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1 Introduction

Manufactured objects are always approximations to
some ideal object: parts that are supposed to be
flat will not be perfectly flat, round parts will not
be perfectly round, and so on. In many situations,
however, it is important that the manufactured ob-
ject is very close to the ideal object. In such cases
the specification of an object includes a description
of how far the manufactured object is allowed to
deviate from the ideal one. The field of dimensional
tolerancing [2] provides the language for this. Given
a specification, one must test whether the manufac-
tured object meets it, which is the area of study
called computational metrology. The objects are
often tested as follows. Suppose for simplicity that
we want to manufacture a flat surface. First, a so-
called Coordinate Measuring Systern (CMS) ‘mea-
sures’ the manufactured surface. The output of the
CMS is a set of points in 3-dimensional space that
are on the manufactured surface. The second step is
to compute two parallel planes at minimum distance
to each other that have all the measured points in
between them. In other words, one wants to com-
pute the width of the point set. The surface meets
the requirement if the width is below the specified
threshold. Computing the width of a point set can
be done in O(nlogn) time in the plane [3] and in
O(n3/?1¢) expected time in 3-dimensional space [1].

We study another problem from computational
metrology, which arises when one wants to manu-
facture an object with two flat surfaces that make a
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specified angle with each other. Testing whether the
manufactured object meets the specifications leads
to the angularity problem: given a set of points,
compute a thinnest wedge whose legs make a given
angle with each other and that contains all the
points. We show that in the plane this problem
can be solved in O(n?logn) time. In 3-dimensional
space we study a simpler variant, where all the mea-
sured points come from one of the two surfaces; the
other surface, the so-called datum plane, is assumed
to be in a known orientation. The problem is now
to find the thinnest ‘sandwich’ (that is, two parallel
planes) that makes a given angle with the datum
plane and contains all the points. In other words,
we want to compute the width under the restriction
that the planes make a given angle with the datum
plane. We solve this problem in O(nlogn) time.
Both in the planar case and in the 3-dimensional
case we also study variants where the points have
uncertainty regions associated with them.

2 Point sets in two dimensions

We start by studying the angularity problem in the
plane. In the simplest version we are given a da-
tum line, a set of n points (which are on one side
of the line), and an angle 6. The problem then is
to compute the thinnest strip (or, sandwich) that
contains all the points and makes an angle § with
the datum line. In the plane this simple version is
not so interesting; it can easily be solved in linear
time by computing the extrema of the point set in
the direction perpendicular to . Therefore we con-
centrate on the case where the datum plane is not
given. In this setting we are only given a set S of n
points and an angle 6, and we want to compute the
thinnest f-wedge that contains all the points, where
a f-wedge is defined as follows:

Definition 1 A 0-wedge of width & is the closed
area bounded by four directed half lines by, b2, 1




and ly such that

e by is parallel to and to the right of by and l; s
parallel to and to left of 1>

e by and ly, as well as by and Iy have a common
starting point

e the angle measured in counter clockwise direc-
tion between by and l; is equal to 0

e the distance between b, and by and between Iy
and Iy is §

Figure 1 shows a wedge containing all points shown.
The minimum & such that there is a 6-wedge of

Figure 1: A 6-wedge of width 4.

width ¢ containing S is called the tolerance of S
(with respect to §-wedges).

Toussaint and Ramaswami [6] have solved a simpler
variant of the problem, where it is known in which
of the two ‘legs’ of the wedge each input point lies:
one is given an angle § and two sets of points, each
of which has to be enclosed in a strip such that the
angle between the two strips is 6.

Let W(¢) be a f-wedge of minimal width, such that
the bisector of b; and I/; has direction ¢ and the
wedge contains S. If there is no point of S on b; we
can move W(¢) so that at least one point of S is
on by, while S remains contained in W(¢). So with-
out loss of generality we may assume that there is at
least one point of .S on b; and, similarly, at least one
on l;. It is now easy to see that W(¢) is unique for
each value of ¢. Let A(¢) be the apex of W(¢). Let
OC, the outer curve, be the collection of all points
A(g) for 0 < ¢ < 2m. Let B(¢) be the common
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starting point of b2 and I, of wedge W(¢), and de-
fine the inner curve IC as the collection of all points
B(¢). Our algorithm to compute the thinnest 6-
wedge containing S starts by computing the curves
OC and IC. The next two lemmas state how these
curves look, and how much time we need to com-
pute them. The proof of these lemmas is omitted
in this extended abstract.

Lemma 1 The collection OC 1is a closed curve of
piece-wise circular arcs, has a linear combinatorial
complezity, and can be computed in O(nlogn) time.

Lemma 2 The collection IC s a closed curve
of piece-wise circular arcs, has a combinatorial
complezity of O(n?), and can be compuled in
O(n?logn) time.

After computing OC and IC it is easy to compute
the thinnest wedge: We split the range [0 : 27] of
possible orientations of the wedge into subranges
where both the outer curve and the inner curve are
attained by a single (piece of a) circular arc. The
previous two lemmas imply that there are O(n?)
subranges. (In fact, the subranges correspond ex-
actly to the arcs of IC.) For each subrange we can
then compute the thinnest wedge in constant time.
This leads to the following result.

Theorem 1 Given an angle 6 and a set of n points
S, the thinnest 6-wedge containing S can be found
in O(n?logn) time.

The running time of our algorithm is dominated by
the time to compute /C. One might hope to im-
prove this by showing a better bound on the com-
plexity of IC. The next theorem shows that this is
not possible. The example proving the theorem is
omitted in this extended abstract.

Theorem 2 The worst-case complezity of IC is

O(n?).

3 Uncertainty regions in two
dimensions

In computational metrology the sample points nor-
mally are not exact but come with some uncer-
tainty: rather than a set of points, we get a set U
of uncertainty regions {us, ..., u,}. For each region
u; there is a point p; € u; that lies on the surface of
the manufactured object, but due to the inaccuracy




in the measuring process the point p; is not known.
In this case one would like to compute upper and
lower bounds on the tolerance.

To illustrate the definitions, we first look at the
simple version of the problem, where we are given
a datum line, a set U of uncertainty regions, and
an angle 6. Define a f-sandwich to be a sandwich
(that is, a strip) that makes an angle 6 with the
datum line. For a set S of points, define §(6,.5)
to be the tolerance of S, that is, 6(8,S5) is the
width of the thinnest -sandwich (strip) that con-
tains S. An upper bound on the tolerance of any
set S = {p1,...,pn} of points within the uncer-
tainty regions of U = {uj,...,u,} is given by the
quantity

max{d(6,S) : pi € u; for 1 <i < n}. (1)

Unfortunately this quantity is hard to compute.
Therefore we compute a more conservative upper

bound, dmax(8, U), defined as follows:

max(8,U) = minimum width of any
f-sandwich containing all
uncertainty regions in U.

The value dmax(8,U) is called the maximum tol-
erance of U. Notice that dmax(6,U) is also the
width of the thinnest #-sandwich that is guaranteed
to contain all points of any set S = {pi,...,pn}
with p; € u;. At first glance it might seern that
dmax (6, U) is the same as the upper bound given by
equation (1), but this is not true.

Theorem 3 For some sets U, the value dmax(6,U)
is greater than the upper bound on the tolerance as
given by equation (1).

Proof: We get a trivial example by taking a set
U consisting of only one region, say the unit cir-
cle. In this case we have dmax(6,U) = 2 and
maxd(6,S) = 0. But also for a larger number of
uncertainty regions dmax (6, U) can be greater than

maxé(f, S).

Consider the example with two regions shown in
Figure 2. In the example § = 7/3 and U consists
of two unit circles. In this example dmax(8, U) =
2 4+ /3. However, §(6,S) < 2v/3 for all choices of
S. (If we place the points of S where the thinnest
sandwich for U touches the two circles, then we can
obtain a thinner f-sandwich by ‘flipping’ the sand-
wich, so that the angle with the datum line (here
the z-axis) is no longer given by the angle with the
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positive z-axis but with the negative z-axis. In the
planar case one could argue that the angle of the
flipped sandwich is not § but 7—6. In 3-dimensional
space, however, a similar example applies, and there
it is natural to allow ‘rotating’ the sandwich while
keeping the angle with the datum plane fixed.) |

Figure 2: Two regions of uncertainty

When we define a lower bound on the tolerance,
then we do not get these problems; we define

Smin(6,U) = min{é(6, S) : p; € u; for 1 < i < n}.

The value dpmin(6,U) is called the minimum toler-
ance of U. The minimum tolerance is the same as
the width of the thinnest sandwich which contains
at least one point from each uncertainty region u;.
In order to compute sandwiches containing uncer-
tainty regions, we make the assumption that given
a direction ¢ and an uncertainty region u;, we can
compute the two tangents of u; with direction ¢ in
constant time. Computing the maximum and mini-
mum tolerance of a given set of uncertainty regions,
when we are given a datum line and an angle ¢ is
trivial to do in linear time.

Now consider the case where no datum line is given.
The definitions of maximum and minimum toler-
ance readily carry over.

In order to compute the thinnest wedge containing
a set of uncertainty regions, we can proceed as in
the previous section. The combinatorial complexity
of the curves OC and IC depends on the shape of
the uncertainty regions. For example if all regions
are equal size circles, the curve IC does not con-
sist of circular arcs, but it has at most a quadratic
complexity.




Theorem 4 Given a set of n uncertainty regions U
consisting of equal size circles and an angle 0, the
value dmax (8, U) can be found in O(n®logn) time.

It is an open problem to determine which other
shapes of uncertainty regions permit an O(n?logn)
algorithm.

4 Point sets in three dimen-
sions

In the 3-dimensional setting we only study the sim-
ple variant of the angularity problem, where a da-
tum plane is given. We assume without loss of gen-
erality that the datum plane is the zy-plane. The
set of points, which we assume lie above the z-plane,
is denoted by S. We want to compute the thinnest
f-sandwich containing all points in S, where § is
a given angle. (Similar to the planar case, a 6-
sandwich is defined to be the closed region between
two parallel planes that make an angle 6 with the
datum plane.) The width of the sandwich is the dis-
tance between the two planes. We denote the plane
bounding the sandwich from above by A; and the
plane bounding it from below by hA,.

To find the pair hy and hs bounding the thinnest
sandwich, we transform the problem into a 2-
dimensional problem as follows. (We could also
work directly in 3-space, but we feel that the trans-
formation makes the algorithm easier to under-
stand, especially in the case of uncertainty regions,
which is studied later.) For a point p; € S let C;
be the cone pointing upwards with apex p; (thus,
p; is the highest point of the cone) and apex angle
m— 26, that is, the sides make an angle of § with the
zy-plane. Now p; lies below or on h, if and only if
C; lies below or on h;. Similarly, p; lies above hs if
and only if C; does not lie completely below or on
hs. Each cone C; intersects the zy-plane in a circle
Ci.

Let hy and hs be the two planes that form a 6-
sandwich containing S. The plane h; intersects the
zy-plane in a line /3, and h; intersects it in a line [
parallel to ;. We direct the lines /; and I5 so that I>
is to the left of {;. The cone C; lies below A if and
only if the circle ¢; lies to the left of /;. Similarly
C; lies below hs if and only if circle ¢; is to the
left of I3. This leads to the following 2-dimensional
reformulation of the the problem: Given a set of
circles {ci, ..., cn}, determine two parallel directed
lines /; and I such that
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i) All circles lie to the left of or on {;.
ii) No circle completely lies to the left of 5.

iii) Among all pairs of lines that satisfy i) and ii)
the distance between !; and I, is minimal.

It is easy to verify that this is indeed the same prob-
lem. Figure 3 shows an example of a solution for
such a 2-dimensional problem. We can now solve

Figure 3: Solution to the planar problem.

the problem as follows. Consider a valid pair of
lines of minimum width, where we fix the slope of
the lines to be, say, zero. For each region, take
the lowest point on its boundary. Now the lines [;
and /> go through the lowest and the highest point,
respectively, of all such lowest points. When we
start increasing the slope of the lines from zero to
2w, then the extreme points defining /; and I, move
along the boundaries of the regions on which they
lie. At some point they will switch from one re-
gion to another one. Which two regions define the
two extreme points for a given slope ¢ can be de-
termined by computing suitably defined lower and
upper envelopes. The thinnest sandwich is then de-
termined by the minimum distance between these
two envelopes. Details are given in the full paper.
This leads to the following result.

Theorem 5 Given a setl of poinis S in 3-space and
an angle 6, the minimum width 0-sandwich that
contains S can be found in O(nlogn) time.

5 TUncertainty regions in three
dimensions

We define the maximum and minimum tolerance
of a set U of uncertainty regions with respect to




f-sandwiches similar to the planar case—see Sec-
tion 3. We first show how the thinnest #-sandwich
can be computed that contains a set of uncertainty
regions U. As before we can transform the 3-
dimensional problem into a 2-dimensional problem.
Let P be a plane that has an angle 8 with the
zy—plane (which is again assumed to be the da-
tum plane) and is tangent to region u;, such that
u; is below P. We define the generalised cone C;
as the intersection of the half spaces below all such
planes P. The intersection of C; and the zy—plane
is the region c¢;. For example, if u; is a sphere with
positive z-coordinates, then Cj; is an upwards point-
ing cone and ¢; is a circle, as shown in Figure 4.
Similarly, let @ be a plane which has an angle 6

Figure 4: Turning 3-dimensional regions into 2-
dimensional convex objects

with the zy—plane and is tangent to u;, such that
u; is above Q. The generalised cone D; is the in-
tersection of the half spaces below all such planes
Q. The intersection of D; and the zy—plane is the
region d;. So for all 7 we have d; C ¢;. Without loss
of generality we can assume that all regions u; have
sufficiently large z-coordinates so that none of the
regions d; is empty.

Notice that an uncertainty region ¢; or d; in the zy-
plane is convex and has exactly one tangent through
each point on its boundary. We assume that the
uncertainty regions ¢; and d; satisfy the following
properties.

e Given a direction ¢ in the zy-plane and a region
we can compute the two tangents of the region
with direction ¢ in constant time.

¢ Given two non-intersecting regions, their com-
mon inner and outer tangents can be computed
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in constant time.

e The boundaries of two intersecting regions in-
tersect each other at most k times where k is a
constant and their common outer tangents can
be computed in O(1) time.

e For any connected part ¢ of the boundary of
a region ¢; and any connected part d of the
boundary of a region d; we can find in constant
time two parallel tangents through a point of ¢
and d respectively which have minimal distance
to each other.

Any two parallel planes that have an angle § with
the zy-plane and that are guaranteed to contain all
points from U correspond to two directed parallel
lines m; and mo, such that the following holds:

1) All regions ¢; lie to the left of or on m;,

i1) No region d; is completely to the left of m,.

We can now find the thinnest #-sandwich that con-
tains all regions in U, that is, the maximum toler-
ance of U, with an algorithm that is similar to the
algorithm we used for points.

A similar approach can be used to compute the min-
imum tolerance of I/. We get the following result.

Theorem 6 Given a set of n uncertainty regions
U and an angle 6, the mazimum and the minimum
tolerance of U with respect lo 0-sandwiches can be
found in O(Ag(n)logn) time.

6 Conclusions

We solved the sandwich problems in two and three
dimensions, for point sets as well as uncertainty re-
gions. The problem of finding a thinnest wedge
is only solved for the 2-dimensional case. Solving
the wedge problems for uncertainty regions and for
point sets in 3-space dimensions remains open.
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