each 5-tuple ¢; of C and wusing
Ay, Az,..., Aq test if ¢; pierces S.

3. H a tuple of C has been found to pierce S then
S is 5-pierceable otherwise it is not.

Using the same observations as in the stage 2 of
the 4-piercing algorithm we see that for each case the
relation: a rectangle s in not pierced by a 5-tuple
is equivalent to the relation that s in not pierced by
at most three of the points in the tuple. By omit-
ting easy but tedious details we just say that for each

221

class of rectangles {according to the specific cases of
fig. 2) we create a constant number of data struc-
tures each storing 3-dimensional points (x,y,z) and
being able to answer queries of the form: given a iriple
(z1,23,23) find if there is a point (z,y,2) such that
(z®z21)A(y ®z2) A(2®z3). Then given a specific 5-
tuple ¢; we accomplish steps (ii) and (iii) by querying
in the appropriate way the appropriate data struc-
tures. If all the structures report “no” as an answer
then c; pierces S otherwise ¢; does not pierce S. In
[1] it has been shown how to build, in O(nlogn) time
and space, data structures that answer such queries
in O(log n) time. So we conclude:

Theorem 2 The 5-piercing problem for n aris par-
allel rectangles can be solved in O(nlogn) time and
O(nlogn) space.

Remark: In the full paper we show that by combin-
ing, previously published dominance solutions, with
the approach used in [1] it is possible to reduce the
space requirements of the structures we use from [1],
to O(n), thus reducing the space of the above theo-
rem to linear (the time bounds are unaffected).

4 k-piercing of rectangles

Consider now the k-piercing problem for £ > 6.
The algorithm again is comprised by two stages,
with the same functioning as before. The first stage
can be implemented in a brute-force way to runm in
O(n*~*logn) time by simply taking (as in [7]) all the
possible combinations of points until we get ourselves
in the case where we want 5 remaining points to fill
in a candidate k-tuple, where we resort to the stage
1 of the 5-piercing algorithm. Note that the set C
of candidate k-tuples built in the first stage has size
O(n*—4).

The stage 2 is analogous to the stage 2 of the 5-
piercing algorithm, Here we will take advantage of the
fact that the number of rectangles is O(n) whereas the
set ' has quadratic or superquadratic size giving us
the freedom to store S in structures of size O(n!**)
where ¢ arbitrarily small positive constant. To be
more specific the steps are:

1. Store S in a constant number of data struciures
Ai, Az, Ar

2. Take each k-tuple ¢ of C and using
A1, Az, ..., Ay test if ¢; pierces S.)

3. If a tuple of C has been found to pierce S then
S is k-pierceable otherwise it is not.

It is obvious that a k-tuple ¢ = {py, p2,.-.,Px) does -

not pierce S if the set of rectangles in § that are not
pierced by c is not empty. Let V. denote this set. We
have that: V. = {s € S: Vi AVz A V5,...,AVi},

where V; = (s7 < pi, V(s > pi, WV(sL > pi.)V(sr <
pi.). Since (AVB)AC = (AAC)V (B AC) the set
can be rewritten as: Vo = {s € §: Vizi,..etermi},

where ferm; is the conjunction of one term of V),
one term of V5, one term of V3 ,...,and one term of
Vi and t is 4%. It is easy to see that every term;
is of the form: term; = A;_; ., fi ®t;, where Jj
can be any of s7,sp,5.,5p and tj can be any of
Pi.:Pj, and ® can be any of <,>. Each rectangle
can give rise to | = 4* (f1,f2. f3. fa, ..+,) points.
So in order to find if ¢ pierces S it suffices to s-
tore the rectangles of S in ¢ structures A3, Az,..., A
where structure A; can deal with gueries of the for-
m proposed by term;. Then we query each such
structure with ¢ and if all of these structures re-
port output of zero size then c pierces S otherwise
¢ does not pierce S. By using a multilevel range
tree where each successive level has constant depth
(as described in [8]), each A; can be implemented
to have size and preprocessing time O(n!**) where ¢
can be arbitrarily small so that each such guery takes
O(log n) time. So overall we have a time complexity
of maz{O(n*¢), O(n*~*logn)) = O(n*~*logn) and
we conclude with the theorem:

Theorem 3 The k-piercing problem for n azis parallel
rectangles when k > 5 can be solved in O(n*~*logn)
time. '

References

{1] H. Gabow, J. Bentley, R. Tarjan, Scaling and
related techniques for geometry problem, Proc.
16th Annual Symp. On Theory of Compul. pp.
135-143, 1984.

[2] M. Golumbic, Algorithmic Graph Theory, Aca-
demic Press, New York, 1980,

(3] M.T. Ko and Y.T. Ching, Linear time algorithms
for the weighted tailored 2-partition problem and
the weighted 2-center problem under Loo dis-
tance, Discrete Applied Math. 40, pp. 397-410;
1992

[4] M.T. Ko and R.C.T. Lee, On weighted rectilinear
2-center and 3-center problems, Inform. Sci, b4
(1991) 169-190.

[5] Kurt Mehlhorn, Data Structures and Algorithm-
s 3: Multi-dimensional Searching and Computa-
tional Geometry, Springer-Verlang, 1984

[6] Michael Segal, On Piercing Sets of Axis-Parallel
Rectangles, manuscript

[7] M. Sharir, E. Welzl, Rectilinear and Polygonal p-
Piercing and p-Center Problems, Proc 12th ACM
Symp. on Computational Geometry, pp.122-132,
1996 '

[8] M. van Kreveld, New results on Data Structures
in Computational Geometry Phd Thesis, Utrecht
University, 1992. - .

222

Shooter Location Problems Revisited

Cao An Wang 2 and Binhai Zhu 3

A_bstract

In this paper, we propose an O(n®logn) time algorithm for the general shooter location problem thus
solving an open problem posted by Nandy, Mukhopadhyaya and Bhattacharya. With geometric duality
we also present a factor-2 approximation algorithm which runs in O(n®) time for this problem.

1 Introduction

Let L = {l,1s,...,1n} be a set of line segments with finite length in the plane. A shooter in this envi-
ronment of L can fire or emit rays from a point in arbitrary directions such that a ray can penetrate
all the line segments in its linear path of motion from its origin to infinite. Shooter location problem is
to locate a position'in the plane such that the number of shots fired from that position necessary to
hit all the line segments in L is minimal over all other positions in the plane. This general problem is
raised by Nandy et al. in [NMB96] as an open problem, they also solved a restricted case of shooter
location problem; that is, the shooter is only allowed to move along a given line. They provided an
O(n®) algorithm to find a position in the given line such that the shooter is able to fire the minimum
number of shots necessary to hit all the line segments in L.

- Shooter location problems can be regarded as a generalization of the well-known transversal or
stabbing problem [Ede87}. In the environment of L, if one can locate a position at which a shooter is
able to fire a single shot or two shots in the opposite directions to stab all the elements of L, then one
has found a stabbing line. A natural generalized question is how to find a location where the shooter
can fire a minimum number of shots necessary to hit all the elements in L.

A further inspection of the problem shows that this problem can be divided into a polynomial
(O(n*)) number of subproblems, and each can be solved in O(nlogn) time. This gives us a polyno-
mial O(n®logn) time solution. With geometric duality and O(n?) time and space preprocessing, a
factor-2 approximation solution for each of the above subproblems can be obtained in O(n) time. The
efficiency of our method is based on an observation that the problem in the original form in the plane
can be transformed into a new form in the dual space and the problem in new form can be solved
more efficiently. This contributes an O(n®) time factor-2 approximate solution for the problem.

For some variations of this problem and some related references, readers are referred to [AB8T7],
[BKKMSU95,HM90,HT92].
2 Preliminaries on Geometric Duality

We shall review a typical transformation from an orthogonal zy—coordinate system to another orthog-
onal af—coordinate system in the plane and state some properties with respect to the basic geometric

IThis work is supported by NSERC grant OPG0041629 and a research grant from City University of Hong Kong.
¥Department of Computer Science, Memorial University of Newfoundland, St.John’s, NFLD, Canada A1B 3X8.
*Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.

223

objects in these two coordinate systems.

Let p be a point in the plane. Point p can be represented in an orthogonal zy—coordinate system
by its two coordinates (zp,y,). Let / be a line in the plane which is uniquely determined by a-point
and a slope in the zy—coordinate system. In more detail, let p with coordinates zp and yp be 2 point
through which [passes and k; be the real representmg the slope of I. Then, every point (z,y) on !
must satisfy the following formula

y—yp=ki*(z—zp).
Thatis, y=kr ¥z 4 (yp — k1 % 2,). Let b = (y, — k1 * 7}, we have that y = k) x z + b;. In general,
a line can be represented as -

y=k*xz+b———--(1).

Consider another orthogonal coordinate system with & and § as variables (axes). We define a
mapping M : k — a,b — #. Then, under the mapping M, a line [with slope k; and point at the
z—axis b; in the zy—coordinate system corresponds to a point (k;, §;) in the af—coordinate system.

Furthermore, a point p in the zy—coordinate system can be regarded as the intersection point of
all the lines passing p in the plane. Thus, p can be represented as an infinite number of lines satisfying
the following formula

y=kxz4 (yp—k*zp)

for variable k in [—00,00]. Then, under the mapping M, pomt p becomes a line in the aﬁ—coordmate
system satisfying the following formula

B=—zpra+ty,———~(2)

Figure 1: The left-hand side is a line segment in the plane with a ray (line) [crossing it from point p
and the right-hand side is the double-wedge in the dual plane with point p,.

The following properties are derivable. For convenienf;, we call the zy—coordinate system, the
plane (or the primal space) and the afi—coordinate system, the dual plane.

Property 1: (Refer to Figure 1.) A line segment ab in the plane corresponds to a double-wedge
area bounded by the two lines Ig_ and I, in the dual plane, where I, and [, correspond to a and b,
respectively. The line containing ab in the plane, I3, corresponds to the tip point of the double-wedge.

224

A line crossing ab in the planc becomes a point in the double-wedge arca.

Conversely, let MY be the mapping: a — k, 8 — b. Then under MY, a point g{ag, B,) in the dual
plane becomes a line I, satisfying y = ag * ¢ + §, in the plane, and a line satisfying § = —ko * o + bo
in the dual plane corresponds a point (ko, bo) in the plane.

Let L be the given n line segments (objects). By Property 1, the endpoints of each ! of L deter-
mines two lines in the dual plane. Thus, L determines at most 2n lines, denoted by L', in the dual
plane. These lines L’ can be organized into a data structure A(L’), the arrangement of L', in O(n?)
time and A(L’) contains O(n?) cells [Ede87]. Each cell of A(L') is the intersection area of certain
double-wedges. We say these double-wedges are ‘containing’ the cell.

Property 2: Each point in a cell of A{L’) in the dual plane represents a line crossing the objects in
L in the plane, where the objects correspond the double-wedges containing the cell.

3 Two solutions for the fixed shooter location problem

In this section, we present two solutions, one exact and one approximate, for the fixed shooter location
problem.

3.1 Exact primal solution

In this subsection, we mention using the minimum clique cover in a circular-arc graph to solve a special
case of our general problem. The problem, fized shooter location, can be stated as follows. Given a
point p in the environment of a set of n line segments L (objects) in the plane, find the minimum
number of shots from p to hit all objects of L.

Our method works on the problem in the primal plane. We draw a big circle C centered at p
which contains all the segments. For each segment 575z(€ L), we map it into an arc in the boundary
of C by drawing rays from p and passing s; and s;. All the mapped arcs form a circular-arc graph
in which each node corresponds to an arc and an edge exists between two nodes if and only if their
corresponding arcs overlap (intersect). We call this graph, denoted by G(p), the circular-arc graph
induced from p. The problem of finding the minimum number of shots from p necessary to hit all
objects of I becomes that of computing the minimum cligue cover of this circular-arc graph G(p).

Although the problem of computing the minimum clique cover of a general graph is NP-Complete
[GI79), the problem of a circular-arc graph with n arcs can be solved in O(nlog n) time [HT91] (in
fact, after sorting the vertices of the arcs according to the polar angles around the center of the circle,
the remaining steps take only O(n) time.) Therefore we have that

Observation 1. The fixed shooter location proi:olem can be solved in O(nlogn) time in the primal
space. '

3.2 Approximate dual solution

In this subsection, we propose a factor-2 approximate solution for the fixed shooter location problem.
We first construct the dual of all the segments /;’s in L and the dual of point p. The dual of each line
segment is a double-wedge and the dual of p, denoted by lp, is 2 line. Then we construct the arrange-
ment of all the double-wedges A(L'). The following properties are easy to obtain. The intersection of

225

a double-wedge and [, determines an interval in /,. (This interval is finite if it is the intersection of
one wedge of the double-wedge with I, and the interval would be infinite if it is the intersection of the
both wedges with /. In the latter case the interval can be regarded as connected in infinite if we think
of I, as a circle with an infinite length of radius.) There are O(n) such intervals on I, with respect to
the arrangement of these double-wedges. The endpoints of these intervals are sorted once the arrange-
ment for A(L’) is known. Thus, we can find the minimum clique cover of all the intervals in O(n) time
by the greedy algorithm proposed in [HT91). Let K denote this minimum cover, and let Tk denote
the dual (lines) of K in the primal space. Then Tx are the lines through p with the minimum size
hitting all the objects in L. Since we only need rays at p not the lines through p, we simply divide each
line in Tk at p into two rays and denote these rays by ;. Thus, the size of T}, is twice as the size of Tx.

To see the above solution is a factor-2 approximate solution, note that if all the rays in the optimal
solution are extended into lines, then the number of the extending lines must be equal to the number of
lines in Tx. Otherwise, there would exist a solution with less rays or less lines, the former contradicts
to the optimal solution of the problem and the latter contradicts to T} is the minimum size of lincs
hitting L. The following is the detailed description of our approximate solution,

ALGORITHM FixedShooter(L,p)
Input: L (a set of n line segments with finite length), and p (the given point).
Output: T}, (the set of rays at p hitting all elements in L). '
Method:

1. Find the dual of L, L', in the dual plane under M using formula (2).
Find A(L’) by the method in [Ede87].

Find the dual of p, Iy, in the dual plane under M using formula (2).

. Walk on A(L') along I, to obtain the interval graph G(1,).

. Find the minimal clique cover K of G(l;) using the method in [HT91)].

. Find the dual of this clique cover Tk in the primal space under MV using formula (1).

e T S T O T

. Divide each line in Tk into two rays starting at p, this is a set of rays T}, starting at p.

Lemma 1 With geometric duality, a factor-2 approzimate solution for the fized shooter location prob-
lem can be obtained in O(n?) time (or equivalently, after O(n®) time and space preprocessing on
constructing the arrangement of the double-wedges, in O(n) time) by Algorithm FixedShooter.

" Proof As described above. o

4 Algorithm for the Shooter Location Problem

Let S be the endpoint set of L. Let £ be the set of lines cach of which is determined by a pair ol
points in S. Clearly, £ has at most O(n?) lines. Let A(L) be the arrangement of £. Then, we have
the following property.

Lemma 2 In the primal space, the circular-arc graphs. znduccd Jrom poinis u and v are the same if u
and v belong to the same cell in A(L',)

226

Figure 2: Ilustration for the proof of Lemma 2.

Proof Note that in the optimal solution of the fixed shooter location problem, a ray in the solution

can always be rotated around p, maintaining the same intersection relationship with the object line

segments, until the ray touches an element (an endpoint) in §. Thus, after the above rotation the
- corresponding graph G(p) remains the same. We call such a rotated ray, an eztremal ray.

Let G(u) and G(v) be the circular-arc graphs induced from u and v, respectively. Assume that
G(z) and G(v) are different, i.e. there exists at least one pair of objects, say I, and li, such that an
extremal ray from v crosses both [, and I while an extremal ray from u misses one of I; and lg. Then,
there must exist a line passing an endpoint of /4 and an endpoint of /; which separates u and v. (Refer
to Figure 2 for the claim.) This results in that u and v lie in different cells, a contradiction. O

Lemma 2 implies that for any two points v and v in the same cell of A(L), the optimal solutions
for the fixed shooter location problems, produced by the minimum clique cover algorithm of {HT91]},
will have the same size because the two induced graphs G(u) and G(v) are the same. {Note that the
two solutions could be different but with the same size.)

There are at most O(n?) cells in A(L). For each cell of A(L), we choose a point and find the
minimum set of shots at that point using FixShooter. We have thus reduced the problem into O(n?)
fized shooter location problems. Then, we compare the sizes of all these sets to obtain a set with
the minimum size. Using the subroutine described in Observation 1, we obtain an exact solution in
O(n®logn) time and using the subroutine described in Lemma-1, we obtain a factor-2 approximate
solution in O(n®) time. (Note that in the latter case, the O(n?) time and space preprocessing for
constructing A(L’) is done exactly once.) We have the following main result.

Theorem 1 Given an environment L consisting of n line segments, the minimum set of shots (rays)
al any point in the plane intersecting all elements in L can be compuled in O(n®logn) time. A faclor-2
approzimate solution can be oblained in O(n5) time.

5 Conclusion

In this paper, we present polynomial time exact and approximate algorithms for the shooter location
problems. We have thus solved an open problem posted by Nandy et al. Whether or not our method
can be extended into three or higher dimensional spaces to obtain a good approximate algorithm

227

remains a further work. When the location p is restricted to be on a line in the plane Nandy et al.
provided an O(n®) time algorithm {[NMB96]. It is also not clear whether this bound can be improved
or not.

References

{AB87] M. Attallah and C. Bajaj, “Efficient algorithms for common transversal”, Information Pro-
cessing Letters, Vol. 25 (1987), pp. 87-91.

[BKKMSU95] F. Bauernoppel, E. Kranakis, D. Krizanc, A. Maheswari, I. Sack and J. Urrutia, “Opti-
mal shooting: characterization and applications”, Proc. 22nd ICALP, LNCS V.944, 1995, pp.220-231.
[Ede87] H. Edelsbrunner, Algorithms in Combinatorial Geomeiry, Springer-Verlag, 1987.

[GJ79] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, Freeman, 1979.

(HM90] R. Hassin and N. Megiddo, “Approximation algorithms for hitting obj jects with straight lines”,
Discrete Applied Mathematics, Vol.30 (1990), pp. 29-42.

[HT91] W. Hsu and K. Tsai, “Linear time algorithms on circular-arc graphs”, Information Processing
Letters, Vol. 40, (1991) pp.123-129.

[HT92] M. Holmeyer and S. Teller, “Stabbing isothetic boxes and rectangles in O(nlogn) time”,
Computational Geometry: Theory and Applications, Vol.2, 1992, pp.201-207.

- [NMB96] S. Nandy, K. Mukhopadhyaya and B. Bhattacharya, “Shooter location problems”, Proc 8th
Canadian Conference on Computational Geometry, 1996, pp. 93-97. '

228

Approximation Algorithms for Geometric Optimization Problems
(Extended Abstract)

Joseph S. B. Mitci1ell*

1 Introduction

Many network optimization problems in graphs are known
to be hard to solve exactly (see Garey and Johnson [6]),
and many of these remain hard for geometric instances of
the same problem: the traveling salesperson problem (TSF),
Steiner tree problem, k-MST problem, etc., are all known to
be NP-hard even for point sets in the Euclidean plaze.

An increasingly popular approach to “solving” NP-hard
optimization problems is to obtain provably-good approx-
imation algorithms, which are guaranteed, in polynomial
time, to produce an answer that is close to optimal - say,
whose objective function value at most some factor ¢ > 1
times optimal, for a minimization problem. (Such an ap-
proximation algorithm is then called a “c-approximation”
algorithm.)

A polynomial time approzimation scheme (PTAS) is a
method that aflows one to compute a (1 + €)-approximation
to the optimal (minimum), in time that is polynomial in =,
for any fixed € > 0. {In general, the dependence on ¢ may
be exponential in (1/e€).)

The recent book editted by Hochbaum ([7]) contains sev-
eral articles surveying the state of knowledge on approxima-
tion algorithms for NP-hard problems. In particular, the
survey of Bern and Eppstein [3] gives an excellent overview
of the subject of approximating NP-hard geometric opti-
mization problems.

Approximation algorithms can also be quite. useful for
problems that are not necessarily NP-hard. First, the ap-
proximation algorithm may be considerably simpler and eas-
ier to implement than an algorithm that solves the problem
to optimality. Further, the running time (both worst-case
and average-case) for the approximation algorithm may be
much better than that which is known for the exact solu-
tion, even when the exact algorithm has polynomial running
time. Examples from geometry include various shortest path
(f14]) and matching problems.

Further, approximation algorithms are known for some
problems whose complexity status is still open, such as the
minimum-weight triangulation problem. :

In this talk, I will briefly survey some recent progress
on approximation algorithms for geometric network opti-
mization, and will spend some time detailing the method of
m-guillotine subdivisions, which leads to PTAS’s for several

* {sbmeans . sunysb.edu, http://vvv.ame . sunyab.edu/"jsbn/,
Dept. of Applied Mathematics and Statistics, State University of
New York, Stony Brook, NY 11794-3600, Supported in part by
Hughes Research Laboratories and NSF Grant CCR-8504192.

229

problems, including the geometric TSP, Steiner tree, and
k-MST problems.

In the remainder of this extended abstract, I enclose the
text from a recent note ([13]) on an improved PTAS based
on a variant of m-guillotine subdivisions. The note refers to
earlier work, which is available on the web. Also, as these
results are constantly changing and improving, I refer the
reader to my web page (or to personal email), for further
updates. :

2 A PTAS for Geometric ‘Network Optimization

In this note, we show how a modification to our earlier re-
sults on guillotine subdivisions leads t0 an nP® time (deter-
ministic) PTAS for Euclidean versions of various geometric
network optimization problems on a set of n points in the
plane. This improves the previous n7¢/¢) time algorithms
of Arora [1] and Mitchell [12].

Qur methods are based on the concept of an “m-guillotine
subdivision”, which were introduced by Mitchell [11, 12].
Roughly speaking, an “m-guillotine subdivision” is a polyg-
onal subdivision with the property that there exists a line
(“cut”), whose intersection with the subdivision edges con-
gists of a small number (O(m)) of connected components,
and the subdivisions on either side of the line are also -
guillotine. The upper bound on the number of connected
components allows one to apply dynamic programming to
optimize over m-guillotine subdivisions, as there is a suc-
cinct specification of how subproblems interact across a cut.

Key to our method is a theorem showing that any polyg-
onal subdivision can be converted into an appropriate m-
guillotine subdivision by adding a set of edges whose total
length is small: at most = times that of the original subdivi-

. sion (wherec =1, V2, depending on the metric). Key to our

iraprovement over previous results on approximating with
guillotine subdivisions is the notion of a “grid-rounded” m-
guillotine subdivision, in which each connected component
is also required to contain one of a small number of regu-
larly spaced grid points. (These notions are made precise
in the next section.) Then, exactly as in [12], we use dy-
pamic programming to optimize over an appropriate class
of m-guillotine subdivisions, resulting in, for any fixed m,
(1 + £)-approximation algorithms that run in polynomial-
time (O(n°®™)}), for various network optimization problers.

Related Work. There has been an abundance of work on
the problems studied here, both on instances of the prob-
lems in graphs and on geometric instances. We refer the

~ reader to some standard textbooks, such as [5, 8, 16]. For
the particular problem of the TSP, there is a survey book
edited by Lawler et al. [9], and for results on approximation
theory and algorithms, there is the recent book edited by
Hochbaum [7].

While the geometric optimization problems considered
here are known to be NP-hard, polynomial-timee approxima-
tion algorithms have been known previously that get within
a constant factor of optimal. Further, polynomial-time ap-
proximation schemes were discovered last year, by Arora [1]
and by Mitchell [11, 12].

This paper represents a continuation of our previous work
on guillotine subdivisions ([11, 12, 15]), which in turn is
based on the concept of “division trees” introduced by Blam,
Chalasani, and Vempala [4, 15], and the guillotine rectan-
gular subdivision methods of Mata and Mitchell [10]. Here,
we obtain substantially better time bounds than before, im-
proving the previous running time from n®™ to O(n°®)).

~ Arora [2] has recently obtained a randomized algorithm
whose expected running time is better than the determin-
istic time bound obtained here: He obtains a randomized
algorithm with expected running time O(n log®®/)),

3 Grid-Rounded m-Guillotine Subdivisions

Definitions

We foliow most of the notation of [11, 12]. We consider a
polygonal subdivision {“planar straight-line graph”) § that
has n edges (and hence G(n) vertices and facets). Let E
denote the union of the edge segments of §, and let V denote
the vertices of 5. We can assume (without loss of generality)
that S is restricted to the unit square, B (i.e., E C int(B)).
Then, each facet (2-face) is a bounded polygon, possibly
" with holes. The length of S is the sum of the lengths of the
edges of 5. Assume, without loss of generality, that no two
vertices of § have a common z- or y-coordinate.

A closed, axis-aligned rectangle W is a windowif W C B.
In the following definitions, we fix attention on a given win-
dow, W. We let W C W denote the minimal bounding
box (axis-aligned rectangle) containing the vertices V N W
within W. Note that there are only O(n*) different possi-
" ‘bilities for W.

A line £is a cut for E (with respect to W) if £Nint(W) #
. The intersection, £ (E N int(W)), of a cut £ with. BN
int(W) (the restriction of F to the window W) consists of
a discrete (possibly empty) set of subsegments of £. (Some
of these “segments” may be single points, where £ crosses
an edge.) The endpoints of these subsegments are called
the endpoints along £ (with respect to W). (The two points
where £ crosses the boundary of W are not considered to
be endpoints along £.) Let £ be the number of endpoints
along £, and let the points be denoted by pi,. .., pe, in order
along £.

* For a positive integer m, we define the m-spen, om(£),
of £ (with respect to W) as follows. If £ < 2(n — 1), then
om(£) = &, otherwise, 0y, (€) is defined to be the (possibly
zero-length) line segment, PmPs—m1, joining the mth end-
point, pn, with the mth-from-the-last endpoints, ps_m1-

Given z line segment ¢ = pg (p +# q) and a positive inte-
ger M, consider the set of subsegments obtained by cutting
pg into M equal-length segments; we define the M-grid of
¢ = pq to be the set of M + 1 endpoints of these subseg-
ments. (In particular, the M-grid contains the two points p
and ¢.)

230

A line £ is an (m, M)-perfect cut with respect to W if
am(£) C E, and each connected component of £N E contains
an M-grid point of the 1-span, &;(¢). In particular, if £ <
2(m — 1), then £ is trivially an (m, M)-perfect cut (since
am(t) = 0). Similarly, if £ = 2m ~ 1, then £ is m-perfect
(since om(€) is a single point). Otherwise, if £ is m-perfect,
and £ > 2m, then £ = 2m. _

In the remainder of this paper, we fix M = m(m — 1)
and assume that m > 2.

Finally, we say that S is a grid-rounded m-guillotine sub-
division with respect to window W if either (1} V Nint(W) =
9; or (2) there exists an (m, M)-perfect cut, £, with re-
spect to the minimal window, W C W, such that § is grid-
rounded m-guillotine with respect to windows W N HT and
WNH™, where H*, H- are the closed. halfplanes induced
by £. (Note that, since W is minimal, necessarily windows
WNH?* and WnNH~ will each contain a set of vertices dis-
tinct from that of W.) We say that 5 is a grid-rounded m-
gusllotine subdivision if § is grid-rounded m-guillotine with
respect to the unit square, B.

The Approximation Theorem

The theorem below shows that grid-rounded m-guillotine
subdivisions can approximate arbitrary subdivisions arbi-
trarily closely (as a function of m). Its proof directly follows
that of [11, 12], with relatively minor changes to incorpo-
rate the concept of (m, M)-perfect cuts, which allow us to
strengthen the requirements from that of m-perfect cuts to
include the effect of rounding to the M-grid of the i-span.

Theorem 1 Let S be a polygonal subdivision, with edge set-
E, of length L. Then, for any positive integer m, there
ezists a grid-rounded m-guillotine subdivision, Sg, of length
at most (1 + ZJmQ)L whose edge set, Eg, contains E.

Proof. . We will convert § into a grid-rounded m-guiliotine
subdivision S¢ by adding to E a new set of horizontal /vertical

edges whose total length is at most %?L. The construction
is recursive: at each stage, we show that there exists a cut,
£, with respect to the current window W (which initially is
the box B}, such that we can aford to add the following set
of segments to E:)

o (“red” segment} the m-span, o, (£); and

o (“blue” segments) a line segment on ¢ connecting each
of the endpoints of £N (E U o (£)) to a point of the
M-grid of ¢1(¢). :

By construction, once we add these segments to E, £ be-
comes an (m, M)-perfect cut with respect to W. The sense
in which we can “afford” to add these segments is that we
can charge off the lengths of the constructed segments to a
portion of the length of the original edge set, E.

First, note that if an (m, M)-perfect cut (with respect
to W) exists, then we can simply use it, and proceed, re-
cursively, on each side of the cut. Thus, we assume that
no (m, M)-perfect cut exists with respect to a given win-
dow, W. '

We say that a point p on a cut £ is m-dark with respect to
£ and W if, along £+ Nint (W), there are at least m endpoints
(strictly) or each side of p, where £* is the line through p
and perpendicular to £.! We say that a subsegment of £ is

1We can think of the edges E as being “walls” that are not
very effective at blocking light — light can go through m ~ 1

m-dark (with respect to W) if all points of the segment are
m-~dark with respect to £ and W.

The important property of m-dark points along £ is the
following: Assume, without loss of generality, that £ is hori-
zontal. Then, if all points on subsegment pg of £ are m-dark,
then we can charge the lenith of pg off to the bottoms of
the first m subsegments, E™ C E, of edges that lie above
pg, and the tops of the first m subsegments, E~ C E, of
edges that lie below pg (since we know that there are at
least m edges “blocking” pg from the top/bottom of W).
We charge fq’s length half to E* (charging each of the m
levels of E¥ from below, with ;- units of charge) and half
to E~ (charging each of the m levels of E~ from above, with
3L units of charge). We refer to this type of charge as the
“red” charge.

In addition to charging off the length of the m-dark por-
tion of £, in order to round to the M-grid of o:(£), we are
also going to charge off (1/m)th of the 1-dark portion of &
If pq is 1-dark, then we charge (1/m)th of pg’s length, by
charging half of this length (i.e., (1/2m)th of the length of
pg) off to the level of E that lies above pg, and half of it to
the level of E that lies below pg. We refer to this type of
charge as “blue” charge.

The chargeable length of a cut £ is defined to be the length
of the m-dark portion of £, plus (1/m) times the length of
the l-dark portion of £.

The cost of a cut, £, is defined to be the length of the seg-
ments we must add to make the cut (m, M)-perfect. Thus,
the cost of a cut £ is at most the length, |owm (£)], of the m-
span “red” segment, om(£), plus the lengths of the “blue”
segments on £ connecting each of the endpoints of £N (E'U
om(£)) to a point of the M-grid of ¢1(£). Since there are at
most 2m endpoints of £N (EUom(€)), and two of these (the
endpoints of ¢1(£)) are already at M-grid points of o1(£),
the total number of blue segments is at most 2m — 2. Fur-
ther, each blue segment is at most one half of !—c-ln%n, where
|o:(£)] is the length of the 1-span of £. Thus, the overall cost
of a cut £ is at most :

' oy (€

fon (@ +@m -2 5 - 2 = o @)+ 2o,
where we have used our choice 0 M = m{m -1}

‘We call a cut £ favorable if the chargeable length of £NW
is at least as long as the cost of the cut.

The lemma below shows that a favorable cut always ex-
ists. For a favorable cut £, we add its m-span to the edge
set {charging off its length, as above), and recurse on each
side of the cut, in the two new windows. After a portion of
E has been charged red on one side, due to a cut £, it will
be within m levels of the boundary of the windows on either
side of £, and, hence, within m levels of the boundary of any

future windows, found deeper in the recursion, that contain -

the portion. Thus, no portion of E will ever be charged red
more than ence from each side, in each of the two directions
(horizontal/vertical), so no portion of E will ever pay more
than fwice its total length, times 1/m, in red charge (31
from each side, for each of the two directions). Similarly,
no portion of E will ever be charged blue more than once
from each side, in each of the two directions, and when it
is charged blue, it is charged at the rate of only 1/2m per
unit length (per side, per direction); thus, no portion of E
will ever pay more than its total length, times 2/m, in blue
charge.

walls, but is stopped when it hits the mth wall; then, p on a line
£ is m-dark if p is not illuminated when light is shone in from the
boundary of W, along the direction of £4.

So far, this charging scheme gives rise to a total charge of
at most L. This factor can be improved slightly by noting
that each side of an inclined segment of E may be charged
red (resp., blue) twice, once vertically aud once horizon-
tally, so the red (resp., blue) charge assigned to a segment
is at most L times the sum of the lengths of its z-'and y-
projections, i.e., at most %‘z times its length. This gives the
overall charge of l;*n/—EL, as claimed.

It is also important to note that we are always charg-
ing portions of the original edges set E: The new edges
added are never themselves charged, since they lie on win-
dow boundaries and cannot therefore serve to make a por-
tion of some future cut m-dark or 1-dark.

(Note too that, in order for a cut £ to be favorable, but
not (m, M)-perfect, there must be at least one vertex of V
in each of the two open halfplanes induced by £; thus, the
recursion must terminate in a finite number of steps.} D

‘We now prove the lemma that guarantees the existence of
a favorable cut. The proof of the lemma uses a particularly
simple argument, based on elementary calculus (reversing
the order of integration). It is based on the similar lemma
that appears already in {11, 12], but we include its details
here for completeness:

Lemma 2 For any subdivision S, and any window W, there
is o favorable cut.

Proof. We show that there must be a favorable cut that is
either horizontal or vertical.

Let f(z) denote the cost of the vertical line, £z, through
z; then,

1) = lom(&o)| + =loa (€)1

Then, A- = fol f(z)dz is simply the area, A = fol |owm (€z)idz,

of the (z-monotone) region R™ of poiuts of B that are m-
dark with respect to horizontal cuts, plus (1/m) times the
area, AY = fol |o1(£z)}dz, of the (z-monotone) region RWY
of points of B that are l-dark with respect to horizontal
cuts. Similarly, define g{y) to be the cost of the horizontal
line through y, and let 4, = fol g(y)dy.

Assume, without loss of generality, that 4, > A;. We
claim that there exists a horizontal favorable cut; ie., we
claim that there exists a horizontal cut, £, such that its
chargeable length (i.e., length of its m-dark portion, plus
(1/m) times the length of its 1-dark portion) is at least as
large as the cost of £ (Jom(£)] + Z|o1(£)}). To see this, note
that A, can be computed by switching the order of inte-
gration, “slicing” the regions R(™ and R’ horizontally,
rather than vertically; i.e., Az = f; h(y)dy = fol hn(y)dy +
i fol hi(y)dy, where h(y) is the chargeable length of the
horizontal line through y, and h®(y) is the length of the
intersection of RS with a horizontal line through y. (ie.,
h{™)(y) (resp., hM)(y)) is the length of the m-dark (resp., 1-
dark) portion of the horizonta! line through y.} Thus, since

" “A: > Ay, we get that [h(y)dy > [g(v)dy > 0. Thus, it

canrot be that for all values of y € {0,1], A{y) < g(v), so
there exists a y = y* for whick h(y*) > g(y*}. The horizon-
tal line through this ¥* is a cut satisfying the claim of the
lemma. (If, instead, we had A; < A,, then we would get a
vertical cut satisfying the claim.) O

231

Algorithms

The dynamic programming algorithms of Mitchell [11, 12]

carry over almost verbatim to the new setting of grid-rounded
m-guillotine subdivisions. The maiz difference is in the com-

plexity analysis.

A subproblem in the dynamic programming recursion is l

specified now by a rectangle (O(n*) choices), and, on each of
the four sides, a segment corresponding to the 1-span (O(n?)
choices per side), and a set of up to 2m M-grid points within
each segment that specify the attachment points between
this subproblem and neighboring subproblems. (Depending
on the problem instance, other information, of constant size
for fixed m, is also specified for a subproblem; see [12].) The

key to the improvement given in this paper is that there are -

now only (::‘) = O(m*™) choices for these grid points on
any one side, and this number is constant for fixed m. (Com-
pare this to the O(n®™) choices of crossing points in [12].)
Thus, there are overall O(n'?) subproblems. We then opti-
mize over all O(n) choices of cuts, O(n?) choices of 1-spans
along the cut, and O(m*™) choices of grid points on the
cut. The overall complexitgr of the dynamic programming
algorithm is therefore O(n'®).

By rounding the I-span intervals up to be intervals of
lengths that are power-of-two factors smaller than the di-
mensions of the window, it is not hard to improve this com-
plexity to O(n'° log® n), without significantly changing the
approximation factor.

Corollary 1 Given any fized € > 0, and any set of n points
in the plane, there is an O(n®1)) qlgorithm to compute
Steiner spanning tree (or Steiner k-MST), or a treveling
salesperson tour, whose length is within o factor (1 + €) of
minimum. -

5. Vempala (personal communication) has noted that if
randomization is used in this method, the running time be-
comes (expected) O(nlog®?) n). Details will appear in the
full paper.

Acknowledgements

I thank Avrim Blum and Santosh Vempala for useful dis-
cussions.

References

[1] S. ARORA, Polynomicl time approzimation schemes
Jor Buclidean TSP and other geometric problems,
Manuscript, March 30, 1996. Appears in Proc. 37th
Annu. IEEE Sympos. Found. Comput. Sci.(1996),
Pp. 2-12. :

[2] S. ArRorA, More efficient approzimation schemes for
Euclidean TSP and other geometric problems, Unpub-
lished manuscript, January 9, 1997,) _

[3] M. BERN AND D. EPPSTEIN, Approzimation algorithms
for geometric problems, In Dorit Hochbaum, editor,
Approzimation Problems for NP-Complete Problems,
PWS Publications, 1997. Pages 206-345.

[4] A. Buum, P. CHALASANI, AND S. VEMPALA, A
constent-factor approzimation for the k-MST problem
in the plane, Proc. 27th Anny. ACM Sympes. Theory
Comput. (1995), pp. 294-302.

[5] T. H. CorMEN, C. E. LEISERSON, AND R. L, RivEsT,
Introduction to Algorithms, The MIT Press, Cam-
bridge, Mass., 1990.

f6) M.R. GareEy AND D.S. JoHNsoN, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, New

" York, 1979. _ :

[7] D. HoceBAUM, editor, Approzimation Problems for
NP-Complete Problems, PWS Publications, 1997.

[8] E. LAwLER, Combinatorial Optimization: Networks
and Mairoids, Holt, Rinehart and Winston, New York,
1976.

[9] E. L. LawLer, J. K. LENSTRA, A. H. G. RINNOOY
KaN, AND D. B. SEMOYs, editors, The Traveling Sales-
man Problemy, Wiley, New York, NY, 1985.

{10] C. Mata aND J. S. B. MITCHELL, Approzimation al-
gorithms for geomnetric tour and network design prob-

_ lems, Proc. 11th Annu. ACM Sympos. Comput. Geom.
(1995), pp. 360-369.

{11] J. S. B. MITCEELL, Guillotine subdivisions approxi-
mate polygonal subdivisions: A simple new method for
the geometric k-MST problem, Proc. Tth ACM-SIAM.
Sympos. Discrete Algorithms {1996), pp. 402-408.

f12] J. S. B. MITCHELL, Guillotine subdivisions approz-
imate polygonal subdivisions: Part I — A simple
polynomial-time approzimation scheme for geometric k-
MST, TSP, end related problems, SIAM J. Comp.; to
appear.

Available at http://wvw.aps.sunysb.edu/" jsbm/.

{13} J. 8. B. MITcHELL, Guillotine subdivisions ap-
prozimate polygonal subdivisions: Pert III - Faster
polynomial-time spprozimation schemes for geometric
network oplimization, Manuscript, April 1997, available
at http://wuv, ams.sunysb.edu/" jsbm/

[14] J. S. B. MITCHELL, Shortest Paths and Networks,
Chapter in the CRC Handbook of Computational Ge-
ometry, (E. Goodman and J. O'Rourke, eds.}, CRC
Press, to appear, 1997. .

[16] J. 5. B. MITcRELL, A. BLUM, P. CHALASANI,
AND 8. VEMPALA, A constent-factor opprozima-
tion for the geometric k-MST problem in the
plane, SIAM J. Comp., to appear. Available at
http://vww.ams.sunysb.edu/ " jsbm/.

[16] C. H. PaPADIMITRIOU AND K. STEIGLITZ, Combina-
torigl Optimization: Algorithms and Complexity, Pren-
tice Hall, Englewood Cliffs, NJ, 1982.

232

Label Placement by Maximum Independent Set in Rectangles

Pankaj K. Agarwal®

Abstract

Motivated by the problem of labeling maps, we in-
vestigate the problem of computing a large non-
intersecting subset in a set of n rectangles in the
plane. Our results are as follows. In O(nlogn) time,
we can find an O(log n)-factor approximation of the
maximum subset in a set of n arbitrary axis-parallel
rectangles in the plane. If all rectangles have unit
height, we can find a 2-approximation in O(nlogn)
time. Extending this result, we can find a {1+ $)-
approximation in time O(nlogn + n2*~1) time, for
any integer k > L.

1 Introduction

Automated label placement is an important prob-
lem in geographic information systems (GIS), and
has received considerable attention in recent years
{for instance, see [4, 7]). The label placement prob-
lem includes positioning labels for area, line, and
point features. The primary focus within the com-
putational geometry community has been on label-
ing point features [3, 5, 14, 13]. A basic requirement
in the label placement problem is that the labels be
pairwise disjoint. Subject to this basic constraint,
the most common optimization criteria are the num-
ber of features labeled and the size of the labels.
Other variations include the choice of the shapes of
the labels and the space of legal placements. Unfor-
tunately, even in simple settings, the problem turns
out to be NP-Complete or NP-Hard [2, 5].

In this paper we assume that each label is an or-
thogonal rectangle of fixed size and we want to place

*Department of Computer Science, Box 80129, Duke Uni-
versity, Durham, NC 277080129, USA. Research partially
supported by National Science Foundation Grant CCR-93~
01259, by an Army Research Office MURI grant DAAHO4-
96-1-0013, by a Sloan fellowship, by an NYT award, and by
matching funds from Xerox Corporation, and by & grant from
the U.S.-Israeli Binational Science Foundation.

tDepartment of Computer Science, Utrecht University,
P.0.Box 80.089, 3508 TB Utrecht, the Netherlarids. Re-
search partially supported by the ESPRIT IV LTR Project
No. 21957 (CGAL). :

$Department of Computer Science, Washington Univer-
sity, St. Louis, MO 63130 USA. Research partially supported
by NSF Grant CCR-9501494.

233

Mare van Kreveld!

Subhash Surit

as many labels as possible. More precisely, let 5 be
a set of n points in the plane. For each point p; € S,
we have a label 7;, and a set 7; of marked points on
the boundary of 7;; ; may be a finite or an infi-
nite set. Typical choices of 7; include the endpoints

~ of the left edge of i, the four vertices of ry, or the

entire top and bottom edges of r;. A valid place-
ment of r; is a translated copy 7; + (p; — x;5) of vy
{for some z; € 7;, i.e., 7; is placed so that one of the
marked positions on the boundary of r; coincides
with the point p;. A feasible configuration is a fam-
ily Of Dairs {(Biys i) - » (Piy» 23,)}, Where all the
i, are different and 2;; € m;,, so that the rectangles
in {ri, +(pi, ~ %4,)y - -+ o Tip + (i, =24,)} are pairwise
disjoint. The label placement problem is to find a
largest feasible configuration.

o I Wotown

57 S42
+ +5.3 3.3.%.1

- +
Onetown +
.. Sixtown® 2.7

Threetown +

*39 + .Fivetown

Faurtown
ag*5-2 oSeventown
4.2
3.6

Figure 1: Point labels that are names of towns, mixed
with epicenters of earthquakes labeled with their mag-
pitude.

In practice the labels are subject to additional
constraints, which help in simplifying and improv-
ing the algorithms. Restricting the shape of the la-
bels to be same size squares is one such approach, as
considered in {5, 14, 13], because in many technical
maps all labels have the same size. Think of map-
ping measurements at sample points in a terrain, or
maps showing magnitudes of earthquakes at points
that are the epicenters. Another interesting case is
when all labels have the same height but arbitrary
width, This situation arises, for example, if we want
to label city names on a map and all labels have the
same font size, or when different types of point la-
bels occur on a map. In this paper we consider the
second case.

.

We will study the case when m; has a constant
number of positions on the boundary of r;. Let
Ry = {ri+(pi—2;) | o; € m} and set R = |J_, R;.
The label placement problem is the same as com-
puting a largest subset of pairwise disjoint rectan-
gles in R. Since all rectangles in R; have a com-
mon intersection point p;, at most one rectangle can
be chosen from each R;. Consider the intersection
graph G(R) of R: the nodes of G(R) are the rect-
angles of R and there is an edge between two nodes

if the corresponding rectangles intersect. A subset

of pairwise disjoint rectangles in R corresponds to
an independent set in G(R). We thus want to com-
pute a maximum independent set of G(R). Abusing

the notation, we will say that we want to compute
a maximum independent set of R. Computing an -

independent set of rectangles is known to be NP-
Complete [6, 10]. This suggests that one should
aim for approximation algorithms. We call an al-
gorithm an e-approzimation algorithm, for e > 1, if
it returns an independent set of size at least /e,
where 7 is the size of a maximum independent set
of R.

Although it is known that mo polynomial-time
Q(n'/*)-approximation algorithm exists for maxi-
mum independent sets in arbitrary graphs [1], no
such lower bound is known for intersection graphs of
rectangles. In this paper we present an O(nlogn)-
time (logn)-approximation algorithm for rectan-
gles.! If all rectangles in R have the same height,
then we describe an (1 + 1/k)-approximation algo-
rithm whose running time is O(nlogn 4 n2*-1),
This is an important case, since it models the la-
bel placement problem when all labels have the
same font size. It is an open problem whether a
c-approximation algorithm exists for arbitrary rect-
angles, for any positive constant c.

The paper is organized as follows. Section 2 sum-
marizes the previous work on the label placement
problem. In Section 3 we describe the approxima-
tion algorithm for arbitrary orthogonal rectangles.
Section 4 describes our approximation algorithm for
unit-height rectangles. Our algorithm is based on
dynamic programming.

2 Previous Research

There has been a lot of work on label placement
in cartography community; see e.g., [4, 7] and the
references they contain for a sample of results. Al-
gorithms researchers have also worked om labeling
maps. Formann and Wagner [5] have studied the la-

1Al logarithms in this paper are base 2.

234

bel placement for point features in the plane using
square labels. Specifically, an axis-aligned square
label is placed for each point such that the point
coincides with one of the vertices of its labelling
square. They used the size of the square label as
the optimization criterion, subject to the condition
that all points must receive a label. The square rep-
resents the text or measurement to be placed at the
point. Their optimization is motivated by the max-
imum font size: since the problem allows scaling in
the z-direction, it is the same as rectangular label
placement for equal-size labels.

Given a point p, there are four positions for plac-
ing a square label so that the point coincides with
one of the corners of the label. I all four positions
of labels are allowed, then the problem of maxim-
ing the size of the label is NP-complete. Formann
and Wagner give an O(nlogn) time algorithm that
guarantees a label size at least half the optimum
[5]. They also show that no better approximation is
possible unless P=NP. Formann and Wagner’s ap-
proach is to grow all four possible labels around the
points, removing candidate placements when they
conflict with other growing labels. Whether the re-
maining labels allow a placement is done by solving
2-5AT problems. Kuéera et al. [11] studied the same
problem, but developed an exact, super-polynomial
algorithm that can be applied for sets with up to
roughly 100 points.

Wagner and Wolff [14, 13] have noted that,
in practice, the approach of Formann and Wag-
ner hardly ever results in square sizes significantly
greater than half the optimum. They also study
several variations and their implementation and find
ways t0 improve on the size of the squares in prac-
tice.

-Doddi et al. {3] allow more general shapes of la-
bels, e.g., circles, nonoriented rectangles, ellipses,
and present approximation algorithms in each case.
Like Formann and Wagrer, they are also approxi-
mating the size of labels. See also [9, 12].

Christensen et al. {2] provide a comparison of sev-
eral approaches to place as many labels as possible
on a map. They consider point labels, line labels,
and area labels.

3 Arbitrary Size Rectangular
Labels

We describe a simple, divide-and-conquer algorithm
for computing a large independent set in a set R of n
orthogonal rectangles in the plane. We sort the hor-
izontal edges of R by their y-coordinates and their

vertical edges by their z-coordinates; this step takes
O(nlogn) time. This sorting is done only once in
the beginning. If n < 2, we compute the maximum
independent set in O(1) time. Otherwise, we do the
following.

1. Let Z,.q be the median z-coordinate among
the abscissas of R.

2. Partition the rectangles of R into three groups:

Ry, R, and Ry, where Ry2 contains rectangles

intersected by the line £ : T = Tm.q, and Ry and
Ro, respectively, contains the rectangles lying
to the left and right of the line.

3. Compute I;2, the (real) maximum independent
set of Ry2. Recursively compute Iy, J2, the ap-
proximate maximum independent sets in R;
and R;, respectively.

4. I |I2| 2 || +|12], return iz, otherwise return
I U L.

The key insight behind the algorithm is that since
all rectangles in R;, intersect the line £, it suffices to
compute a largest nonoverlapping subset of intervals
in the set J = {rNZ | r € Ri2}, in order to compute
Ii,. This one-dimensional rectangle independent-
set problem can be solved optimally by the following
greedy strategy in O(nlogn) time. Sort the inter-
vals in the ascending order of their right endpoints.
Add the leftmost interval £ to the independent set;
delete all intervals intersecting ¢; and repeat until no
more intervals are left. Recall that the vertical edges
of rectangles in R are sorted by their z-coordinates,
50 we can sort the intervals in J by their right end-
points in linear time. Since |Ril,|Rz| £ [nl/2, the
overall running time of the algorithm is O(n logn).

Next, we prove that our algerithm computes an
independent set of size at least +y/max(1,logn),
where 7 is the largest independent set. For n < 2,
we compute a largest independent set, so the claim
is obviously true for » < 2. Suppose it is true for all
m < n. Let I* be a maximum independent set of R.
Set If =I*NRy, I3 = [*"N Ry, and I}, =I*NE;s.
Since the algorithm computes a maximum indepen-
dent set Iy of Ryz, we have |J1o| > {13} By induc-
tion hypothesis,

I iz |
il 2 log(n/2) 2 logn -1 and |fz] < (logn —1)

Therefore
\I| = max{|fio}, || + {12]} 2

max{,;;2|,_{;_lz1{z_l} >

logn—1

e

ma.x{lflzl, logn -1 J = logn’

as desired. Hence, we obtain the folldwing result.

Theorem 1 Let B be a set of n azis-parallel rectan-
gles in the plane. An independent set of of R of size
at least v/ logn can be computed in time O(nlogn),
where -y is the size of e mozimum independent sel
in R.

4 Appro:iimation Scheme for
Unit-Height Rectangles

In this section we develop a polynomial-time ap-
proximation algorithm for computing an indepen-
dent set of rectangles of fixed height, but of arbi-
trary width. As discussed earlier, our class is clearly
more general that unit squares, and it is of partic-
ular interest to labeling maps. We assume with-
out loss on generality that all rectangles have unit
height. We first develop a 2-approximation algo-
rithm, which takes O(nlogn} time. Then, using dy-
namic programming, we obtain an y-approximation
algorithm whose running time is O(nlogn +n?7"*)
time for v > 1.

4.1 A 2-approximation algorithm

Consider a set R of n unit-beight rectangles in
the plane. We draw a set of horizontal lines,
£1,89,...,4m, where m < n, so that the following
three conditions hold.

1. The separation between two lines is strictly
more than one,

9. each line intersects at least one rectangle, and
3. each rectangle is intersected by some line.

Note that minimum separation condition implies
that a rectangle cannot be intersected by more than
one line. The lines can be drawn from top to bottom
using an incremental approach. These lines parti-
tion the set R into subsets R;,Ro,...,fm, where
R; is the set of rectangles in R that intersect line £;.

We compute 3 maximum independent set M; for
each R;, which takes O(|R;}log |R:|) time, using the
one-dimensional greedy algorithm. Since the line
¢; does not intersect any rectangle of R\ R;, the
rectangles in M; do not intersect any rectangle of
M; except for j =i—1or j =i+1. Consider the
two independent sets {My UMz U-+-U Ma[m/21-1}
and {MaUMyU-+-UMz|m/s }. Clearly, the larger
of these two must have size at least v/2, and thus

235

we have a 2-approximation algorithm. The running
time of the algorithm is O(n log n), since finding the
lines ¢; and forming the corresponding partition can
be done in a single pass through the rectangles after
sorting them by their y-coordinates.

Theorem 2 Let R be a set of n unit height axis-
parallel rectangles in the plane. In O(nlogn) time,
we can compute an independent set of size at least

v/2, where v is the size of a mazimum independent

set of R.

42 A (1+ ;)-approximation algo-
rithm

We now combine dynamic programming with the
 shifting technique of Hochbaum and Maass [8] to
improve the approximation factor to (1+ %), for
any (14 %) 2 1. The basic idea is to partition
the rectangles by horizontal lines £;,8s,...,4,, as
before, but then use dynamic programming to opfi-
mally solve the subproblem for each set of rectan-
gles intersected by - consecutive lines. Suppose the
lines are labeled £;,4;,...,¢,, from top to bottom,
and R; is the set of rectangles intersected by line ;.
Define Rf = R; UR,‘.H LR R.,‘.{.k._]_, that is, Rf' is the
set of rectangles intersected by any line in the set
{€i, vz, .., liyk—1}. We will refer to RY’s as sub-
groups. We now define k& + 1 groups Gy,...,Gg1,
where

G;= U Rf(k+1)+j = R\ U Rirs1yss-

>0 >0

That is, for 1 < j < k+ 1 the group G; is ob-
tained from R by deleting rectangles intersected by
every (k + 1)-st line, starting with £;. We make
two key observations about these groups of rect-
angles. First, consider two consecutive subgroups
within any group, such as R} and RE_, in G,. No
rectangle of R} intersects a rectangle in Rf,,; the
line £, separates these subgroups. By extension,
this means that rectangles in a subgroup are disjoint
from the rectangles of any other subgroup in the
same group. Thus, if we combine the independent
sets for all the subgroups, we get an indépendent set
of that group. Second, since a group is formed by
deleting all rectangles that intersect every (k + 1)-
st line, all rectangles in R\ G; are intersected by at
most |m/(k + 1)] lines. Thus, if we compute a max-
imum independent set for each G;, and choose the
largest one, we can miss at most 4/(k + 1) rectan-
gles. Hence we get an (1 + %) factor approximation.
This is exactly the shifting idea of Hochbaum and
Maass [8], and this is precisely what we will do as
well. :

Apgt=7 ¢

Figure 2: Polygonal line defined by p,g,¢ and its rela-
tion to the table entry Alp,g,1).

We give a dynamic programming solution for
computing a maximum independent set M(R¥) for
any subgroup R, that is, 2 set of rectangles inter-
sected by k consecutive lines in £y,45,...,4,,. After
computing M(R%) for every j > 1, the rest of the
algorithm is rather straightforward.

For ease of exposition, we describe the algorithm
for the case k = 2, but all the ideas generalize read-
ily. Without loss of generality, let us consider the
problem of computing a maximum independent set
for RZ = Ry URy, that is, the rectangles intersected
by £, or €3. Let X = (z1,%2,...,%m,) denote the
sequence of distinct abscissas, sorted in the increas-
ing order (left to right), and let ¥ = (y1,2,...,98)
denote the sequence of distinct ordinates in' Ry UR,,
sorted in the decreasing order (top to bottom).

With each triple T = (p, ¢, 1), where p,q < m and
t < h, we associate a polygonal line A,, defined as
follows: If p = g, then), is the vertical line x = p;
otherwise Ar consists of a vertical ray emanating
from the point (z,,%:) in the (+y)-direction, the
horizontal segment connecting (z,,%:) to (24, %),
and another vertical ray emanating from the point
(z4,3:) in the (—y)-direction; see Figure 2. Let
R: C R denote the set of rectangles whose interiors
lie to the left of the line A,. Let M, denote a max-
imum independent set of R., and let A, = |M,].
We now describe how we compute A, for all triples
T = (p,q,t). We will construct a three-dimensional
table A, in which A[p,g¢,¢] will store the value of
Ap,g,0)-

We will consider the case when p > ¢; the case
P < g is symmetric. If p = g, the third index ¢ plays
no role. In this case, we try two choices for #: the
y coordinate of £, and the y coordinate of £5. The
algorithm for p > ¢ can be modified to handle this
case as well,

If p > ¢ and no rectangle in R, N R, has its right
edge at z = z,, then R, = R(,_;,4); therefore
Alp,q,t] = Alp ~ 1,4,#]. Otherwise, let r € R; be
the rectangle whose right edge is at = = z,. (Let
us assume that there is only such rectangle; we will

236

Figure 3: Filling in the entry A[p,q,1); the three cases.

[Alp—1,q,1]

max(A[p — 1,4,1,
A[i —-1,q,8]4+1)

max({Alp - 1,q4,1)],

Alp,g,t] = 1

no rectangle in R, 0 ¢) N Ry has the right edge at 2 = zp;

Rip.q1) N Ry has a rectangle r with the right edge at = = z,,
the left edge at x = z;, and i > g;

Rp.oy N Ry has a rectangle r with the right edge at z = =,
Ali—1,g,5—1]+1) the left edge at z = z; with i < ¢, and bottom edge at y = y;.

Figure 4: Recursive definition of the entry Alp, g,1].

discuss later how to handle the case when the right
edges of many rectangles lies on the line z = z,.}
Suppose the left edge of r lies on the line t = z;
and its bottom edge lies on the line y = y;. If
r € M., then again Alp,q,f] = Afp - 1,¢,8]. On
the other hand, if r € M., then none of the other
rectangles in R, that intersect r can belong to M,.
I x; > Tp, then let 7' = (¢ — 1,¢,1), otherwise Jet
7' = (i —1,9,j — 1). It is easy to see that if £ €
M., then M, = M. U {r}. Therefore, A, = A, +
1. Hence, we obtain the following recurrence for
Alp, g, 1}, assuming that p > ¢.

The entries Alp, g,t] are recursively computed as
in Figure 4.

If there are many rectangles in R, N R touching
the line ¢ = z,, we divide them into two subsets—
the ones whose left edge lies to the left of z = z, and
the ones whose left edge does not lie to the left of
z = 1 . For each rectangle in the first category, we
use the third case and for all rectangles in the second
category we apply the second case. We then choose
the one that gives the maximum value. We can
fill out the three-dimensional table A in a standard
dynamic programming manner. Geometrically, the
only constraint on filling out the entries is that when
A[p, g, 1] is being computed, we must have computed
the entries corresponding to the polygonal lines that
lie in the closure of the subplane left of A gr)- A
straightforward implementation of the dynamic pro-
gram requires O(| R UR;|*) time—most entries take
constant time, except when several rectangles have

their right edge at the same p or g. However, we
can afford to spend time proportional to the num-
ber of rectangles, since the total work still adds up
to O(1Ry U Rz|?).

Let |R;| = ny, for i = 1,2,...,m, where recall
that m is the number of lines used to partition R.
Then, clearly 312, |Ri| = }_n; = n. In order to
compute an independent set of size 2v/3, we per-
form the dynamic programming algorithm m —1
times, once for each pair of consecutive lines. Thus
the total time complexity is

m—1

3 O((ni + ni1)®) = O(n®).

fa=1

Observe that that if n; = O(y/n) for all i—a sit-
uation that is likely in practice—then the running
time is only O{n?). It is straightforward to adapt
the algorithm so that it computes the independent
set rather than the size of it.

Theorem 3 Let R be a set of n unit-height aris-
parallel rectangles in the plone. In O(n®) time, we
can compute an independent set of size at least 2v/3,
where v is the size of a mazimum independent set
of R.

Extending the technique to a (1+3%)-
approximation algorithm is straightforward.
We need to compute the an optimum solutions for
the union of rectangles intersecting k consecutive
lines. In the dynamic programming algorithm,

237

instead of a 3-dimensional table, we need to fill
out a (2k — 1)-dimensional table. Geometrically,
a (2k — 1)-tuple corresponds a polygonal line,
which is a weakly y-monotone, rectilinear polyline
with two vertical half-lines, £ — 2 horizontal edges,
and k — 3 vertical edges. Each vertical edge has
its z-coordinate in X, and each horizontal edge
has its y-coordinate in Y. This gives us the
polynomial-time approximatior scheme with the
following performance.

Theorem 4 Let R be a set of n unit-height azis-
parallel rectangles in the plane. In O(n?*~1) time,
we can compule an independent set of size at least
v/(1+ 1), for any k > 1, where v is the size of o
mazimum independent set of R.

5 Conclusions

We have given approximation algorithms and an
approximation scheme for maximum size non-
intersecting subset in sets of rectangles. The work
is motivated from label placement at points, where
the rectangles represent the bounding boxes of la-
bels. The approximation scheme was known for
the restrictive case of unit size square labels, which
occurs for fixed precision decimal numbers as la-
bels. We gave a different approximation scheme for
unit height labels with varyings widths, which is the
standard situation for labels that are names, or la-
bels of different type with fixed font size.

The algorithms for labeling supported the situ-
ation where several positions for the label of any
point are allowed. The restriction is that all po-
sitions of the label of a point intersect each other.
Also, the running time is not affected if a constant
number of positions is allowed for each label.

The maximum non-intersecting subset of rectan-
gles problem can be seen as a maximum independent
set problem in a special type of graph. The approx-
imation algorithm we presented for these graphs is
considerably better than what is theoretically pos-
sible for general graphs. However, we were not
able to obtain a polynomial time, constant factor
approximation algorithm for the case of arbitrary
axis-parallel rectangles. This is an mterestmg open
problem.

References

[1] M. Bellare and M. Sudan. Improved non-
approximability results. In Proc. 26th Symp. The-
ory of Computing, pages 184-193, 1994.

238

[2} J. Christensen, J. Marks, and S. Shieber.

18]

[4]

(5}

6]

[8]

[9].
-8.8. Ravi, D.J. Rosenkrantz, and R.E. Stearns. A .

[10]

[11]

[12]

3]

[14)

An
empirical study of algorithms for point-feature la-
bel placement. ACM Trans. Grephics, 14:202-232,
1995.

5. Doddi, M.V. Marathe, A. Mirzaian, B.M.E.
Moret, and B. Zhu. Map labeling and its general-
izations. In Proc. 8th ACM-SIAM Sympos. Discrete

 Algorithms, 1997.

J.5. Doerschler and H. Freeman. A rule-based sys-
tem for dense-map name placement. Comm. ACM,
pages 68-79, 1992,

M. Formann and F. Wagner. A packing problem
with applications to lettering of maps. In Proc. 7th
Annu, ACM Sympos. Comput. Geom , pages 281-
288, 1991.

R. J. Fowler, M. S. Paterson, and S. L. Tanimoto.
Optimal packing and covering in the plane are NP-
complete. Inform. Process. Leit., 12{3):133-137,
1981.

H. Freeman. Computer name placement. In D. J.
Maguire, M. F. Goodchild, and D. W. Rhind, edi-
tors, Geographical Information Systems: Principles
and Applications, pages 445-456. Longman, Lon-
don, 1991.

D. 8. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. J. ACM, 32:130-136, 1985.

H.B. Hunt III, M.V. Marathe, V. Radhakrishnan,

unified approach to approximation schemes for NP-
and PSPACE-hard problems for geometric graphs.
In Proc. 2nd Europ. Symp. on Algorithms, volume
855 of Lect. Notes in Comp. Science, pages 424—
435, 1995,

H. Imai and Ta. Asano. Finding the connected com-
ponents and a maximum clique of an intersection
graph of rectangles in the plane. J. Algorithms,
4:310-323, 1983.

L. Kucera, K. Mehlhorn, B. Preis, and E. Schwarze-
necker., Exact algorithms for a geometric pack-
ing problem. In Proc. 10th Sympos. Theoret. As-
pects Comput. Sci., volume 665 of Lecture Notes in
Computer Science, pages 317-322, Springer-Verlag,
1993.

M.V. Marathe, H. Breu, H.B. Hunt III, 5.5. Ravi,
and D.J. Rosenkrantz. Simple heuristics for unit
disk graphs. Networks, 25:59-68, 1995,

F. Wagner and A. Wolff. An efficient and effec-
tive approximation algorithm for the map labeling
problem. In Proc. 3rd Europ. Symy. on Algorithms,
volume 979 of Lect. Notes in Comp. Science, pages
420433, 1995.

Frank Wagner and Alexander Wolff. Map la.behng
heuristics: Provably good and practically useful. In
Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pages 109-118, 1995,

Easy triangle strips for TIN terrain models®

Bettina Speckmann Jack Snoeyink
Dept. of Computer Science
University of British Columbia

1 Introduction
The triangulated irregular network (TIN) [5] is one of the

| basic models for representing digital terrains. The common 1 3

bottleneck for GIS applications that display TINs is the rate at ' 6

‘ which triangulation data can be sent into the graphics engine. ‘

: Tristrips can be used to reduce the amount of data that must ' "

- be sent. 2 _

Each-triangle in a TIN uses three data points. I the tri- ruE !

angles are ordered so that consecutive triangles share an edge, without swaps: (1.2.3,4)(4.3.5,6.7)
then it is necessary to specify only the incremental change of with swaps: (1,2,3,4,3.3.6.7)
one vertex per triangle. The resulting list of vertices consti-
tutes a triangle strip or ¢ristrip (Fig. 1), which is supported by Figure 1: Triangle strips

the OpenGL graphics library. The use of tristrips can potentially reduce amount of data to be

transmitted, and hence the rendering time, by a factor of three. A triangle strip requires, however,

that all turns alternate from left to right. To obtain two consecutive left or right turns a vertex

must be “swapped”, i.e. transmitted twice, creating an empty triangle (Fig. 1).

‘ Given a triangulation having m triangles, the theoretical lower bound on the number of vertices
in a tristrip is m + 2; this bound is attained only by “sequential triangulations” [1]—triangulations
whose dual graphs contain a Hamiltonian path in which no three consecutive triangulation edges

! crossed by the path are incident upon the same triangulation vertex. For other triangulations,

' including those common in representing digital terrains, a tight lower bound has not been proved.

: Heuristics are required to find “good” tristrips that use a small number of vertices to represent a

given terrain. ‘

Arkin et al. proved that a depth-first traversal of any spanning tree of the dual graph of a
triangulation results in a triangle strip representation that uses at most 9m/4 vertices [1]. We
observe experimentally that choosing a special spanning tree, namely the one induced by the
traversal algorithm in [2], and traversing it in a modified depth-first fashion, we construct triangle
strips that use less than 3m/2 vertices to represent a TIN. Using this special spanning tree is an
easy and fast way to construct tristrips that requires no modification of the TIN and no additional
storage. ‘ : '

We report on the number of vertices and time taken to compute tristrips from different numbers
of triangles. We also report on several approaches to decrease the number of vertices used to

*Supported in part by an NSERC Research Grant, B.C. Advanced Systems Institute, and Facet Decision Systems.

239

represent a given triangulation, including the insertion of empty triangles to facilitate Jonger tristrips
(swapping) and the connection of single triangles from different tree branches.

Evans, Skiena and Varshney developed an algorithm for constructing tristrips from partially
triangulated models [3]. Their algorithm can handle fully triangulated models, like a TIN, and
produces 3-5% fewer vertices using a technique called patchification. However, on typical TIN sizes,
their algorithm is 100-1000 times slower than our method on the same data sets and hardware.

In the following sections we first give a short summary of the traversal algorithm in [2] and
then show how this algorithm can be used to eﬂicmntly construct tristrips. We conclude with
experimental results.

2 Traversing the TIN

The {raversal algorithm of [2], which extends work of [4], establishes a visibility order on the
triangles and visits them in this order.

For each triangle of triangulation T, it defines an adjacent predecessor triangle and forms a
directed graph G(V,E} with V = {t|t € T} and E = {(¢;t) | t'is the predecessor of t}. Graph
G is actually a directed tree, rooted at a distinguished starting triangle tg,.;. The basic traversal
visits the triangles of the tree G in depth-first order. Although G provides the traversal order for
the triangulation, G is never explicitly determined or stored.

i)

i}

)
a
L

Lep
*p ' *p

Figure 2: The predecessor of ¢ is adjacent to edge € in cases i} and ii) and ¢’ in case iii).

To define the predecessor relation, first choose an arbitrary point p in the starting triangle 5400t.
Then, for any triangle ¢t € T — {tstqrt}, compute the point of ¢ that is closest to p under Euclidean
distance. If the closest point is inside an edge e of t (Fig. 2.i), then the predecessor of ¢ is the
other triangle ¢’ that is also adjacent to e. Otherwise, the closest point is a vertex of t; orient the
edges of ¢ counterclockwise, and consider the edges e and ¢’ that are just before and just after this
vertex. If e is exposed to p (i.e., the directed line induced by € has p strictly to the right), then the
algorithm chooses the triangle adjacent to e as the predecessor of ¢ (Fig. 2.ii}, otherwise it chooses
the triangle adjacent to ¢’ (Fig: 2.iii).

The graph G induced by this predecessor relationship has m — 1 edges and is connected—there
is a path from any triangle to ¢,,.—therefore, it is a tree (Fig. 3).

'3 Constructing tristrips

Given any spanning tree of the dual of a triangulation the basic method to construct tristrips
follows the tree in a depth-first manner ans starts a new tristrip whenever the sequence of left and

240

tsiart

F

—— triangle strips

Figure 3: The spanning tree &, single triangles can be added to a strip
induced by the predecessor
relationship Figure 4: Partitioning the spanning

tree into tristrips

right turns is violated. For triangulations with m triangles, Arkin et al. proved that depth-first
traversal of any spanning tree results in a tristrip representation that uses 9m/4 vertices [1].

We observed, however, that branches of the spanning tree defined in the previous section typi-
cally turn from left to right as one follows a path down from the root. Furthermore, no information
about this spanning tree has to be stored explicitly; the algorithm decides with which child of a
triangle ¢ to proceed based on geometric calculations on the neighbors of . Since the predecessor
of a triangle can be computed in constant time, this algorithm computes the tristrip representation
using linear time in the number of triangles.

Having constructed the basic tristrips, it is easy to insert “left-over” single triangles into already
existing strips, even if they are not connected via the spanning tree, by just traversing the list of
tristrips (Fig. 4). If one wanted to minimize the amount of time needed, however, it would be
necessary to maintain an extra data structure recording the tristrip that each triangle of the TIN is
assigned to. The current implementation does not add extra data structures to the TIN, therefore
the time used to insert single triangles is not linear in the number of triangles (Tab. 2).

There are several other possibilities to decrease the number of vertices in a basic tristrip repre-
sentation. The first is to allow swaps, i.e. o allow two consecutive left or right turns. For each swap
a vertex has to be transmitted a second time, but, in return, two tristrips can be joined, saving
two vertices. So a swap decreases the number of vertices used in the tristrip representation by one
(Fig. 5). Swaps can be chosen during the traversal without additional data structure; “Left-over”
single triangles can also be added as mentioned above.

A second way looks for nodes where the tree is “very wide:” i.e. both the right and the left
child of a node exist, the right child has its own right child, and the left child has its own left child.
One can create a tristrip that combines the two strips starting at the right and left child of the
node, saving additional vertices depending on the shape of the spanning tree (Fig. 6). This “strip
combining” modifies the traversal locally but still does not require additional data structures and

241

Figure 5: Allowing swaps in the
construction of tristrips

Figure 6: Combining the tristrips starting
at the left and right child of ¢54r:

can be used with either the basic traversal or the traversal using swaps. Again, single triangles can

be added to the constructed strips.

A third way would be to join strips using non-tree edges, either with or without swaps. Our
attempts at doing so were hampered by the size of the TINs that we wanted to be able to handle
and by the desire to handle them without adding data structure to the TIN itself.

4 Experimental Results

We have implemented this algorithm in Facet, a GIS product of Facet Decision Systems, and tested
it and its variations on a number of large TIN terrain models.

Table 2 lists the number of vertices for the
variations that were discussed. Fig. 7 illustrates
the number of vertices per triangle for the basic
traversal and each variation. Introducing swaps
has the most significant impact, reducing the
number of vertices by 5-7% over the basic traver-
sal algorithm. Tree combining does not help sig-
nificantly. Joining singles to adjacent tristrips
helps the basic method, but takes more time—
because we do not leave markers behind in the
TIN structure, our implementation searches ends
of tristrips to attach singles. It helps the “swaps”
method by only 0.5%, so we will use the swaps
method alone in the next comparison.

number of | number of | number of | time
triangles vertices tristrips in sec.
814 1182 184 0.02
2505 3628 563 0.04
27578 39512 5967 1.2
52610 74520 10955 2.3
86674 123420 18373 2.8
101290 146522 22616 3.6
170032 245756 37862 6

‘Table 1: Number of vertices, tristrips, and
seconds for seven triangulations

Table 3 compares the “swap” method with “stripe” [3]. We see that, on larger TINs, stripe
produces 3-5% fewer vertices to represent the same triangulation. It does relatively better on
smaller TINs. Unfortunately, stripe takes a considerable amount of time. The graph in Fig. 8

242

number of vertices used to represent triangulation time in sec.

nummber basic combine | combine | swap swap with
of triangles || w/ singles w/ singles w/ singles singles
814 1148 1178 1148 1132 1124 || 0.02 0.03
2505 3540 3622 3532 3454 - 3428 || 0.04 0.3
27578 38970 39486 38942 | 37543 - 37392 | 1.2 4
52610 73604 74492 73580 | 70968 70704 || 2.3 22
86674 121672 | 123332 121576 | 117685 117123 | 2.8 26
101290 144588 | 146391 144454 | 139261 138725 || 3.6 35
170032 242568 | 245502 242292 | 233746 232768 6 85

Table 2: Number of vertices using variations of the basic method on several triangulations

1.50
=l hasic
O basic w/ singles
B [.\\-‘ﬁ
'§ o o o b ~#— combine
% 1.40 ~—0 o - =& combine w/ single
g 135 v 8 swap
§ ' =8 swap w/ singles
1.30 ! - 1 L d

0.8K 25K 278K 526K 867K 101K . 170K
triangles

Figure 7: Number of vertices per triangle for our variations

shows the differences in number of vertices and miliseconds spent per triangle. Our traversal is not
only fast, but the time scales linearly with the problem size. (From the table, we note that stripe
produces fewer tristrips, apparently using extra swaps to join fragments that our method does not.)

These experiments were performed on a 170Mhz SUN UltraSPARC, with 128Mb of memory
using digital elevation data from the British Columbia TRIM standards for the Weaver Lake, BC
area, and the Vanconuver BC north shore. The stripe program ran out of memory and could not
complete the computation for the TIN with 187872 triangles.

Acknowledgments
We thank Facet Decision Systems for the use of their system and access to data. We especially
thank Gerry Furseth for discussions and for adding tristrips into the Facet Visualizer.

References

[1] E. M. Arkin, M. Held, J. S. B. Mitchell, and S. S. Skiena. Hamiltonian triangulations for
fast rendering. In J. van Leeuwen, editor, Algorithms - ESA’94, volume 855 of Lecture Notes -
Comput. Sci., pages 36-47, Sept. 1994.

243

. swaps . stripe
number of || # of # of time # of # of time
triangles vertices | tristrips | in sec. || vertices | tristrips | in sec.

814 1132 112 002 963 29 0.52
1502 2064 194 0.04 1848 46 1.32
2502 3454 337 0.07 2899 | 81 2.54
5686 7835 724 0.23 7480 165 11.83

10810 14744 1352 0.44 14037 334 40.33
27578 37543 3430 1.07 36046 | = 821 | 311.90

52610 70968 6280 1.88 68562 1455 1280.13
97930 | 134366 12058 3.27 || 128096 2848 | 4734.07
187872 || 280580 31223 7.19

Table 3: Comparing our “swaps” algorithm with “stripe” [3] on several triangulations .

3.0
25 . .
vertices per tnangle

2.0 = swap
DO stripe

1.5

10 usecs per triangle

o5 [Jowap
. o

0.0

08K 15K 25K 56K 108K 276K 526K 97.9K

Figure 8: Number of vertices and running time (usecs) per triangle

[2] M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars. Simple traversal of a subdi-
vision without extra storage. Int. J. of GIS, 11, 1997.

[3] F. Evans, S. S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. In JEEE
Visualization ’96. IEEE, Oct. 1996. ISBN 0-89791-864-9.

[4] C. M. Gold, T. D. Charters, and J. Ramsden. Automated contour mapping using triangular -
element data structures and an interpolant over each irregular triangular domain. Gomputer
Graphics, 11(2):170-175, July 1977. Proc. SIGGRAPH *77.

[5] T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark. The triangulated irregular network.
In Amer. Soc. Photogrammetry Proc. Digital Terrain Models Symposium, pages 516-532, 1978.

244

Partitioning Algorithms for Transportation Graphs and Their
Applications to Routing *

Cavit Aydin

Department of Computer Science

Doug lerardi

University of Southern California

Abstract

Real transportation graphs have distinct character-
istics that make specialized and efficient partition-
ing techniques. Such partitions have proved {o be
essential in minimum cost path algorithms for in-
telligent transportation systems (ITS), for exam-
ple, where queries are under time constraints and
the underlying graphs are typically very large. Pre-
vious studies, however, do not explicitly make use
of the distinct characteristics — both graph theo-
retic and statistical — that are found in real trans-
portation graphs. In this abstract, we focus on a
class of minifrium—cost path queries on transporta-
tion graphs that rely on partitioning to optimize
their performance. We approach the problem in
two ways: first, we consider algorithms with prov-
ably good complexity bounds; next, we apply these
algorithms-to .real transportation graphs (based
upon the entire database underlying the Thomas
Brothers guide of the Los Angeles area), with fur-
ther practical simplifications suggested by statisti-
cal properties of these graphs.

1 Introduction

Natural problems that arise in the design of in-
_ telligent transportation systems (ITS) and geo-
graphical information systems (GIS) have gained
attention from a variety of academic disciplines.
These new domains have generated several impor-
tant problemns to be studied and solved. One such
problem, which has been identified as a key reguire-
ment for ITS, is the efficient processing of path
queries. The motivation is that an effective routing
system can minimize the travel time, reduce the
energy consumnption, regulate the traffic flow and
potentially decrease the number of traffic accidents.

This research partially supported by the National Sci-
ence Foundation under grants CCR-9402819 and ECS-
9510656 and ISLA/IDA project at USC.

Different underlying architectures have been pro-
posed for such systems. In a decentralized system,
each vehicle has its own copy of the transportation
map, typically stored op a CD-ROM, and a pro-
cessor for computing paths. Such systems have the
disadvantage. of not being able to implement global
optimizations with respect to changing traffic con-
ditions. On the other hand, in a centralized system,
only a dedicated computing center keeps the trans-
portation maps and handles all the queries. The
system itself, however, might be parallelized or dis-
tributed. (See [15] for an example.)

The route guidance conducted by a centralized
system can further be classified into path-based and
direction-based. In the path-based case, after re-
ceiving a query from a vehicle, the systern com-
putes an optimized path and transmits the entire
path to the vehicle. The vehicle can then follow
the path with on-board navigation device without
further queries to the system. However, such a sys-
tem has the disadvantage that the originally com-
puted path may no longer be optimal under chang-
ing traffic conditions. In a direction-based guid-
ance system, only the path to the next intersec-
tion {or “beacon” [15]) along the current shortest
path to the destination is transmitted to the vehi-
cle. Hence the system does not need to compute the
entire path for each query. Such an approach can
quickly adjust the routes under changing road con-
ditions. A centralized direction-based 1TS design is
presented in [15].

For direction-based systems, the essential prob-
lem is to find the next optimal direction to be taken
from the source to destination on a given trans-
portation map (with costs assigned through some
metric, such as distance or expected time). More
precisely, we'll let G = (V, E) be an n-vertex graph.
Given a source node v; € V and destination node
vy € V, we would like to find its successor v € V
such that {v;,va) € E is on the minimum weight

245

path from v to vs.

The necessity of efficient shortest path algo-
rithms for transportation applications motivates
special-case improvements to some well known
graph theoretic algorithms. The nature of the so-
lution should also change when we consider the na-
ture of the proposed architectures and the actual
sizes of such graphs and the resources expected for
such systems. For example, the algorithm which we
advocate below utilizes a rather large-scale precom-
putation, requiring a large amount of additional
in-memory storage. However, even for Los Ange-
les county — a map with about 180,000 nodes —
it provides an attractive and feasible solution for a
centralized system.

1.1 Related Work

There have been extensive study on the shortest
path problem, both in theory and in practice. For

all-pairs shortest path problems, the classic algo-

rithms are Floyd-Warshall for general graphs and
Johnson’s algorithm for sparse graphs [4]. For the
single-source shortest path problem the there are
Bellman-Ford and Dijkstra’s algorithm [4]. Paral-

lel and distributed algorithms have also been de-

veloped. For example, in [7], 2 graph is fragmented
to recursively decompose the problem into smaller
tasks; these tasks are in turn assigned to different
processors. However these methods are designed to
work with acyclic subgraphs of initial graph. This
restriction makes it less suitable for transportation
graphs which are by nature highly cyclic.

Recent work attempts to find efficient solutions
to the single pair shortest path problem, one of
the most important for ITS. However, in many re-

" spects the character of these problems differs from -

the classical treatment: The graph itself, together
with cost information, is now more like a relatively
static database, on which one must process queries.
And, although the underlying geometric and geo-
graphic databases may be very large, topological
information for patk queries is often relatively com-
pact. For example, the transportation graph of all
L.os Angeles County has only 177,748 nodes and
494,452 edges. Together, these requirements make
memory-resident databases attractive for central-
© ized systems. _

Shekar et al. developed a hierarchical A* algo-
rithm in [14]. Their method is a heuristic which
takes advantage of the existence of high-speed roads
like freeways and highways. In this model each

node in the graph has a fixed entry/exit node onto .

the high-speed links based on the shortest geo-
graphic distance.

After a vehicle reaches to the

high-speed links they stay on them until the desti-
nation is reached.

Agrawal et al. [1] and Huang et al. [8] develop
a path encoding method where each node stores
the tuple {destinaton, successor, weight) for all the
destination nodes in the graph. This gives an O(1)
lookup time to find the next optimal arc (and hence
the direction) but requires O(n?) storage for an n-
node graph. This approach was shown to work well
for small graphs, but is infeasible for large ones be-
cause of the excessive storage requirements. To
remedy this problem Huang et al. {10} develop a
hierarchical encoding structure, designed to reduce
the space requirement at the expense of a modest
increase in query time. They partition the graph
into smaller subgraphs and then recursively con-
struct a super-node structure on top of it. Dif-
ferent partitioning strategies are evaluated in [9].
Through simulations and empirical studies, they
show that their path encoding outperforms the clas-
sic A* algorithm. Their results are mainly empiri-
cal, obtained by applying heuristic methods to lim-
ited datasets. The complexity bounds on their al-
gorithms are not provided.

In [2] Agrawal et al. use a branch and bound
search to reduce the total number of nodes vis-
ited. They partition the graph into “domains”"
(with identified centers) and precompute additional
information to help prune the search space. How-
ever since ideal domain partitioning required is an
NP-hard problem, they apply heuristics. Although
they are able to reduce the search space for shortest
path queries on large graphs.
 Jung et al. [11] developed an algorithm based
on hierarchical multi-graphs constructed by using
boundary nodes and precomputed path informa-
tion resulting from a partitioning of the graph into
disjoint subgraphs. The shortest path algorithm
used is a variation of the A* algorithm which ex-
ploits this hierarchical structure. With simulations
on synthetic data (grid graphs), the anthors showed
that HiTi performs better than A*. However their
worst case search space is still O(V'). Although
this is an improvement over O(|E|} of A*, it is
not a complexity improvement for transportation
graphs since these graphs are sparse and in this
case |} = O(V).

1.2 Outline of This Paper

The underlying digraph for Los Angeles county and
its surrounding vicinity has about 177,748 nodes
and 494,452 edges. Thus, it is most likely that a
memory resident database would suffice for central-
ized ITS database servicing shortest path queries

246

{ in-degree | out-degree %
2 0.9

i 2 0.9
2 2 1.1

1 1 19.1

4 4 20.9

3 3 55.3
rest -1 1.8

Table 1: Degree percentages of LA County graph.

for such a metropolitan area, and we consider only
on such algorithms.

The overall goal of this paper may be stated
briefly as follows. Let us assume a memory-
resident! graph representing the transportation
system for a large metropolitan area, such as Los
Angeles County. At the extremes, shortest path
queries could be answered on-the-fly by an algo-
rithm such as Dijkstra’s, for which the time com-
plexity is O(V lg F) and space requirements are

extremely modest. On the other hand, to mini-.

mize time, we might instead precompute shortest
paths for all pairs of vertices, and reduce answer-
ing queries to a simple constant-time lookup. How-
ever, the latter approach incurs an O{V?) cost in
the space required to store the precomputed ta-
ble. What we seek is a range of intermediate algo-
rithms, for which there is a trade-off between time
and available memory, and which take advantage
of the special properties of transportation graphs.

In §3 we give an overview of a general algorithm
that provides the tradeofl described above, under
the assumption of an algorithm for construction
balanced partitions of this graph with small sep-
arators. §4 demonstrates a provably good parti-
tioning algorithms of this sort. Finally, in §5 we
step back and look at statistical properties of the
graph at hand, and describe a significantly simpler
algorithm that achieves these same bounds in prac-
tice.

2 Transportation Graphs

Transportation graphs are representations of the
connectivity of city and inter-city streets, roads,
freeways and highways. The geographic database
underlying such a graph is often quite sizable,
with a wealth of geometric, geographic and other
data (often with a resolution down to just a few
feet). However, the underlying transportation
graph, which captures the essential topology of the
routes together with relevant metric data, is signif-
icantly more concise. In this graph, nodes corre-

1The database of Thomas Brothers, Inc. was made avail-
able to the ISLA /IDA project at USC and is the basis of the
statistical and empirical work reported here.

spond to street intersections, freeway entries and
exits, and so forth; edges are just the roads that
connect them; costs may be derived from speed
limits and distances, or may utilize statistical or
measured values that capture actual congestion on
roads.)

A statistical analysis of this graph shows low in-
and out-degrees, as expected; but contrary to a
common assumption in the literature ({11, 14}]}, this
digraph is not mddeled well by a rectangular 2D
grid. (See Table 2.) As expected, the graph is al-
most planar, where the planarity is violated by the
existence of overpasses, underpasses and tunnels.
Hence algorithms developed for planar graphs are
not directly applicable. The existence of such fea-
tures also leads to a high genus. However, as ex-
pected, these graphs tend to have a small crossing
nurnber under its natural planar embedding. For
example the graph of LA County has about 5500
crossing edges which is only 3% percent of the total
nodes. This motivates the extensions of some well
known separator algorithms developed for the pla-
nar graphs {13] to graphs of low crossing number,
and to apply them to problems on real transporta-
tion graphs.

3 Shortest Path Queries

To simplify the presentation, we initially assume
that the underlying graph is a perfect grid, or
sufficiently regular that it can be partitioned into
equal sized subgraphs by removal of a small set of
nodes. A subset of vertices S of an n-vertex graph
G = (V, E) isan f(n}-separator if removal of S par-
titions V' into two disjoint sets A and B such that
(1) |Al, 1B| < 8n where 0 < 8 < 1, i.e., S d-splits V
(2)18I< f(n). B)Y(AxByNE=0.

As noted earlier, what we seek is a class of
algorithms which offer a trade-off between time
and available memory for shortest path queries on
transportation graphs. We focus on finding the
length of the shortest path; To answer direction-
based queries the identity of the next arc on the
shortest path should also be stored with its cost.

3.1 Binary partitioning

Binary partitioning is a recursive application of bi-
section by removal of small separators. The result-
ing hierarchy can be viewed as a binary tree whose
root is the entire graph. The algorithm uses this
hierarchy to encode the partially computed short-
est path information and then efficiently recover
queried paths (for either direction— or path—based
systems).

247

(a)
Aniadad Sl s i q9-
! \ | L}
v <k+l . \ _
L e T - S
r =TT !
¥ 1
i __d_ !
el T777 T
1 f t
1 1 !
N 1 !
-y "'"—__‘______4
A \ 1
L) \ H
L R Y p
W
(v)

Figure 1: Arrows represent shortest paths. The
distance associated to each arrow is retrieved by
O(1) lookup. The shortest path from u to v is
the minimum of all the paths which pass through
the separator sets. {a) Binary partitioning. (b) &-
partitioning.

The idea is as follows: Partitionr a V vertex graph
into two equal sized sub-graphs A and B by re-
moving a small set of vertices (separator 5). Next,
precompute the shortest path paths between each
pair of vertices in A x § and B x S. Now suppose
we want to find the shortest path from a verfex
u € A tov € B. Since every path from u to v
has to include at least one vertex in S, it can be
computed by taking the minimum of the lengths
of all the shoriest paths that include a vertex in
S. The method can in turn be be applied recur-
sively within each partition A and B to handle any
source—destination pair. {See Figure 1 (a).)

The storage required by the data structures and
time required to recover the shortest path is a func-
tion of the depth of the partition tree and the size

" of the separators at each level. Hence it is essential
to minimize the size of the separators to optimize
the performance of the algorithm.

3.2 k-Partitioning

A generalization of binary partitioning yields a %-
partitioning algorithm that provides the desired
space-time tradeoff. In k-partitioning, instead of
partitioning the graph into two equal sized sub-

graphs we partition it into subgraphs of size (at
most) k. As above, it is again desirable to have
small separators associated with each partition.
when the underlying graph is a perfect grid, and if
we uniformly partition it into smaller grids of size
/1 each subgraph will have at most n!/# separator
nodes. The benefit will be a reduction the number
of boundary nodes searched by a query algorithm
at the expense of a more storage for precomputed
data.

We construct the data structure as follows. We

_ first choose a k and partition the graph. For each of

the partition, we compute the shortest paths from
(to) each node to {from) all the separator nodes
around that partition. We also compute the all-
pairs shortest path between all nodes in the sep-
arator. Within each partition, we reapply the k-
partitioning algorithm, for a k' < k; however, our
analysis and implementation, we merely utilize bi-
nary partitioning from this point on. Now suppose
we are given a source node u and a destination node
v. (Figure 1 (b)}. We can find the length of the
shortest path from u and v by taking the minimum
distance among all-the paths that include a sepa-
rator node in u’s partition and a separator node in
v’s partition, as above. Again the total size of the
separator and their sizes relative to the size of each
partition, are critical values which determine the -
complexity of the resulting algorithm.

4 A Partitioning Theorem
Recursive application of separator theorems leads
to divide-and-conquer algorithms for a variety of
applications. For most families of graphs, non-
trivial separators do not exist. On the other hand,
Lipton and Tarjan {13] proved planar graphs have
separator set of size v/8n that yield %—spiits. Anex-
tension, proved in [5] proves that graphs with genus
g have O(,/gm) separators that give similar splits.
Similar results were also proved for other classes of
graphs. Applications of graph separator theorems
exist in VLSI layout and graph partition for finite
element methods. and for various geometric prob-
lems.

To construct the appropriate partitions for trans-
portation graphs, we require an extension of the
Lipton—Tarjan theorem to graphs of low crossing
number. The methods used are similar to ones de-
veloped by Leighton in [12)].

Theorem 4.1 Let G = (V,E) be an n-verter
graph with crossing number cr(G) = m and with
nonnegative verter costs summing no more than
one. Then V' can be partitioned into three disjoint
sets Vg, Vi and S such that no edge joins a verter

248

in Vy to @ vertex in Vi, neither Vy nor Vy has total
cost ezceeding 2/3, and S contains no more than
4v/2/V + m vertices. Moreover, such a partition
can be found in O(V + m) time.

Note that when the crossing number is O(V), the
size of the separator is O(+v/V), and it can be found
in O(V) time, differing from the planar case only
in the constant factor.

Applying Theorem 4.1 to the algorithmsof §3, we
can solve the direction—based query problem with
preprocessing time O(n./nlogn), space O(ny/n),
and query time complexities of O(y/n) with binary
partitioning; and, with k-partitioning, with pre-
processing time O(n? log n/VE + nv/k log k), space
O(n?/k + nVk), and query time O(k), for 1 < k <
n?/3. See [3] for details. -

5 Applications

The goal of the work sketched in the previous sec-
tion was to develop an algorithm that to be de-
ployed a component of a large scale GIS database
currently under development by the ISLA/IDA
project at the University of Southern California.
The initial plan was to implement the algorithm
as described above; however, a bit of research re-
vealed that, although planar separators have been
discussed in a variety of contexts, to our knowi-
edge the algorithin has ravely (if ever) been imple-
mented. In practice, simpler algerithms may in-
deed suffice to achieve comparable results. Such is
a case in our sitnation, since transportation graphs
have some unique characteristics that can be ex-
ploited. The algorithm we used is suggested by
observed properties of the graph at hand. In ad-
dition, we wanted a partition that would simplify
planar point location within the region and would
mesh well with data retrieval from the underlying
database.)

A siraightforward approach might be to parti-
tion the graph along a uniform grid, hoping that
all of the cells will contain nearly the same number
of nodes. This approach may work if the graph is of
uniform density. However this property is easily vi-
olated on large, non-uniform maps like that of the
Los Angeles environs, which ranges from a dense
downtown area to residential regions to hills and
mountains. (Figure 2 attempts to quantify this in
a histogram of nodes per cell for uniform grid par-
titions of various resolutions on the map of LA. For
clarity, cells with no nodes in it are omitted; these
constitute 77% of the entire region.) '

However, while the density of the embedding is
not uniform, it does exhibit a sort of local regu-
larity; specifically, the graph itself is almost pla-

6000 | I T S S S—

5000 g~ -
4000 | -
3000 : 4

nodes

2000 -

1000 : -

0 1 1 { 1
10 20 30 40 50 60 70O
_grid size
Figure 2: Number of grids containing same number
of nodes.

nar (with a very low crossing number, and crossing
edges well distributed through the graph); and the
degrees of the vertices are bounded. In addition,
we would also like to know that the distribution of
nodes and edges is reasonably uniform, in the sense
that if when we choose an sufficiently large convex
region, the number of edges crossing its boundary
is O(y/n), where n is the number of nodes con-
tained in the region. Fortunately, these graphs arise
from transportation systems, which are engineered
to maximize accessibility, so this property seems to
hold in general.?. These properties motivated us
to construct a partition of the graph in a manner
similar to the construction of an R-tree [6] — ex-
plicitly attempting to construct balanced partitions
via horizontal and vertical separators, while count-
ing on these observed properties of the graph to
bound the size of the resulting separators.

The simple algorithm we employ partitions re-
gions using either horizontal or vertical lines: points
are sorted by their £ and y coordinates. A line is
drawn to split the region into two balanced par-
titions, reducing the size of the bounding box of
each resulting region along the maximum dimen-
sion of the enclosing bounding box. The process is
then iterated recursively, yielding an overall time of
O(VlgV) for the entire partition. Such a strategy
is expected to give a balanced partitioning although

2We tested this property with the following experiment
on the abovementioned LA County transportation graph
75 X 105 square miles). H the underlying graph were a
perfect grid and we partitioned the map into a regular grid,
then the number of boundary edges for each grid cell is ex-
pected to be about 4 times the square root of the number of
nodes in each partition. We constructed a range of regular
rectangular partitions of the graph, and found the real num-
ber of edges crossing the boundary of each; we divided this
by the square root of the number of nodes actually in the
partition and averaged the value over similarly sized regions
covering the entire map. We repeated this for regions of size
2'f4 % 2'/4 square miles for i = ©0,---,7. The results are
shown in Figure 3.

249

6 T 7 T T T 1
3 ratio B—
@ S E 3¢ -
=
8 43— 9
w
[F]
S 3 -
@
8 2t B —g)
3

1 i ! 11 i I

20 40 60 B0 100 120
grid size
Figure 3: The average ratio of the actual number

- of edges crossing a region’s boundary to the square

root of the number of nodes in that region for a uni-
form grid partition of the LA County transporta-
tion map, for grids of varying density. The value
for a perfect grid is E = 4.

there is no guarantee that the induced separator
sets will be small for each partition.

Based on the promising results of Figure 3, we
replaced the complex algorithm derived from the
Separator Theorem with the heuristic R-tree al-
gorithm. Becaunse of space limitations, we discuss
results only for k-partitioning, for various values
of k. To illustrate the goodness of the result, we
computed the ratio of the number of actual sep-
arator nodes to the square root of the number of
nodes in the partition and plotted the results for
kE = 80,160,320 in Figure 4. The line z = 4 is
the value corresponding to a perfect grid. We can
easily conclude that the practical algorithm pro-
vides an excellent partitioning of real transporta-
tion graphs. The total storage required by the con-
structed data structures for k = 320, for example,
requires about 45 megabytes, which makes a mem-
ory resident solution feasible for an ITS center. We
can also conclude that because of the flexibility of
choosing an optimized k for an existing hardware,
the k-partitioning algorithm appears to be better
than the binary partitioning.

References

[1] R. Agrawal and H. V. Jagadish. Materialization and in-
cremental update of path information. In-Proceedings
of the §th International Conference on Data Engineer-
ing, pages 374-383, 1989.

[2] R. Agrawal and H. V. Jagadish. Algorithms for search-
ing massive graphs. Transactions on Knowledge and
Data Engineering, 6(2):225-238, April 1994.

[3] €. Aydin and D. lerardi. Partitioning real transporta-
tion graphs with applications to routing. Technical re-
port, University of Southem California, 1997.

300 I | —
| i k=80 — _]
250 /\ §=160 —
@ B \ =320 — _|
£ 200 o 0
E 150 L I \ -
g AN
= 100],f t -
s0 / \ N -
0 1 NS

0O + 2 3 4 5 6 7 B
(# separators)/sqrt(size)
Figure 4: The ratio of the number of separator
nodes the square root of the partition size as k
changes.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algerithms. The MIT Press, 1993.

Is] 1. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A
separator theorem for graphs of bounded genus. Jour-
nal of Algerithms, 5:391-407, 1984,

[6] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the ACM SIGMOD
Conference, pages 47-57, 1984.

[7] M. A. W. Houtsma, F. Cacace, and S. Ceri. Paral-
lel hierarchical evaluation of transitive closure queries.
In Proceedings of the 1st International Conference on
Parallel and Distributed Information Systems, pages
130-137, 1990.

[8] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A
semi-materialized view approach for route maintenance
in ivhs. In Proceedings of the 2nd ACM Workshop on
Geographic Infermation Systems, pages 144-151, 1994.

{9) Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Ef-
fective graph clustering for path queries in digital map
databases. In Proceedings of the 5th International Con-

Jerence or Information and Knowledge Management,
1995,

[10] Y.-W. Huang, N. }ing, and E. A. Rundensteiner. Hier-
archical optimization of optimal path finding for trans-
portation applications. In Proceedings of the 5th In-
ternational Conference on Information and Knowledge
Management, 1996,

[11] S. Jung ard S. Pramanik. Hiti graph model of topolog-
ical road maps in navigation systems. In Proceedings of
the 12th International Conference on Data Engineer-
ing, pages 76-84, 1996,

{12] F. T. Leighton. Complerity Issues in VLSI. Founda-
tions of Computing. The MIT Press, Cambridge, MA,
1983.

{13] R. J. Lipton and R. E. Tarjan. A separator theorem for
planar graphs. STAM J. Appl. Math, 36:177-189, 1979,

[14] S. Shekar, A. Kohli, and M. Coyle. Path computation
algorithms for advanced traveler information systems,
In Proceedings of the 9th International Conference on
Date Engineering, pages 31-39, 1993,

{15} Loral Federal Systems, IVHS architecture phase one

final report. Sponsored by Federal Highway Adminis-
tration, DTFH61-93-C-00211, 1994.

250

Stability of Voronoi Neighborship
under Perturbations of the Sites

Frank Weller

ABSTRACT

This paper considers the effect of site perturba-
tions on Voronoi diagrams, where the sites are points
in the plane. Given a bound on the distance that
any site may move, we ask which pairs of Voronoi
neighbors may become non-neighbors and which are
guaranteed to remain neighbors. A pair of the second
kind is called stable.

The paper shows necessary and sufficient condi-
tions for stability. Algorithms are proposed for de-
ciding stability with regard to a given perturbation
bound and for determining the supremal bound up
to which a particular pair of Voronoi neighbors re-
mains stable.

1. INTRODUCTION

The Voronoi diagram of a set of points is a powerful
tool for proximity-related computations. It is used
by many algorithms in computational geometry and
related fields. When dealing with real-world data, er-
rors of measurement can have a non-negligible impact
on the result. In the case of Voronoi diagrams, even
very slight perturbations of the sites may change the
diagram’s topology. If an algorithm makes decisions
based on a Voronoi dizgram, it may benefit from the
knowledge how reliable the diagram as a whole or cer-
tain parts of it are. The stability which we investigate
here can serve as a measure of reliability.

This paper is concerned with the effect that site
perturbations have on the topology of a Voronoi di-
agram in the plane. In particular, we want to know
which pairs of strong Voronoi neighbors are ‘sepa-
rated’ by the perturbation and which are not. It
is assumed that the reader is familiar with planar

Supported by Deutsche Forschungsgemeinschaft (DFG),
grant MU 744/3-2.

251

Voronoi diagrams. An introduction can be found in,
e.g., [PS85], [Ede87], and [Aur9l].

For the sake of discussion, we assume that we have
an ‘exact’ and a ‘measured’ set of points P and F’,
respectively, in the plane. The error of measurement
is bounded above by & > 0. Le., the distance |p;p}|
between an ‘exact’ site p; and its ‘measured’ coun-
terpart p! satisfies |p;pi| < £. All sites are allowed
to move simultaneously, and the same bound holds
for all sites. Obviously, the Voronoi diagrams V' of
P and V' of P! may differ in their topologies. How-
ever, for certain pairs of Voronoi neighbors in V' one
can guarantee that their ‘measured’ counterparts will
also be Voronoi neighbors in V', We call such a pair
g-stable. Section 2 defines e-stability and establishes
a test criterion. It turns out that the stability of a
neighbor pair depends only on the Vorenoi neighbors
of this pair.

Two computational problems arise in this context.
The decision problem asks whether a pair of neigh-
bors is stable for a given value of e. The optimiza-
tion problem looks for the supremal £ up to which a
given pair of neighbors remains stable. Algorithms
for both problems are developed in Section 3. These
algorithms inspect only the strong Voronoi neighbors
of the two sites under consideration. Their worst-
case running time is linear in the number of inspected
aeighbors.

The stability of various geometric graphs under
gite perturbation has been investigated by Abellanas
et al. [AGH*93]. They use the same model! of pertur-
bation which is presented here, but their graphs are
not based on proximity nor, in fact, on any metric.

2. STABILITY OF VORONOI NEIGHBORSHIP

This section sturts with a formal definition of e-
stability. Necessary and sufficient conditions for e-
stability of a pair of Voronoi neighbors are estab-
lished.

Let P = {p,...,pn} be the set of unperturbed
sites and P’ = {p},...,p.} the perturbed set. Eu-
clidean distance between points p and ¢ is denoted
by {pg|. We call P' an e-perturbation of P if |p;pl| < &
holdsforalli,1<i<n. -

The type of neighborship which we consider is
strong Voronoi neighborship. Two sites are strong
neighbors if their Voronoi regions share an edge.
Weak neighborship, in contrast, means that the
Voronoi regions share only a vertex. A pair of strong
Voronoi neighbors p;,p; € P is called e-stable if their
counterparts p} and p} are strong Voronoi neighbors
for all e-perturbations P’, If ¢ is chosen large enough,
it becomes possible to move two sites of P onto each
other, such that p! = p); for i # j. In this case, we
define the neighborship of p; or p; with any other site
to be c-unstable,

Strong Voronoi neighborhood is defined by the
existence of a non-degenerate Voronoi edge between
the two sites. This is equivalent to the existence
of interior points of the Voronoi edge. The follow-
ing lemma gives a characterization in slightly weaker
terms, which we shall need later on.

Lemma 1. Sites p;,p; € P are strong Voronoi
neighbors if and only if there exists a point m such
that

(1) max{|mpi|, lmp;} < min |mpi|
Fi,f

Proof. Let m satisfy (1) and, w.lo.g., let [mp;| >
Imp;|. The line segment mp; intersects the perpen-
dicular bisector g of p; and p; in exactly one point m’.
We have

max{|m'p| , {m'p;|} = max{|mpi|, Imp;|} — |mm/|
. i

< min mpe| ~ |mm’|

< min b/

<pin Im'pe]
so m' satisfies (1) and is equidistant from p; and Pi.
This means that m' is an interior point of the Voronoi
edge v. In particular, v exists and is non-degenerate.

On the other hand, (1) holds for any interior point

of v.

The point m is the center of a circular disk D
containing p; and p;, but no further site of P.

The perturbation bound allows each p! to move
within & circular disk of radius ¢ centered at p;. We
denote this e-disk by D;. The condition for e-stability
1s very similar to that in Lemma 1. There must exist
a disk D that contains D; and D; but does not in-
tersect any other e-disk of P. The following lemima
formulates this in terms of the center m of D.

FIGURE 1. The convex hull of e-
disks D; and D; is intersected by an-
other g-disk Dy.

Lemma 2. A pair of Voronoi neighbors p;, p;ERis
e-stable if and only if Ipip;| > 2¢ and there ezists a
point m such that

(2) |mpi|+e=|mp;|+e< ,]é];linj [mpe| — e

Proof. If |pip;| < 2¢, then pﬁ = p; for some P', so the

neighborship is unstable by definition. For the rest of
the proof, assume that |p;p;| > 2.

Let (2) hold for point m. For any e-perturbation
P!, we have

max{|mp{], |mp}|} < max{|mpi|, |mp;|} + ¢
< g}:&lmpkl -

< mi !
< min {mpii

due to the triangle inequality. By Lemma 1, p} and
P); are strong Voronoi neighbors within P'.

For the converse, let p;p; be e-stable. We note
that no e-disk Dy, k # i, 7, intersects the convex hull
of D;UD;. If an intersection existed, we could find an
e-perturbation such that pj, lies on the line segment
pip; (see Figure 1.) With this perturbation, p! and
p; cannot be Voronoi neighbors.

Since p; and p; are e-stable neighbors for some £ >
0, they are strong Voronoi neighbors. There exists a
point m satisfying (1). W.Lo.g., m lies on the bisector
g of p; and p;. Let C be the circle through p; and Pi
ceniered at m. We apply two transformations to C.
After these transformations, the new center m will
satisfy (2). _

The first transformation modifies the radius of C,
leaving the center m unchanged. Since all e, k#£4,7,
lie strictly exterior to C, we can find a radius such
that
(1) C touches e-disk D, for some £ # 1, j,

(2) the interior of C intersects no Dy for k # 14,7,
and
(3) D; and D; intersect the interior of C.

252

FIGURE 2. The first transformation
changes the radius of C.

FiGURE 3. The second transforma-
tion moves the center m of C.

Figure 2 shows two examples of the first transforma-
tion. Note that C may expand or shrink in this step.
If D; and D; lie strictly interior to C after the
first transformation, we are finished, since i satis-
fies (2). Otherwise, both D; and D; intersect C, and
C\(D;UD;) has two connected components. W.lo.g.,
let the bisector g of p; and p; lie horizontally and let
D, touch the left component of C \ (D; U D;), as in
Figure 3. If more than one e-disk touches the left
component, let D, be one that lies rightmost.

The second transformation is shown in Figure 3.
The center m of C moves to the right along the bi-
sector g of p; and p;. As m moves, we adjust the
radius of C' continuously such that C keeps touch-
ing Dy, We stop at some point where the interior
of C contains both D; and D; but does not yet in-
tersect any other e-disk. Since I}y does not intersect
the convex hull of D; U D;, we will always find a
circle that touches D, and has D; and D; in its inte-
rior. However, it may be impossible to transform to
this circle, as an intersection with some other e-disk
Dy may occur on the way. If D;, intersects the right
compornent of C \ (D; U D;), then we can move pf,
Pjs Py, and pj onto C, as shown in Figure 4. This
creates an e-perturbation in which p| and p; are only

FiGure 4. If the second transforma-
tion is stopped by some e-disk on the
right, edge p;p; is unstable.

weak neighbors, in contradiction to our assump{;ion
that p; and p; are e-stable. Therefore, Dy must in-
tersect the left component of C'\ (D; U D;). From
the way C changes under the second transformation
(compare Figure 3,) it is easy to see that Dy must lie
further to the right than D,. We continue to move
m to the right, but now C keeps touching D;. instead
of Dy. At the end of the second transformation, m
satisfies (2). O

Remark 3. The equation in (2) restricis m to lie
on the perpendicular bisector g of points p; and p;.
The inequation in (2) and the fact that £ > 0 further
resirict m to the Voronoi edge v C g of p; and p;.

Lemma 4. Let pi,p; € P be strong Voronoi neigh-
bors, and let m be a point of their common Voronol
edge. Then
mi _ .
pucPil Pl = min, lmed
where S C P contains the strong Voronoi neighbors
of pi and the sirong Voronoi neighbors of p;.

Proof. Let py be neither a Voronoi neighbor of p; nor
of p;. The line segment mp, intersects the closed
Voronoi region of some site p, such that p, is a strong
Voronoi neighbor of p; or of p;. Let g be a point of
intersection with that Voronoi region, then

|Psgl < |peg]
By the triangle inequality applied to p,, g and m, and
by choice of g, we have
tpem| < {peg| + lam] < Ipeg) + lom| = [pem|

We see that site p, has no influence on ming; ; |mpx|.
This is true even when p; and p; (or p;, respectively)
are weak Voronoi neighbors. O

Remark 3 and Lemma 4 aliow us to weaken the
condition of Lemma 2 to

253

FIGURE 5. Possible non-empty in-
tersections of bisector g with the
convex hyperbolic region R,;.

Theorem 5. A pair of Voronoi neighbors p;,p; € P
. is e-stable if and only if |pip;| > 2= and there exists
¢ point m € v such that

(3)[mp,|+s—lmp,|+s< mm |mps| — €

l # !
where § € P contains the strong Voronot neighbors
of p; and the strong Voronoi neighbors of p;.

3. ALGORITHMS

With Theorem 5 in mind, it is relatively easy to de-
cide stability for a given € > 0. After first checking
that |p;p;| > 2¢, the algorithm tries to identify points
which satisfy (3).

Let us first consider only p; and one other site
Ds, 8 # 4, J. If [pspi] < 2¢, edge pip; is unstable. Oth-
erwise, let region R,; consist of those points m of the
plane which satisfy

Imp;| +e < |[mps| — €

(4) © Imp,| — [mpy| > 2¢
R, is convex. Its boundary is the hyperbolic branch
H,; defined by

(5) Imp,| — Imp:] = 2¢

Since |pips| > 2¢, the hyperbola does not degenerate. -

In particular, it always exists.
Now consider the bisector g of p; and p;, and let

I, be the subset of g where (4) holds. We find I, by

intersecting g with H,;. I, is either empty, an open
line segment, or an open half-line. The latter two
cases are shown in Figure 5. Note that

gnRaz':gnRaj 3

since ¢ is the bisector of p; and p;. Thus, it makes no
difference whether we use p; or p; to compute I,.

254

Qur decision algorithm computes I, for each
strong Voronoi neighbor p, € §. The intersection of
these 7, is exactly the set of points where (3) holds.

Algorithm 1.

1. If the distance of p; or p; to its respective nearest
neighbor is < 2¢, then edge p;p; is e-unstable.
For each Voronoi neighbor p, of p; or p;, s # 1, J,
compute the open segment I, C g.

Intersect all f,.

The neighborship of p; and p; is e-stable if and
only if the intersection is non-empty.

2.

3.
4,

The algorithm examines #5 — 2 peighbor sites p,.
They can be found from the Voronoi diagram in
time O(#38), identifying at the same time the near-
est neighbors for Step 1. Intersecting R,; and g is
basically solving a quadratic equation, which takes
constant time. Each I; is represented as an open in-
terval on the real number line. The intersection of
#85 — 2 intervals takes O(#S5) time. The total com-
plexity of the decision algorithm is O(#5). This can
still be O(n) in the worst case. However, the average
number of strong Voronoi neighbors of a single site is
well-known to be less than 6.

‘The optimization algorithm is given a pair of
strong Voronoi neighbors p; and p;. It determines
the value

€sup 1= sup {e : p; and p; are e-stable neighbors}

First, we note that pip; is unstable when the e-disks
D and D; intersect. Therefore, we have g4 <
3 1 |pip;l. Our algorithm will contain an explicit test
to ensure that the computed result will not violate
this bound.

For all € < €5, there exists a point m on the
Voronoi edge v of p; and p; such that m satisfies (3).
Therefore, 2¢,,p equals the supremal value of fanction

fm‘“(m) = Pess;e

(unless this value is greater than |p,'-pj|.)_ For each
neighbor site p,, s # 1, j, we define the function

|mps| = [mpii

faz(m) = |mp,| — {mp:]
Obviously, 19

vin i5 the pointwise minimum of all fs, _
For the actual computation of Esup; We choosc a
coordinate system with g as the z-axis and p; on the
positive y-axis. Each p, is represented by coordinates
(z4,9s). The functions f,; are now of the form

Fuilm) =t fuil2) = /(& = 2.2 F 42 = (/22 + 42

Function f,;, which is defined only on v C g, does not.
change if we reflect, pg sicross g. Therefore, we may as-
sume w.l.o.g. that y, > 0 for all s # j. Our algorithm

will change the sign of y, if necessary. Should the set

P contain two sites p, = (Z,,¥,s) and p; = (2,5, =¥.),

then f,; = fu: and we can discard one of the functions.

Examining #S ~ 2 neighbor sites of p; and

pj, we determine the supremum of fZ. over g

in time O(#5). In order to do so, we modify

Megiddo's algorithm for linear programming in the

plane [Meg83, Section 2]. This algorithm maximizes

{or, in the original formulation, minimizes) y within

a planar region. The region is defined by a feasible

interval [a, b] of the z-axis, a set of upper constraints,

and a set of lower constraints. The feasible interval

may be unbounded, in which case one sets 2 = —o0

and/or b = oo. For ease of discussion, we retain the

notation [a, b] in these cases. In Megiddo's original al-
gorithm, each constraint is given as a linear function
of z. In our case, the upper constraints are the func-
tions f.i(z), and there are no lower constraints. Our

feasible interval is the Voronoi edge v of p; and p;.

By maximizing y under the constraint functions f,i,

we find the supremum of fmm

Upon close inspection, it turns out that Megiddo’s
method is not limited to linear constraints. It can
also handle a set of upper constraints satisfying the
following conditions:

Ul. Let constraint function f assume its maximum
over [a,b] at Tmax, then f is non-decreasing to
the left of Zmax and non-increasing to the right
of Zmax. The point Tmax can be found in constant
time.

U2. For any constraint f and any z € [a,}], f(z) can
be evaluated in constant time.

U3. For any pair of constraint functions f and A,
it can be determined in constant time whether

. f(z) > h(z) Vz or h(z) 2 f(z) Vz holds. If nei-
ther is true, then the graphs of f and h cross at
most once and the crossing point can be com-
puted in constant time.

In the formulation of these conditions, we consider
the domain [a, 5] of the constraint functions to be a
closed, possibly infinite interval of the closed real line
R U {-o0,00}. E.g.,, an asymptotic supremum for
T — oo is simply considered as a maximum at x = co.

Certain decisions in Megiddo's algorithm are
based on whether a constraint is increasing or de-
creasing at some z. Others depend on which of two
constraints is smaller to the left of their crossing
point, and which is smaller to the right. With lin-
car constraints, these tests are done by examining
the constraints’ slopes. Conditions Ul-U3 allow us
carry out the tests in constant time without comput-
ing derivatives.

In addition to Conditions U1-U3, Megiddo's algo-
rithm exploits the fact that a linear constraint func-

tion always assumes its maximum at x =a or z = b.
The modification that is necessary to accomodate for
maxima over the interior of [a, b} is straightforward.

It remains to be shown that our set of constraint
functions satisfies Conditions Ul-U3. The triangle
inequality implies that f;; is bounded above and be-
low by |p,pi| and ~ |p.pi|, respectively. One of the
bounding values is assumed in the intersection point
of line p;p, with g, provided that the intersection ex-
ists, The intersection occurs at

—Yils
Vs — Ui

No intersection exists if y: = yi.

(6 I =

‘Lemma 6. Condition U2 holds for all fsi, s #14,5.

Proof. It is clear that our constraint functions can be
evaluated in constant time for z € R. Elementary
calculus yields

Jlim fu(@) =z, and Jm fu@)=-z,
which is of importance for the cases ¢ = —oo and
b=c. O

Lemma 7. Condition Ul holds for all fy, s #1,5.
Proof. The derivative of f w.r.t. z is

2z — z,) 2z
2y/(z ~z:)* + 42 2\/:52 +y?
_ (m==5)/2 +yf —z/f(z — 26)? + 12

Viz -z +y2/2? + y?

As y; is non-zero, the denominator of f!; can only
vanish if y, = 0 and £ = z,. This means that p, € g
and m = p,. Now clearly m = p, does not belong
to the Voronoi edge v, so £ = z, lies outside the
feasible interval [a, b]. For all other combinations of z
and v,, function f;; is continuously differentiable. A
necessary condition for a local extremum of f,; over
the open interval (a,b) is

fiilz) =

2*(z - 2.)° + yi (@ — 2.)° = (@ — z.)* + 27y}

& V(e - 2.)? = 2?2

A (ys y: 'T" + 23:9‘. & - ytzxf
= ({ye — w)% + viza) (s + 1:)2 — i)
=: h{z)

Consider the linear factors in the last-but-one line of
this equation. Since y; > 0 and g, > 0, the leading
coefficient {y, + y;) of the second linear factor is not
equal to 0. We distinguish two cases:

255

Ys 7 yit
h{z) has two roots,
2y = “YiTs and z3 = ViTs
Ys — Yi s + 1
Us = Wil

In this case we have z, # 0, for otherwise p,
would equal p;. The first linear factor of h(z)
becomes a non-zero constant, and we obtain only

one root,

YiTs
7 Ty = 22
@ T Yt wm

We have encountered z; before, under the name of
g in (6). Point (x;,0) is the intersection of line p;p,
with g, and fu(z1) = 2+ |pspi|. Since [a,b] describes
the Voronoi edge of p; and p;, it is exactly the interval
over which none of the f,; is negative. If z; € [a, 8],
then f.i(z1) = |pspil and f,: has a global maximum
at rj.

The other root, 2, corresponds to the intersection
point of line p;p, with g. If z, = 0, then z; coincides
with z; = 0. If z, # 0, lines p,p; and g intersect at
a non-right angle. This implies that {mp;] = [mp;|
increases for m € g and m on one side of the intersec-
tion, and decreases on the other gide. The behavior of
|mp;| is opposite to that of |mp;|. (At the extreme,
ps € g and |mp,| is stationary in the intersection
point.} Thus, f,; has no local extremum at z,.

At this point, z; is the only candidate point at
which a local extremum within (o,b) might occur,
and this extremum must be a maximum. If z; exists
and x; € (a,b), then Ty = z1. Otherwise, we have
Tmax = @ OF Tpmax = b, depending on the values f,;(a)
and f,;(b). We see that Zmax can be found in constant
time. O3

Finally, we need to verify that the graphs of any two
constraint functions cross at most once.

Lemmea 8. U3 holds for all pairs of constraint func-
tions fui, fu.

Proof. Consider the difference function

Jsi(m) = fui(m) = |mp,| — imp;| = (Impe} ~ |mpi])
= [mps| — [mp4|

The roots of this function lie in the intersection of
g with the bisector of p, and py. If z, = 2,4, then
the bisector is parallel t0.g. Now if y, > y¢ then
foi 2 fui, and if y, < ye then fii < foy over all of v.
If z, # z,, then the intersection consists of exactly
one point, (z3,0), say. Since g crosses the bisoctor of
Ps and pg in this point, we see that the graphs of f,;
and fg; cross at z3. [

The following algorithm determines €,yp.

Algorithm 2.

1. Transform the coordinates of all Voronoi neigh-
bors of p; and of p; into the zy system defined
by g. Reflect the neighbors across g if necessary.

2. Compute the supremum of f7, .

3. Set &y to one half of the supremum or |pip;),

whichever is smaller.

The first two steps of the algorithm take time O(#5).
The third step takes only constant time, resulting in
worst-case time O(#S) for the complete algorithm.

4, CONCLUSION

We have examined the stability of strong Voronoi
neighborship under e-perturbation of the sites. Sta-
bility of two neighbors p; and p; is characterized by
the existence of a circle which includes the e-disks
around p; and p; and excludes the e-disks around all
other sites. Such a circle can be found in time O(#85),
where #5S — 2 is the number of strong Voronoi neigh-
bors of p; and p;. Likewise, the supremum of all val-
ues £ for which p; and p; are stable neighbors can be
computed in time O{#5). As a by-product, we have
seen that Megiddo’s approach to linear programming
in the plane is applicable to a wider range of problems
with more general classes of constraint functions.

REFERENCES

[AGH*93]) M. Abellanas, J. Garcia, G. Hernindez, F. Hur-
tado, O. Serra, and J. Urrutia. Updating polyge-
nizations. Computer Graphics Forum, 12(3):C134-
C152, 1983,

[Aur91) Franz Aurenhammer. Voronoi diagrams - a sur-
vey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3):345-405, Septem-
ber 1991,

{Ede87) Herbert Edelsbrunner. Algorithms in Combinato-

rial Geometry. EATCS Monographs on Theoretical
Computer Science 10. Springer, Berlin, 1987.
[Meg83] Nimrod Megiddo. Linear-time algorithms for linear
programming in R? and related problems. SIAM
Journal on Computing, 12(4):759-776, November
1983. .
[PS85] Franco P. Preparata and Michael Ian Shamos. Com-
.+ putational Geometry. Springer, 1985.

256

- An iterative algorithm for the determination of Voronoi vertices in
polygonal and non-polygonal domains

Frangois Anton, and Christopher Gold
Industrial Chair of Geomatics - CRG
0722 Casault, Université Laval
Sainte-Foy, Québec, Canada, G1K 7P4
Fax: (+1-418) 656-7411
Frmail: francois@gmt.ulaval.ca & Christopher.Gold@scg.ulaval.ca

Abstract

We propose a new iterative algorithm for the com-
putation of the vertices of a Voronoi diagram for
a set of geometric objects of the euclidean plane.
Each one of these vertices is the centre of the cir-
cle "touching” a triple of cbjects (passing through
points or tangent to any other geometric object).
The algorithm starts with an initial triple of points
pertaining to each one of the three objects. It com-
putes its circumcentre and the closest point (called
foot) of each object from the circumcentre. These
three feet form the starting triple for the next it-
eration. We geometrically demonstrate a necessary
and sufficient condition for the general case. This
iterative algorithm is used as a new method for con-
structing a dynamic Voronoi diagram for a set of
points and straight line segments (see Gold and al.

[4])-

1 Introduction

The Voronoi diagram has many applications in a
variety of disciplines, and has been widely treated
in the literature (see Okabe and ol [5] and Au-
renhammer [1] for a general survey). The Voronoi
diagram has been introduced by the rusian math-
ematician Georgii Fedecrovitch Voronoi in a trea-
tise on quadratic forms theory (see Voronoi {7], [8]).
The ordinary point Voronoi diagram is a partition
of the plane, in the way that each object (point)
partitions the euclidean plane into a region, that
is the locus of points which are closer from that
object than from any other object (see Preparata
and Shamos [6]). The concept of Voronoi diagram
has been extended in different kinds of generaliza-
tions: higher order Voronoi diagrams (extension of
the set S of generators, see Preparata and Shamos
[6]), weighted Voronoi diagrams (see Okabe and al.
[5]), Voronoi diagrams with obstacles (see Shamos
and Hoey [1975] in Preparata and Shamos [6]),

Voronoi diagrams for areas, and Voronoi diagrams
for lines. The line Voronoi diagram is 2 general-
ization of the ordinary point Voronoi diagram, by
extending the set S to points, line segments, and
any "geometric element consisting of line segments
that are connected” (see Okabe and al. [5]). The
line Voronoi diagram has been intensively studied
by Drysdale [1979], Lee [1978], Lee and Drysdale
[1981] (in Okabe [5]), and Kirkpatrick [1979] in Ok-
abe [5]. It is possible to distinguish different kinds
of line Voronoi diagrams (see Okabe [5}): Voronoi
diagram for a set of points and straight line seg-
ments, Voronoi diagram for a set of circles, and
Voronoi diagrams for a set of points, straight line
segments and circular arcs.

The Voronoi diagram for a set of geometric ob-
jects of the euclidean plane is defined by the gen-
eralization of the ordinary point Voronoi diagram
by extending the set of objects S to any geomet-
ric element. This partition of the plane forms a
net, whose vertices are called Voronoi vertices, and
whose edges are called Voronoi edges. Each Voronoi
vertex is the common intersection of exactly three
edges, and therefore each Voronoi vertex is equidis-
tant from its three nearest objects. An iterative
algorithm has been used for "hunting Voronoi ver-
tices in non polygonal domains” (see Ferruci and al.
[3])- In their algorithm, the exact shape description
of the objects is not needed. The only assumption is
?to be able to answer to queries of the form " given
a point p and an object S, determine the closest
point on 8 from p"” (Ferruci and al. [3]). Starting
from a point p on the plane, they compute the clos-
est point on each object. Then, they compute the
circumcentre of these three points, that will be the
point p for the next iteration. They have defined
a pecessary condition of convergence, based on the
fact that the smallest circle containing three points
and whose centre is inside the triangle formed by
these three points is the circle circumscribed to the
three points. The sufficient condition is that the

257

next point p is inside the triangle formed by the
closest point of each one of the three objects from
the previous point p.

2 Preliminaries

Let N be the set of integers, R be the set of re-
als, and R? be the euclidean plane. Let P be a
point of R?, and O be a geometric object, then
let’s define the distance from P to O as: d(P,0) =
inf {d(P,M) /M € O}.

Let O be the set of the n generators of the
Voronoi diagram.

VO)= U V(0:) = R where V(0;) =
{MeR? /¥j : d(M,0;) < d(M, 0;)} is the Voronoi
region of the object O;. Each Voronoi edge is a
portion of bisector of two objects. These Voronoi

edges intersect at points, called Voronoi vertices.

Being the intersection of two bisectors, the Voronoi
vertices are at the same distance from three objects.
Let H be the vectorial euclidean hyperplane cor-

responding to R? in the oriented (see Berger [2}) -

t_}})ree dimensional vectorial euclidean space E. Let
%k be the unitary vector of E normal to H.

Let O, O3, and O3 be three objects.

The iterative algorithm (see figure 1 page 3)
starts with three arbitrary points (called feet) taken
on each one of the three objects: Fy,, Fa,, and F3,.
The centre Cy of the circle Cy circumsecribed to the
triangle formed by these three feet is computed.
Then, each one of the closest point of Oy, O2, and
O3 from Cy: Fy,, F»,, and F3, is computed and
used as the starting point (foot) for the next iter-
ation. The iterations stop when the distance be-
tween the present centre and the last one is smaller
than a user-defined tolerance.

Let (Fi)nens (F2odnen, 20d (F3,),en be the
sequences of the points (called feet) on each one of
the three objects Oy, Oz, and Os, closest to the
centre of &,_; except for n = 0 where the foot are
arbitrary points on each one of the objects.

Let C’ be the circle passing through Fl,,, F_,
and F3 forn > 0.

Let (C,) be the sequence of the centres of the
circles Cy, for n > 0.

Let C;,, be the circle whose diameter is [F1,Cp] -

forn> 0.

Let C, be the circle whose diameter is [F3, Cy]
forn > 0

Let C3_ be the circle whose diameter is [Fs, n]
forn> 0

3 A necessary and sufficient
condition of convergence

First let’s suppose that there exists a Voronoi ver-
tex v for the triple of objects (O, 0z,0a). Then,
the circle whose centre is v and whose radius is the
euclidean distance from v to Oy touches the three
objects Oy, 0s, 03 respectively at P, Q, R in the
counterclockwise order (P € O1, Q@ € Os, R € O3).
This implies that the three feet are in the anticlock-
wise order (R is on the left of P_Cj or equivalently:
.ﬁijR k>0 andijalsbetweenzTP'andvR

(the oriented angles @Tj and @? are inferior

to the oriented angle ﬁ_R), see [2] for a survey of
oriented angles).

Therefore, it is easy to see that the sequences of
the feet (Fi,)peny (Fon)nens 80d (F3,), cx should
verify from some integer q, that the anticlockwise
order of the feet is the expected one.

Now, let’s suppose that we are at the iteration
n > g and the feet F; , Fy , and I , are in the
anticlockwise order.

We will consider now for each object O;, the por-
tion O, of O; inside the disk Dy, whose boundary
is C,. I O; is a point, then Vi € N : O,‘,n = 0.
If O;ND, # {F,} then we will consider O;,
open, and otherwise we will consider O;, closed.
Ifvi € {1,2,3} : O; ND, = {F,.}, then C, is the
circle touching the three Voronoi objects Oy, Os,
and O3, at Fy_, F>_, and Fj,_ respectively. Its cen-
tre Oy, is the Voronoi vertex corresponding to the
triple of objects {01,002, 0s}. For each object O;,
any point of O;_, if it exists is closer from the centre
of C, than F; and any other point of O; — O,

Thus,

Vie {1,2,3}: F,,, €0,. 1)

H, and only if F;_, Fp,, and F3, are in in
the anticlockwise order, C,F;, is between C.F.. nFl,

and C,,,an (the oriented angles C,.,F;nC,.an and
CpF;, C,F;, are inferior to the oriented angle

CpF1,CrF3,; see figure 2 page 3). Indeed, CpFi,,
CnFh,, and C,F;, are three tadiuses of the cir-
cle passing through the three feet Fy,, Fo_, and
Fs_ . In the counterclockwise order along that cir-
cle, Fy,, F;, and F; are in same order as their
radiuses from Cr: CoFy,., CnF, , and CoFs,..

For each object O;, C, NC;, = {Fi,}, and the
common tangent of C,, and C;_ is therefore the tan-
gent of C, at F;_ . The edge orthogonal to the com-
mon tangent and passing through F; is the edge

258

*
—I_.’

O
X1

o

/

Figure 1: The iterative algorithm

P Nannmm

!

Figure 3: The convergence process when the order
of the feet changes

2 H
. [
3 i
N
. .
3
- 2
1

Figure 2: Visibility of three points from the circum-
centre

259

(F;.Cr). The vector m gives the sense of the
"movement” from F;, to Fj,,, along O;, because it
gives the relative posmon of O;, relatively to F—
As long as F.mC FpCn1 20, F
be after F;, and F; , along O;. Now, let us
see the case where at least for one object W
Cr1 < 0. Wewill prove that if all the objects

’n+1
verify F; Cp - Fj,,,Cnt1 < 0, then the order of the
feet Fi,41 Fo,q., &nd F3 ,, has changed relatively
to the order of the feet Fy,, F>_, and F3_ (see figure
3 page 3))

F, Cp- F;,,,Cny1 < 0 is equivalent to CpF;, -
—_——t
Cnt1F;,,, <0. Let my;, be the middle of [F; Fj,_].

— ——— —_—
Then, C’ F; Cnm,, = Cnml_,n CuF;, =

1C.F, C'n . = FknF,annF,n where O} is the

third object. From C,F; - Copr1Fi,, < 0
-3+ 3> —_—
and CnF}“ . Cn+1an+1 < 0 we get Cnmijn .

—— i
Cnt+1m4j,,, < 0 by passing to the bisectors..
Because of the fact that the circle centre C, pass-
ing through F; ,, is tangent to O;, either [F; F; }
d [Fi,,, Fj,,.| are not hidden by any of the two
other objects (if there is a valid circle touching the
three objects in that order, no object is hiding com-
pletely O; from the third object) or they are both
hidden by another object. Therefore the relative
positions of [F; Fj) and [F,,, F},.,] are the same
relatively to O); and Oi’ and we have: R
mijn ‘F:T.n 'm’ijn+1 'F:'in;i-l = %En FJn 'F;n+1 ‘F:'in+1 2 0'
Cn+1mi3“+1 < 0 and
> 0, and consequently

Therefore Crm; _,n' -

Mijn E?n mt.?n+1FJn+1'
(Camig, % C F,,,) (Cn+1m,,,n+1 x C,,+1F,,_+1) <
0, and

(PP x Fio By,)

(FeriFeon % P Fin) <0.

That means that without any loose of generality,
we passed from the anticlockwise order of Fi, F,
Fm to the anticlockwise order of Fx,.,, Fm,11»

. The objects whose foot order has been changed
(1 a.nd m), either intersect between their two succes-
sive feet Fy, F,,,, and F,,, Fy, ., respectively,
or one of them (1 or m) hides the other one from
the third object {k). However, we supposed at the
beginning, that the order of the feet was the final
order in which the searched circle has to touch each
object.

Thus, the fact that there is at least one object for
which F; Cpn-F;, ,, Cni1 > 0, implies that Fj, _, can
not be before F;, and F;, , along O;, and there-
fore F,..is either after F;, and F;_, or between

. and F; ., along O;. Therefore, if and only if,

Tn41

there exists & circle touching the three objects in
that order, the sequences (Fi,),y Will converge
towards the closest points of O;, ¢ € {1,2,3} from
the centre of that circle, and (C.),, oy Will converge
towards the centre of that circle. We finally get the

necessary and sufficient condition:

- Theorem 1 The necessary and sufficient condi-

tion of convergence of this iterative algorithm is the
following one:

EPEN/VH zp: R B -1 F; >0 (2)

From this necessary and sufficient condition of
convergence of this iterative algorithm, we get di-
rectly the initial conditions for this algorithm:

Lemma 2 If we start from three feet in the ex-
pected final order, and ¥V (P,Q,R) € Oy, X O, %
Os, : I?Q' xPR- & > 0. If, and only if, there exists
a circle touching the three objects in the specified
order, and for which there is no intersection with
another object between the closest point of each ob-
ject O; from its centre and F;, the sequences of
(Fi, nen will converge towards the closest points of
each one of the objects from the centre of that cir-
cle, and (Cy),, .y will converge towards the centre
of that circle.

4 The Algorithm: description
and statistical validity

An algorithm for the determination of Voronoi ver-
tices for points and line segments has been devel-
opped using the precedent lemma. It is subdivided
into three steps: two steps are necessary to satisfy
the initial conditions, and the last step is the iter-
ative algorithm itself.

In the first step, three starting feet. in the ex-
pected order are chosen in order to satisfy to the
first . Before trying to choose such feet, the ex-
tremities of the objects are checked to assess if it
is possible. After, for each line segment object, a
feet is randomly chosen till it is in the good order
relatively to the other objects.

In the second step, the choice of the starting feet
is corrected in order to satisfy the second initial
condition: ¥ (P,Q,R) € Oy, x Oz, x O3, : PG x
PR- T >0.

In order to do so, each previously chosen foot
at the iteration n is replaced by & feet for which
the two extrémities of Q;_,, are in the good order

tn4l

relatively to the other objects. Implementation of

260

First Step

Statistics
Mean 4820121951
Standard error 0,464252573
Standard deviation 26,58834100
Variance 706,9398817
Kurstosis 1207,749843
Asymmetry coefficient 32,70444668
Extent 1132
Minimum 3
Maximum 1135
Sum 15810
Number of abservations 3280
Confidence value (95.0%) 0,910254764

Second Step

Number of iterations

Stalistics

Figure 4:

the above presented algorithm is done on points
and line segments.

This algorithm has been implemented using Del-
phi on a Pentium based PC running Windows 95.
Testing has been made using pseudo-random data
including collisions. In order to generate special
cases, we suppose that the second and third objects
could be connected to the previous one.

The test data was composed of 10000 triples of
‘objects. Among them, 3280 were assessed pos-
itively for circumcentre possibility. There was a
valid circumcentre for 2997 cases, that is 91.37% of
the previous set. The statistics for the 3280 cases
mentioned above appear in the figures 4,5,-and 6
page 5.

For the first step, we can see that 5 (4,82) iter-
ations are needed in average. With a confidence
interval of 95%, 6 (5,73) iterations are necessary.

For the second step, we can see that 2 (1,44)
iterations are needed in average. With a confidence
interval of 95%, 2 (1,64) iterations are necessary.

Finally, for the third step, we can see that 7
(6,16) iterations are needed in average. With a
confidence interval of 95%, 7 (6,44) iterations are
TNEeCessary.

5 Conclusions

This algorithm is presently being applied to the
routine, that computes the centre of the circle that

Mean
Standard error
Standard deviation
Variance
Kurstosis
Asymrmetry coefiicient
Extent
Minimum
Maximum
Sum
Number of cbservations
Confidence value (85,0%)

1,43818002

0,104508027
- 5,765537048
33,12820671
292,8141068
17,08098536

100

1
L4l

4362

3033
0,204913883

Figure 5:

Third Step

K 8 B B 8

2 "% % a N 2 ® RS
‘Number of Heratlons
Statistics
Mean 6,1641684184
Standard error 0.1380615491
Standard deviation 7.599434998
Varance 57,76141229
Kurstosis ~0,687893387
Asymmetry coefficient 1,04635822
Extent 27
Mirimum 1]
Maximum 27
Sum 18474
Number of observations 2997
Confidance value [85,0%) 0.27218343

261

Figure 6:

touches three objects of a spatial data structure
of points and oriented line segments. This routine
is the fundamental part of a software of construc-
tion, and maintenance of a dynamic Voronoi spatial
data structure for a set of points and oriented line
segments. This spatial data structure is currently
developed at the Industrial Chair of Geomatics ap-
plied to Forestry of the Centre for Research in Ge-
omatics of Laval University, Quebec City (Canada)
by Dr Christopher M. Gold.

Finally, this iterative algorithm is particularly in-
teresting because the mathematical calculations in-
volved in it (closest point and determinants) are
directly transposable to the sphere.

6 Acknowledgments

This research work has received the financial sup-
port of the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada, and the As-
sociation des Industries Forestidres du Québec
(ALF.Q.). Finally, I am grateful to Dr. Jack
Snoeyink (UBC), and Ms. Darka Mioc, Ph. D.
candidate at Laval University, for their comments
and suggestions.

References

[1] F. Aurenhammer, Voronoi diagrams - A survey,
(Institute for Information Processing, Technical
University of Graz, Report 263}

[2] M. Berger,
Géométrie, volume 2 : espaces euclidiens, tri-
angles, cercles et sphéres, (CEDIC/FERNAND
NATHAN, Paris, 1979) 216p.

[3] V. Ferruci, M. Overmars, A. Rao, and J.
Vleugels, Hunting Voronoi Vertices in Non-
Polygonal Domains, (CCCG’94, Saskatoon,
Canada, 1994) 45-50

[4] CM. Gold, P.R. Remmele, and T. Roos,
‘Voromnoi Diagrams of Line Segments Made Easy,
(CCCG'95, Québec, Canada, 1095) 223-228

[5] A. Okabe, B. Boots, and K. Sugihara, Spa-
tia] Tessellations, Concept and Applications of
Voronoi Diagrams, (John Wiley & Sons, 1992)
532p.

[6] F.P. Preparata, and M.I. Shamos, Computa-
tional Geometry, An Introduction, (Springer-
Verlag, 1985) 398 p.

[7] G. Voronoi, Nouvelles applications
des parameétres continus & la théorie des formes
quadratiques, Premier Mémoire, Recherches sur
les paraliélloédres primitifs, (Journal fur die
Reine und Angewandte Mathematik, v. 134,
1908) 198-287

[8] G. Voronoi, Nouvelles applications
des paramétres continus & la théorie des formes
quadratiques, Deuxiéme Mémoire, Recherches
sur les parallélloédres primitifs, (Journal fur die
Reine und Angewandte Mathematik, v. 136,
1909) 67-181

262

Some Tools for Modeling and Analysis of Surfaces

Jens Liissem?!
University of Bonn

Carsten Dorgerloh*
University of Bonn

Jiirgen Wirtgen®

University of Bonn

Morakot Pilouk?
ESRI-Redlands

April 14, 1997

Abstract

We present some algorithms which construct a trian-
gular graph given a set of points, where each face of
the graph complies with the Delaunay criteria. Then
we develop an O(n) algorithm to construct the con-
tour of such a triangular graph, where each face is
-coloured either black or white. Our techniques avoid
expensive trigonometric computations. We intoduce
our algerithms for the 2-dimensional case and show
how to extend them to the d-dimensional case in a
straightforward manner.

1 Introduction

Consider the following scenario: An oil company
drills n boreholes py,...,pn. With each p; an value
val(p;} will be associated, which represents the ex-
pected amount of oil supposed to be in the neighbor-
hood of p;. They want to determine which connected
regions in the plane promise to give a lot of oil.

In order to solve problems of this type, we perform
three phases.

Triangulation phase: Based on the n points, we
~ construct a planar graph structure T consisting
of non-intersecting triangles.

Rating phase: For each triangle £ = (p;,p2,ps)
(with py, p2, ps being the vertices of t) we evalu-
ate f(p1,pa,ps), where f is an appropriate rat-
ing, e.g. the mean of the val(p;). Depending
on some threshold we color the triangle black or
white.

*Institut fiir Informatik, Univ. Bonn, Rémerstr. 164, 53117
Bonn, Germany, email: carsten@cs uni-bonn.de

tInstitut fiir Informatik, Univ. Bonn, Rémerstr, 164, 531 17
Bonn, Germany, email: jens@cs.uni-bonn.de

1ESRI, 380 New York Street, Redlands, CA 92373, USA,
email: mplouk@esri.com

$Institut fir Informatik, Univ. Bonn, Rémerstr. 164 63117
Bonn, Germany, email: wu-tgen@cs uni-bonn.de

Contour phase: In this phase we compute the set
of cycles C defined by edges of T', which are on
a common boundary of a black and a white tri-
angle. Furthermore, C' is constrained to contain
only those cycles which are no$ enclosed by an-
other cycle.

-With growing n, this construction tends to be similar

to the real world, since more points give us more in-
formation. Therefore our modeling of the reality will
become more and more close grained.

The paper is organized as follows. Section 2 describes
the triangulation phase. To be more precise, we dis-
cuss an triangulation algorithm which complies with
the Delaunay criteria. Section 3 contains the elemen-
tary steps of the algorithm for the contour problem
and shows how to implement them efficiently. From
the proof of correctness of the elementary steps the
correctness of the main algorithm of the sequence is
immediately clear. Finally, we describe that the al-
gorithm can easily be extended to the d-dimensional
case.

2 Constructing the Delaunay
triangulation

Triangulation has been applied in many disciplines es-
pecially for modeling and analysis of surface, e.g. ter-
rain modeling in GIS, civil engineering, landscape ar-
chitecture. From a triangulated structure represent-
ing a surface, we can compute slope, aspect, visibil-
ity, isolines, light refiectance from the surface, volume
above or below the surface with respect to a given
datum. For our algorithms, we use the Delaunay tri-
angulation, having some nice properties [Au 91].

Definition 1 Let P = {p1,...,pn} C R? be a set
of d-dimensional points. For all p € P we define
the Voronoi cell V(p) to be the subset of R which
is closer to p than to any other point in P. Formally

V(p)={z € R*: |z~ pli < ||z — || Vg € P\ {p}}

263

Let H(p,q) the halfspace defined through the bisect-
ing hyperplane of y and ¢ containing p. So we have
another definition of V'(p):

Vip) = n H(p,q)
eeP\{r}

The cells V(p) partition the JR® and form by this way
the Voronoi diagram. The dual graph will be called
the Delaunay triangulation. Here we have some ele-
mentary properties of the Delaunay triangulation.

Property 1

1. The delounay triangulation ts a partition of the
IR? in simplices, whose vertices are the points of
P.

2. The Delaunay triangulation of a Voronoi dia-
gram is unigue:

The cells which circumsceribe the simplices do not
contain any point of P in their interior.

This property gives us the simple algorithm
Simple Delauney(P) with a worst-case complexity of

O(n/21+1) [Bo 81].

Simple Delaunay(P)
Input: Aset P ={p1,...,pn} € R? of points.
Output: The Delaunay trlangula.t.lon of P.

. Let 83 := (P, -, Pat1) the first simplex.

2. Define § = {s;} to be the set of actual simplices.
Set card-simp := 1, the number of actual sim-
plices.

3. TForalli=d+2,..,ndo

(a) R{p:) := 8. In the following R(p;) will be
the region defined by the union of the sim-
plices in S, whose circumseribing ball con-
tain p;. .

(b) Forall j=1,...

o If circumball(p;, s;) then
= R(pi) := R{pi) U 55,
- §:=8\{s},
(c) Let F(p;) the set of facets defined by R(p;:).

(d) Construct new simplices by connecting P to
the elements of F(p;).

(¢) Update the number card,imp

,card simp do

To cormplete this algorithm we have to describe the
subroutine circumball(p, s} which returns true iff p is
contained in the circumscribing ball of the simplex s.
The easiest way to do this, is to compute this ball and
test whether p is inside or not.

In the 2-dimensional case, we know from the elemen-
tal geometry, that the center of the circumscribing
circle of a triangle is defined by the intersecting point
of the orthogonals on the centers of the sides. It suf-
fices to calculate two of these and solving the linear
gystem.

It is easy to see, that we can generalize it to d
dimensions with the following recursive procedure
ConstructCircumball(s, d):

ConstructCircumbally(s)

Input: A simplex s = (py, ..., Pd+1)-

Output: The center of the circumscribing ball of s.

1. If d = 1, return the center of 5. (s is a line
segment)
Flse, take two arbitrary facets f; and f2 of s and
calculate
e ¢; = ConstructCircumbally_1{f1),

® ¢y = ConstructCircumbally_ (f2).

2. Construct the orthogonals oy and o2 on f; and
Jo thru ¢; and c2.

3. Calculate the intersection of 01 and o3, which
gives us the center c.

4, Return c.

Now it is easy to implement circumball(p,s). We
calculate the center ¢ of the ball which circumscribes
the simplex s and take some arbitrary vertex p; i =
1,...,d4+ 1 of 5. Now we Lave only to check whether

lle — 2ill 2 lle =l

or notf.

3 The contour algorithm

Before we explain the elementary steps of the contour

algorithm we need the following definitions.

Let G = (V, E) be a planar graph. Consider a fixed

plane embedding of G. The unbounded region is called

the exterior face. Other faces are called interior faces.
The vertices and the edges on the exterior face are

called ezierior verfices and exterior edges, respec-

tively. For each vertex v, N(v) denotes the set of

264

neighbors of v. A planar graph " = (Vp, Er) has a
triangular embedding, if every face of T, except the
exterior face, is a triangle. The triangles of a colored
triangular embedding are colored black and white, re-
spectively, The color of the external face is always
assumned to be white. Let S be a set that contains

all edges of T which are on a common boundary of a .

black and a white triangle. In fact, S is a collection
of edge-disjoint simple cycles (the points of the cycles
being evident by context) of T, which are separat-
ing white and black regions. The problem of finding
simple cycles is one of the most basic and natural al-
gorithmic graph problems (see [Le 90]) and was con-
sidered by many researchers e.g. [Mo 85], [AYZ 95],
[DW 97a], [DW 97b]. However, in the present paper
we search for a special set of cycles - namely the ex-
ternal contour.

An (external) contour C (introduced in [DL 95]) of
a colored triangular embedding T consists of those
cycles of &, which are not enclosed by another cycle
of S. The task of computing the external contour of
T can now be formalized to produce the set C.

The following well known lemma (see e.g. [Ha 69]
[Ev 79]) is helpful, because for planar graphs it im-
plies that an O(|V'|+|E|) algorithm is really an O(|V])
algerithm,

Lemma 2 If G = (V, E) is any planar graph with
[VI> 8. Then G has at most 3|V|— 6 edges.

The algorithm is built of the following steps.

3.1 Construction of the dual graph

Given a colored triangular embedding T, its colored
dual G = T* is constructed as follows: simply trace
the boundary of each face, place a vertex in G for each
face of T' (excluding the exterior face) and assign the
corresponding color to it. If two faces of T have an
edge ep in common, join the corresponding vertices
in G by an edge e.

It is quite straightforward to solve the problem in
O(|V]) time sequentially, if we trace the boundaries
by following cyclic linked lists.

In the following we denote by construct_dual(T} the
procedure that executes the step as described above.

3.2 The extension of the dual

Now, we extend G by introducing a new vertex vp:.
Yozt Corresponds to the external face of T and is as-
signed the color white. We connect this vertex to
each node u € V — {v.5:} with degree(u) < 3 (see

eztend(G)
V=V U {vext}
for each u € V — {ves} do
if degree(u) < 3 then
E:= EU{u,vz}
end if
end for

Figure 1: Extend G by vez:

hollow_out(G)
T 8= N(vege)
while S# 0 do
u:= first element of S
it colour(u) = white then
for each v € N{u) — {vest} do
if ver: € N(v) then
E = EU{v, v}

E:= E— {v,u}
§:=5u{v}
end feor
E = E— {u,vert}
Vi=V-—{u}
else
mark(u)
end if
S:=8—{u}
end while

Figure 2: Formulation of the procedure hollow. oul

Figure 1). That arc exactly those vertices in G corre-
sponding to faces in 7", which have a common bound-
ary with the external face of T. Hence, adding ves:
cannot destroy the planarity of G.

3.3 The hollow out step

What is the purpose of introducing the special vertex
Vezt? The reason is, that we are now able to hollow
out the white "regions” of T starting at the exter-
nal face of T. This is done by changing G, while T
remains unchanged. Furthermore, black vertices cor-
responding to faces in T which contribute edges to
the contour of T are marked. The procedure which
executes this step is given in Figure 2.

Before we prove the correctness of hollow_out(G), we

265

remove.v_ext(G)
for all u € N(tes:)
E:=FE —{u,ver:}
end for -
Vi=V — {vext}

Figure 3: Removal of veg:

need the following defipition, We say a vertex u g V
is enclosed by black, if there is no path from v.5 to u
in G such that all vertices on that path, except maybe
u, are coloured white.

Lemma 3 hollow.out(G) applied to the dual G =
(V, E) (eztended by ves:) of any triangular embedding
of T = (Vr, E) requires O(|V]) time.

PrRoOF: & initially contains all neighbors of v.z.
In the course of the algorithm the set S is modified
as follows. In each execution of the while-loop one
vertex u € S is picked. If the color of u is white, then
all neighbors of u, except ves:, are inserted into 5.
Furthermore, G is changed: each v € N(u)—{vest} is
connected to v.z:, u and all incident edges are deleted
from G. On the other hand, if the color of u is black,
then u is marked. Finally, u is deleted from S, It
follows by an inductive argument, that every white
vertex which is not enclosed by black is deleted from
(. Moreover, every black vertex which is not enclosed
by black is marked.

Lemma 2 guarantees that the while loop is executed
at most O(|V|) times. Each of the O(|V|} runs of the
while foop needs constant lime because each verlex
u € V — {¥.7¢} has at most three neighbors. []

3.4 Finding the black components

In this step we first remove the vertex v.y; and all
edges which are incident to that node from G (see
Figure 3). The remaining graph is made up of what
we call the black components of G. The computation
of the black components can be done using standard
algorithms for connected components which are based
on depth-first-search or breadth-first search (see e.g.
[AHU 83]). This step runs in O(maz(|V|,|E|}) time
and is denoted by compute_black _components(G)}.

3.5 Computation of the external con-
tour

We describe the pro--
cedure contourof.component(G;,T, G, Gini:), which
computes the external contour of a component G; of
G. The structure of the procedure will be immedi-
ately clear from the following lemma. Again, we need
several definitions. Each v € V corresponds to a face
in T. Let us denote by A(u) the set of vertices and
by 4(u) the set of edges of the corresponding trian-
gle in T. By Gini: we denote the graph produced by
construct dual(T).

Lemma 4 The edge list relurned
by contour_of.component(G;, T, G, Ginit) is the ez-
ternal conlour of G:.
contour of component(G;, T, G, Ginit} runs in time

o(vi)-

Proor: Since only the faces corresponding to
marked vertices contribute edges to the external
contour Eeontour{t) of Gi, it suffices to investigate
only such vertices. Let v be a marked vertex with
degreeg,,..(u) = 3 and v € Ng, ., (u). Let e. €
Er be the common edge of the faces correspond-
ing to the vertices u and v, respectively. Further-
more, assume that colour(v) = white. We claim
that e, € Econtour(i). Suppose, to the contrary,
that . € Econtour (i). As an immediate consequence,
the other edges of y(u)} are not in Econtour(i). But
this implies that v is not marked, which is a con-
tradiction. The other cases consider exterior edges
and can be proven similarly. Since the computa-
tion of a common edge of two faces takes ({1} time,
contour.of component(G;, T, G, Ginit) runs in timne

o(vl). |
3.6 The main procedure
Now we present the main procedure,

_external_contour (see Figure 4}, putting the devel-
oped things together. We summarize the analysis of
the previous section in the following theorem.

Theorem 5 The ezternal contour of a triangular .
graph can be computed in time O(|V]).

An algorithm with this complexity is given explicitely.

3.7 Extension to the d-dimensional
case

The above algorithm generalizes to the d-dimensional
(d > 2) case where we cansider d-simplexes.

266

ezternal_contour()
construct dual(T)
extend(G)
hollow_out(G)
remove_v_ezi(G)
compute_black_components(G)
for each black component G; of G
contour_of _component(G;, T, G, Ginit)

Figure 4: The main procedure

First, we illustrate the changes neccessary by describ-
ing the 3-dimensional case. Here, we have to consider
tetrahedrons instead of triangles. The dual graph is
now constructed by identifing each tetrahedron by a
vertex. Two vertices are joined by an edge, if their
corresponding tetrahedrons have a face in common.
Thus, each vertex in the dual graph has at most
four neighbours. The adaption of the other steps is
straightforward and it can easily be shown that the
algorithm runs in time linear in the number of tetra-
hedrons. .

This method can be extended to the d-dimensional
(d > 3) case as well: Two d-simplexes are adjacent if
they have a (d — 1)-simplex in common. A vertex in
the dual graph has at most d + 1 neighbours. Again,
it can be shown that the algorithm runs in time linear
in the number of d-simplexes.

References

[AHU 83] Aho, A., Hopcroft, J., Uiman, J., Data
Structures and Algorithms, Addison-
Wesley Publishing Company, 1983,

Alon, N., Yuster, R., Zwick, U., Color-
coding, Proc. 42°¢ Journal of the ACM
(1995), pp. 844-850.

[AYZ 95]

Aurephammer, F., Voronoi Diggrams - A
Survey of a Fundamental Geometric Data
Structure, ACM Computing Surveys 23(3)
(1991), pp. 345-405.

V[Au 91]

Bowyer, A., Computing Dirichlet tessella-
tiens, Computer J. 24 (1981), pp. 162-166.

[Bo 81]

[DL 85] Dorgerloh, C. F., Liissem, J., A simple
linear-lime algorithm to find the contour

in a coloured trigngular graph, Research

Report 85146-CS, Institut fir Informatik
der Universitat Bonn, 1995.

[DW 97b] Dorgerloh, C. F., Wirtgen, J., Once again:
Finding simple cycles, Research Report
85165-CS, Institut fiir Informatik der Uni-
versitét Bonn, 1997,

Dorgerloh, C., Wirtgen, J., Faster Find-
ing of Simple Cycles in Planar Graphs on
a randomized EREW-PRAM, Proc. 27¢
Workshop on Randomized Parallel Com-
puting (1997), held in conjunction with

[DW 97a]

IPPS'97.

fEv 79) Even, S., Graph Algorithms, Computer
Science Press, 1979.

[Ha 69] Harary, F., Graph Theory, Addison-

Wesley Publishing Company, 1969.

Leeuwen, J. v., Graph Algorithms. Hand-
book of Theoretical Compuler Science, Vol-
ume A, Algorithms and Comlezily, chap-
ter 10, pp. 525631, Elsevier and The MIT
Press, 1990.

Monien, B.,, How to find long paths effi-
ciently, Annals of Discrete Mathematics
25 (1985), pp. 239-254.

[Le 90]

[Mo 85)

267

An increasing-circle sweep-algorithm to construct

the Delaunay diagram in the plane

- Extended abstract -

B. Adam, P. Kauffmann, D. Schmitt and J.-C. Spehner
Laboratoire MAGE, _Université de Haute-Alsace, 68093 Mulhouse, France
[B.-AdamIP.Kauffmann_lD.Schmittlspehner]@univ—mulhouse.fr

Abstract

We present a new way to compute the
Delaunay diagram of a planar set § of » sites in
O(n logn) time by using a plane sweep
technique. We sweep the plane by a circle
whose center is a fixed point in the convex hull
of § and whose radius increases from 0 to +ee.
This method is interesting notably when the
diagram has to be constructed locally around a
given point. We do not know of any method to
reduce the sweep circle algorithm to a sweep
line algorithm.

Key-words : Planar site Delaunay diagram,
plane sweep algorithm.

1. Introduction

The Delaunay diagram, Delaunay
triangulation and Voronoi diagram are well
known structures in computational geometry
and are used in various domains such
as crystallography, physic, CAM-CAD,
archaeology, ... [3, 5, ...]. One of the major
method to construct these diagrams consists in
sweeping the plane by a line. When the line
sweeps over a mew site, the current Voronoi
diagram is updated by finding the region of
this diagram in which the site is located [7].
Dually, it comes down to finding the site of the

current Delaunay diagram to which the swept
site must be connected [8]. '

In this paper, we introduce a new algorithm
that computes the Delaunay diagram by
sweeping the plane with an increasing circle.

This algorithm updates the current Delaunay
diagram by processing two kinds of events : the
«site event» and the «ultimate point event»,

© We first define the location structures that
will allow us to connect a newly swept site to the
already validated Delaunay diagram. Then we
show how the algorithm detects and processes
the events.

Finally, we show that our algorithm
constructs the Delaunay diagram in O(n logn)
worst case running time and we compare it with
the sweep line algorithm.

2. The definition of Del(S)

. Let E be the Euclidean plane and d(x,y) the
Euclidean distance between two points x and y
of E. Let § be a planar set of n points of E
called sites.

Every circle o of E that contains no site in
its interior is said to be S-critical and the set of
sites which are on ¢ is called a section.

The Delaunay diagram of § is a partition of

E whose vertices are the sites of §. For every .

section {st}, the open straight line segment

268

e(s,t) lixik.ing s to tis an edge of Del(S). For
every section @ of dimension 2, the interior
r(Q) of the convex hull of @ is a region of
Del(S). I [@]>3, r(Q) is not a triangle and
Del(S) is not a triangulation.

The complementary of the convex hull of §
is the only unbounded region of Del(S).

3. The validated Delaunay diagram
Del(T,p) and its front F

Let a point O in the convex hull of S be the
origin of the polar coordinates and the center
of the sweep circle C. § is sorted using the sites’
radiuses. Two sites having the same radius are
not ordered. If T is the set of swept sites, then
Vie I,V s € §\T, p=d(0,1) <d(0,5)=p, and
the radius of the sweep circle ¢ s
p=max{d(0,1); te T}. Every T-critical circle
contained in C is also S-critical.

Figure 1. The validated Delaunay edges in fuil
lines and the non-validated edges in dashed
lines. The sites are numbered according to their
distance to O. Front Fis (1,5,1,7,4,2,9,2, 8,
2,3,6,1).

An edge e(st) [resp. a region 1(Q)] of
Del(7) is said to be validated if there exists a
T-critical circle contained in C that goes

through s and ¢ [resp. all sites of Q). The sub-
diagram Del(T,p) of Del(7) built with the sites
of T and the validated edges and regions of
DeT) is called the validated Delaunay
diagram of (T,p).

For every edge e(s,r) of Del(T,p), st denotes
‘the oriented straight line segment of origin s
and end point 1. Every edge and every vertex of
the unbounded region of Del(T,p) is said to be
JSrontal. If pg and gr are two consecutive edges
of this unbounded region, the triple (p,q,r) is
said to be frontal. The sequence ¥ of all
consecutive frontal edges is called the
Delaunay diagram front.

4. The location of a point of Cin ¥

When C increases and sweeps over a site s,
we search a site ¢ in ¥ such that s and f can be
linked together to form a validated Delaunay
edge. Therefore we define a partition of €
which is dual to ¥ and we show how to locate a
site s in this partition.

4.1 Definitions of the point and the
arc attached to a frontal edge

If pq is a frontal edge, there exists a unique
circle C(p,q) going through p and g that is
tangent to C at a point on the left of pg and
such that C(p,q) is contained in €. This contact
point is called the point attached to the edge pg
and is denoted by pat(p.g).

Lemma 1. The circle C(p,q) is S-critical. Hence,
if pat(p,q) is a site, pgpat(p,q) is a validated
Delaunay region.

Let (p.g,r) be a frontal triple, the set of
points of C that are on the left of
pat(p,q)pat(q,r) is called the arc attached to the
triple (p,g,r) and is denoted by arcat(p,g,r).
arcat(p,q,r) is an open circular arc.

269

,t) arcat{gtr)

Figure 2. The frontal partition of ¢ dual to F.

Lemma 2. For every point s of arcat(p,q,r), the
circle D(g,s) tangent to C at s that goes through
q is S-critical. Hence, if s € §, the open straight
line segment gs is a validated Delaunay edge.

According to these two lemmas each newly
swept site is linked to the validated Delaunay
proves that

diagram. This
connected.

Del(T,p) is

Figure 3. The elliptic front and the definitively
constructed restriction of Vor(S) (full lines).

Remark. -For every arcat(p,q,r) the set of the
centers of the circles D(g,s) is an elliptic arc.
The restriction of Vor(S) that is inside the
union % of all the elliptic arcs is definitively

constructed. £ corresponds to the parabolic
front of the sweep line algorithms [4, 8, 9].

4.2 The frontal partition of C and the

location test

The partitiorr of C in vertices, that are the
attached points, and in arcs, that are the
attached arcs, is called the frontal partition of
C. The mapping y from F to the frontal
partition of C such that, for every frontal edge
P4, ¥(pg)=pat(p,q) and, for every frontal triple

(pgr), Y(p.gr)=arcat(p,g,r) is a one-to-one

duality by lemuma 1 and 2.

To locate a point s in the frontal partition of
C we use a binary balanced search tree BT(%).
To each frontal edge is associated a node of
BT(7). A frontal edge is inserted in BT(¥)
when created and is removed when it is no
longer frontal. The frontal edges are sorted
accordingly to their order in #. Thus we can
locate a point s of C in logarithmic time in the
number of frontal edges. The location test is
used in section 6 to create Delaunay edges.

S. Collision of attached points and
determination of Delaunay regions

If (p.q.r) is a frontal triple such that r is on
the left of pg, the circumcircle of the triangle
pgr is denoted by circ(p,g,r). The point of
circ(p.g,r) which is farthest from O is called the
ultimate point associated to the frontal triple
(p.q,r) and is denoted by ult(p,g,r). ult(p,q,r) is
the last point of circ(p,q,r) to be swept and stays
alive until it is killed when (p,g,r) is no longer
frontal. When the radius of € increases, pat(p.q)
and pat(q,r) tend towards each other. If
circ(p,q,r) is S-critical, they collide in ult(p,q,r);
in this case ult(p,q,7) is said to be validated and
circ(p.g,r) circumscribes a validated Delaunay
region.

270

by

Figure 4. The ultimate point associated to

@.q.r).

If k 2 4 consecutive frontal sites s, 5., ..,
Sy @re cocircular, k-2 triples of % have
overlapping ultimate points. This simple test
detects all cocircular sites and is used to build
the non triangular regions.

To be able to find the ultimate point closest
to O, the ultirate points are inserted in a binary
balanced search tree BT(). An ultimate point
is inserted in BT(%) when created and is
deleted from BT(U) when killed or validated.

6. Processing the algorithm events

An event is a moment in the algorithm when
C sweeps over a site or an ultimate point. The
events add Delaunay edges and regions to
Del(T,p). Thus we need to update the trees
BT(¥) and BT(U).

6.1 The event "site which is not an
ultimate point"

6.1.1 Updating BT(%).

If s € arcat(p,g,r), the Delaunay edge e(s.q)
is created in BT(¥). Otherwise s ovérlaps the
point attached to a frontal edge pg. In this case
the edge pg is unique and the Delaunay edges
e(s,p) and e(s,q) are created in BT(¥). The
former case implies the creation of a Delaunay
region.

6.1.2 Updating BT(Z).

¥ s € arcat(p,g,r), the ultimate point
associated to the triple (p,q,r) is killed, if it
exists. Otherwise s overlaps pat(p,q). If p’ and
q" are respectively the sites preceding p and
following g in #; the ultimate points associated
to the triples (p’,p.,q) and (p,4.q') are killed, if
they exist.

Moreover, if se arcat(p,g,r) [resp. s =
pat(p,q)], the new frontal triples (p,q.5) and
(5,g,r) [resp. (p’,p,8) and (s5,9,4")] may generate
new ultimate points.

6.2 The event "ultimate point which
is not a site"

When sweeping an ultimate point u, there
exists a sub-path (p,,p,,...,p,) of F with k = 3 in
which all the frontal triples have uitimate points
overlapping .

6.2.1 Updating BT(%).

We create the Delaunay edge e(p,p) in
BT(¥#) which closes the Delaunay region of
vertices py, p,, ..., p.. We delete from BT(¥F) the
edges pp.., Vie [1,k-1].

6.2.2 Updating BT(€I).

The ultimate points associated to the triples
(PiuPiabia)» V i€ [1,k-2), are killed. The new

frontal triples (popip) and (Pi,puPi) may
generate new ultimate points.

6.3 The event "ultimate site"

This event is a mix of the two previous ones
and occurs when a site s overlaps ultimate
pOiﬂtS uu(PisPMst): Vie [l’k'2]°

.6.3.1 Updating BT(#%).

271

We create the Delaunay edges e(p,s) and
e(s,p.) in BT(F) that close the Delaunay region

of vertices s, p;, p,, ..., p.. Thus we delete from
BT(¥) the edges pp,.;, Vi € [1,k-1], that are no
longer frontal.

6.3.2 Updating BT(U).

We kill the ultimate points associated to
@nPurPuz)y V i€ [Lk-2]. The new frontal
triples (ppp1,s) and (s,p,.p;.,) may generate new
ultimate points,

6.4 The algorithm main lines

The sites are stored in a sorted list Lst($
following the increasing radius order. We use a
map {6] to represent Del(7,p). The algorithm
ends when C has swept all the sites (Lst(5) = @)
and when all the Delaunay regions are
constructed (BT(U) = @).

Delaunay_diagram (Lst(5):Sorted sites) — #:Map {
BT{(U) « @, BT(F) « O, M @
while Lst($) U BT(U) # @ {
- extract the minimum e of Lst(.$ u BT(U);
if e Is a site which is not an ultimate point then {
focate e in BT(F);
if e = pat(p,q) then
create the edges ep and eq in A
otherwise create the edge eq in 2 }
otherwise if e is an ultimate site then
create the edges epy and epx in M
otherwise
create the edge pipx in M:
update BT(#);
update BT(1); }
return 2f;)

7. The algorithm complexity

Lemma 3. The number of frontal edges of F
and the number of ultimate points alive are less
than or equal to 2IT1 - 2,

272

Progf. From 6, when a site is swept, except for
the first one, at most two frontal edges are
created. When an uitimate point which is not a
site is swept, at least one frontal edge is
removed. Thus the number of frontal edges is
less than or equal to 2171 - 2. The number of
ultimate points alive is also less than or equal to
2|71 - 2 since every ultimate point is associated
to a frontal triple. O '

Theorem. If § is a planar set of n sites, the
increasing circle algorithm computes Del(S) in
O(n logn) time. '

Proof. Since Del(S) is a partition of the plane
with n vertices, Del(S) admits at most 2n-4
regions. Using 6.1, 6.2 and 6.3, for every
ultimate point swept, a face is validated and, for
every site swept, a vertex is validated. Thus the
algorithm handles at most 3n-4 events. Using
lemma 3, every search, insertion or deletion in
BT() and in BT(¥) is done in O(logn) time.

Therefore the construction of Del(S) is done in

O(n logn) time. Moreover, using the duality
between Vor(S) and Del(S), Vor(S) can be
deduced in O(n) time. O

8. Discussion

A question is : is it possible to reduce our
algorithm to a sweep line algorithm ? This can
not be done with an inversion of pole / since it
transforms parallel lines into circles tangent at
L

Let ¢ be the mapping

¢:(r0-=>"y)= (—r, 2rsing)
1-cos@

where (r,6) are the polar coordinates of a point

s of E and (x’,y") the Cartesian coordinates of.

@(s). ¢ transforms the circles centered in O in a
set of parallel straight lines but does not
transform Del(S) in Del(¢(5)).

T

We do not know of a better transformation
that verifies this property.

Practical experiments - show that the
implementation of this algorithm is slower

(~20%) than the sweep line algorithm. In our -

algorithm, the size of the front is bigger. This
can be explained by the fact that the number of
vertices of the convex hull of a set of n sites
uniformly distributed in a circle is in O(¥7)
but this number is in " O(logn) for sites
uniformly distributed in a rectangle.

. However, the size of the binary tree of the
ultimate points can be reduced by about a half.
Only the locally minimal ultimate points, ie.,
those whose distance to O is less than that of
their two neighbors in ¥, are inserted in the
tree.)

The relative execution times of the different
steps of the algorithm are :

- nltimate point and ultimate site events : 38 %
- site events : 47 %
- sorting and memory management : 11 %

- updating of the map : 4 %

9. Conclusion

We have given a new way to compute the
Delaunay diagram of a set S of » sites using an
increasing circle in O(n logn) time. This
algorithm is slower than the sweep line
algorithm but it is practical if we have to build
the Delaunay diagram only locally around a
given point. |

The sweep circle method has also been used
to construct convex hulls and farthest point
Delaunay diagrams in the plane, In these cases
a shrinking circle is used and the algorithms
generally end without sweeping all the sites [1,
2].

References

[1] B. Adam, P. Kauffmann, D. Schmitt, J.-C.
Spehner; Sweep algorithms for planar
convex hulls, Technical Report, Laboratoi-
re MAGE, Université de Mulhouse (1996).

[2] B. Adam, P. Kauffmann, D. Schmitt, J.-C.
Spehner, A shrinking-circle algorithm for
the planar farthest site Delaunay diagram,
Technical Report, Laboratoire MAGE,
Université de Mulhouse (1996).

[3]} F. Aurenhammer, Voronoi diagrams- A
survey of a fundamental geometric data
structure, A.C.M. Computational Surveys,
23, 3, (1992), 345-405.

[4] D. Beauquier, J. Berstel, Ph. Chrétienne,
Eléments d'algorithmique, Masson, (1992),
411-425.

[5] J.-D. Boissonnat, M. Yvinec, Géométrie
Algorithmigue, Ediscience International
(1995).

[6] J. Edmonds, A combinatorial representa-
tion for polyhedral surfaces, Notices Amer.
Math. Soc. 7, (1960), 646.

[7] S.Fortune, A sweepline algorithm for
Voronoi diagrams, Algorithmica 2, (1987),
153-174. '

(8] P. Kauffmann, J.-C. Spehner, Sur l'algo-
rithme de Fortune, Revue internationnale
de CFAO et d'informatique graphique,
Volume 10 - n°4/1995, 321-336

[9] R.Seidel, Constrained Delaunay trian-
gulations and Voronoi diagrams with
obstacles, in Report 260 Graz, Austria,
(1988), 178-191.

273

Agarwal, Pankaj, 233
Akivama, Jin, 112
Anton, Frangois, 257
Atallah, Mikhail J., 59
Aydin, Cavit, 245
Babikov, Mark, 6

Bagga, J., 76

Bajaj, Chandrajit L., 193
Bernardini, Fausto, 193
Bespamyatnikh, Sergei, 33
Bhattacharya, Binay K., 141
Burdick, J. W., 100, 106
Chen, Danny Z., 59
Cobos, F. J., 159, 164
Cyzowicz, Jurek, 25
Dana, J. C., 159, 164
Das, Gautam, 70

Denny, Markus O., 39
Dey, 8., 76

Dorgerloh, Carsten, 263
Drettakis, George, 153
Durand, Fredo, 153
ElGindy, Hossam, 141
Emert, J., 76

Everett, H., 65

Fiume, Eugene, 181
Fuhrmann, Artur, 169
Gewali, L. 76,

Ghosh, S. K., 100, 106
Gold, Christopher, 257
Grima, C. 1., 159, 164
Haken, Wolfgang, 44
Hoang, C. T., 65

Horton, J. D., 211
Hosono, Kiyoshi, 82
Ierardi, Doug, 245

Imai, Toshiyuki, 117
Jaillet, Fabrice, 199
Kaneko, Atsushi, 56
Kano, M., 50
Kauffmann, P., 268
Kilakos, K., 65

Klenk, Kevin S., 59
Kranakis, Evangelos, 25, 93
Lamoureux, Michael G., 211

Index of Authors

Lé, Ngoc-Minh, 113
Leraire, Christophe, 129
Liissem, Jens, 263

Makris, Christos, 217
Mirquez, A., 159, 164
Matsuda, Katsumi, 82
McGrew, J., 76

Michelucci, Dominque, 123
Mitchell, Joseph S. B., 229
Moreau, Jean-Michel , 129
Nickerson, Bradford G., 211
Noy, M., 656

O’Rourke, Joseph, 1

Pei, Naixun, 11

Pilouk, Morrakot, 263
Pontier, Serge, 205

Puech, Claude, 153
Rebufat, Francois, 87
Rivera-Campo, Eduardo, 46
Riviére, Stéphane, 147

Schuierer, Sven, 135

Segal, Michael, 33
Shariat, Behzad, 199, 205
Snoeyink, Jack, 239
Sohler, Christian, A. 39
Souvaine, Diane L., 6
Spatharis, Anthony, 93
Speckmann, Bettina, 239
Spehner, J.-C., 268

Suri, Subhash, 233
Tarasov, Sergey P., 175
Toroslu, Hakki, 187
Tsakalidis, Athanasios, 217
Ugoluk, Goktiirk, 187
Urabe, Masatsugu, 21
Urrutia, Jorge, 17, 25
Urrutia-Galicia, Virginia, 46
Van Kreveld, Mark, 233
Vandorpe, Denis, 199, 205
Wang, Cac An, 223
Weller, Frank, 251
Wenger, Rephael, 6
Whitesides, Sue, 11
Wirtgen, Jurgen, 263
Zhu, Binhai, 223

274

	David R Proceedings 1.pdf
	David R Proceedings 2
	David R Proceedings 3
	David R Proceedings 4
	David R Proceedings 5
	david R proceedings 6

