Extending Rectangular Range Reporting with Query Sensitive Analysis

Robin Y. Flatland and Charles V. Stewart
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY, 12180

Abstract

We present algorithms for reporting the new points in-
corporated by on-line sequences of nested rectangular
range queries where the rectangular regions in a sequence
may be aligned with any arbitrary axis. For each larger
rectangular query, our algorithm performs partially or-
dered searches of a box-decomposition subdivision using
information acquired from processing previous queries in
the sequence. We provide a query sensitive analysis show-
ing that our algorithm is most efficient for “targeted”
queries, queries that generally target space containing a
high density of data relative to the space immediately sur-
rounding the query, such as are found in region growing
surface reconstruction technigues in computer vision.

1 Introduction

We present an algorithm for reporting the new points
incorporated by on-line sequences of nested rectangular
range queries. We assume the rectangular regions in a se-
quence have the same orientation but this orientation may
be different for each sequence and is not known in advance
(see Figure 1). The problem is formally stated as follows:

Extending Rectangular Range Reporting Problem:
Given a set of N points in R? and an on-line sequence
of d-dimensional rectangular query regions Q@1,...,QE
aligned with some arbitrary orthogonal coordinate system
and each Q; completely containing Q;_1, for the i(th) ex-
tended query, report the points in Q; that are not in Q;_1.

Here we consider the problem in two and three dimen-
sions. Because we expect many sequences of extending
queries on a static point set, our solution includes a prepro-
cessing stage to organize the points into a search structure
which facilitates the processing of extending queries.
Efficient solutions to a restricted version of this prob-
lem where all sequences of nested rectangular queries are
aligned with a fixed coordinate system are found in [7].
Efficient solutions to the less restrictive problem consid-
ered here, however, appear unlikely. Rectangular range
reporting (i.e. reporting the points inside a (single) rect-
angular query region with arbitrary orientation) reduces
immediately to the extending rectangular range reporting
problem by setting £ = 1. Lower bound results [3] in-
dicate that any solution to the rectangular range report-

319

ing problem either requires a large amount of space or has
large query time. In particular, as shown in [3], any al-
gorithm with O(log® N + k) query time, for c arbitrarily
large, would require Q(N%~¢) space, for all fixed € > 0.

In many applications, however, “hard” point sets and
queries causing these pessimistic time or space bounds
may seldom if ever arise. In such situations, the worst case
analysis is not a representative measure of an algorithm’s
true query time. Expected case analysis is one alternative,
but for many applications it is often difficult to derive re-
alistic statistical models of the input. A second alternative
is query sensitive analysis where the running time is ex-
pressed in terms of parameters capturing the local geomet-
ric complexity of the query. This has been successfully ap-
plied to other “hard” problems such as ray shooting [8] and
high dimensional nearest neighbor queries [9].

Figure 1:

For the query sensitive analysis, we characterize a
query @ by three parameters k, a, and [: k is the number
of data points inside @, « is the distance to the point out-
side Q that is k(th) farthest from its boundary, and [is Q’s
diameter. We characterize a sequence of extending rect-
angular queries by the parameters k, ¢, and [of the final
query. For d=2, 3, using linear space, the overall time for
our algorithm to process a sequence of E extending range
queriesis O(log N+C'log C+E), where C = O(kH /a)
whend=2and C=0(k + (I/a)?) when d=3. As a spe-
cial case, our algorithm processes single queries (£ = 1)
in O(log N + C) time.

From the definition of C in the query time, our algo-
rithm is most effective for what we call “targeted” queries.
These are queries that target space containing a suffi-
ciently large number of data points relative to the space
immediately surrounding the query, making C = O(k).
In Section 3, we show further that when the point density
is the same both inside and outside @, C = O(k) in the

expected case as long as @ is not extremely narrow.

One application encountering targeted queries is sur-
face reconstruction techniques in computer vision that in-
crementally “grow” surfaces in three dimensional point
data acquired from a range sensor. A surface is grown by
collecting the new points included in an incrementally en-
larging region which tightly “hugs” a set of points from
a (approximately) planar surface. (Figure 1 is a two di-
mensional example of the type of queries made by region
growing techniques.) Typically the free space immedi-
ately surrounding the region contains very few points. We
suspect that targeted report queries arise in other applica-
tions as well since it is not uncommon that apriori informa-
tion is available to direct queries to interesting data clus-
ters.

2 Box-decomposition Subdivision

Our algorithm processes extending queries using par-
tially ordered searches of a box-decomposition of space
into rectilinear regions. The basic concept of box-

decompositions was introduced by [4] and has since ap- -

peared in many different forms (see [2] for a review). We
begin by describing the construction of a relatively simple
box-decomposition tree adapted from [2] whose leaves de-
fine a box-decomposition (BD) subdivision.

WLOG, we assume all data points are contained within
an axis-aligned, d dimensional, unit hypercube. The struc-
ture of BD subdivisionsis defined in terms of boxes. A box
is any hypercube obtained by recursively partitioning the
unit hypercube into 2¢ smaller hypercubes with d orthogo-
nal hyperplanes each parallel to one of the coordinate axis
(e.g., when d = 2, any square obtained by recursively ap-
plying the quadtree splitting rule to the unit square is a
box). The length of a box’s sides will be 1/27, for some
j=0.

The BD tree is built by recursively applying split and
shrink operations to the unit hypercube. A split opera-
tion partitions a box b into 2¢ smaller boxes with d hyper-
planes. A shrink operation partitions a box b into an inner
box and a doughnut region; the inner box is some smaller
box contained inside b and the doughnut is the set differ-
ence of b and the inner box. b is the outer box of the dough-
nut.

The root of the BD tree is associated with the unit hy-
percube and all points contained inside it. Building the
tree begins by recursively splitting box b associated with
node v into 2¢ smaller boxes. v, in this case a splitting
node, is assigned 2¢ children nodes, each associated with
one of the smaller boxes and the points contained inside
it. If, however, splitting b will result in all but one of the
smaller boxes containing zero points, then a shrink opera-
tion is applied instead. The inner box of the shrink opera-
tion is chosen to be the smallest box inside b containing all
of b’s points; the doughnut region contains no points. v, in
this case a shrinking node, is assigned two children nodes,
one associated with the inner box and containing the points
inside and the other associated with the doughnut and con-

320

taining zero points. Splitting and shrinking stops when a
node contains one Or zero points.

The leaves of the BD tree partition the unit square into
boxes and doughnuts, called the cells of the subdivision;
each cell contains zero or one data points. For uniformity,
every cell is thought of as the set difference of an outer box
and zero or one inner boxes; for box cells, the outer box is
the cell itself and it has no inner box, whereas doughnut
cells have an outer box and one inner box. The size of a
box is the length of one of its sides. The size of a cell is the
size of its outer box. For fixed d, this BD subdivision has
the following five properties. (See [2] for proofs of simi-
lar properties.) These properties are common to many BD
subdivisions with the only differences being in the con-
stant factors. We have therefore expressed them more gen-
erally than necessary for this subdivision so that they may
be attributed to other BD subdivisions as well.

P1 The BD subdivision is of size O(IV).

P2 Every cell is the set theoretic difference of a unique
outer box and up to a constant number of inner boxes.

P3 There exists a many-to-one mapping from cells to data
points such that a cell of size s maps to a data point
located within distance c; s of its outer box, where ¢;
is a constant, such that at most a constant number of
cells map to each data point.

P4 The number of cells of size at least s intersecting the
boundary of a convex region of diameter [is at most
c3[1/s]1971, where c3 is a constant.

P5 Every cell of size s occupies a region that includes a
box of size at least s/c2, where c; is a constant.

Note that for property [P5], in the BD subdivision de-
scribed above, the region occupied by a box cell of size s
(obviously) includes a box of size s; the region occupied
by a doughnut cell of size s includes three boxes of size
s/2 since its inner box is of size s/2 or smaller.

For our asymptotic analysis, we require the additional
bounded adjacency property below, which is not guaran-
teed for the simple BD subdivision described above, but
is for the more sophisticated, “smoothed” versions of the
subdivision found in [8] and [6].

P6 Every cell is adjacent to at most a constant number of
other cells.

The smoothed subdivision in [8] is only given for d =
2, but generalizes to higher dimensions (see [2], revised
paper). When d = 2, both smoothed subdivisions may
be constructed in O(N log N) time; when d = 3, to our
knowledge, the best known bound on their preprocessing
is O(N?).

For our asymptotic analysis, we also require a linear
space structure for processing O(log V) point location
queries in the smoothed BD subdivision. For d = 2,
O(log N) point location queries in a planar subdivision
can be done with a linear space data structure requiring
O(N log N) preprocessing (see [10]). For d = 3, we first

further partition each doughnut cell into at most a constant
number of rectangular regions and use the linear space
data structure in [5] for O(log N) point location queries
in 3D rectangular subdivisions requiring O(NV log V) ex-
pected preprocessing time.

In practice, one would probably prefer the balanced
version of the BD tree and the subdivision defined by its
leaves as introduced in [2]. For fixed d, it satisfies prop-
erties [P1]-[P5] above, can be built in O(N log V) time,
and handles point location queries in O(log N) time. Al-
though it does not satisfy property [P6], the average num-
ber of adjacent cells is bounded by a constant (see [6]).

3 Two Dimensional Extending Queries

In this section we describe the two dimensional version
of our extending rectangular range reporting algorithm.
We assume that during a preprocessing stage an adjacency
graph representation of a two dimensional, smoothed box-
decomposition subdivision and a point location data struc-
ture satisfying all the properties of the previous section are
constructed. We describe our algorithm inductively, con-
centrating on how to process the ¢(th) extension following
the completion of the (i—1)(th) and concluding briefly with
a discussion of the initial case.

Let C; be the set of cells intersecting query @);, and let
B; be the set of cells adjacent to cells in C; but not them-
selves in C;. We call the cells in B; the surrounding cells.

To process the i(th) extension, we assume inductively
that having completed the (i —1)(th) extension we have a
data structure S» (described below) containing all edges
of cells B;_; and all points located in cells C;—; not yet
reported (in other words, points contained in cells C;_;
but not located in Q;—1). In the i(th) extension, we ex-
tract from S points it contains that are in Q; and edges
it contains whose cells intersect @;. The extracted points
are just reported. The edges extracted are used to start
searches of the BD adjacency graph. These searches (col-
lectively) visit each cell in C; — C;_; and report its point if
itis located in Q; — @Q;—1. Since every pointin Q; — Q;—1
is either a previously unreported point located in a cell of
C;—1 orapointlocated in acell of C;—Cj_;, all the appro-
priate points are reported. In the remainder of this section
we detail this algorithm and analyze it.

We begin by describing the searches started from cells
B;_; intersecting @);. Prior to starting the searches in the
i(th) extension, only cells in C;_; have been visited. For
each cell cin B;_; intersecting Q;, ¢’s search is a pruned
depth first search of the adjacency graph, starting at ¢ and
stopping at visited cells and cells not in C; —C;_;. (Note
that cmustbe in C;—C;_1.) Since each cell has O(1) edges
(due to property [P2]), it is easy to determine in constant
time if a cell is in C;—C;_; by just checking if it intersects
Q; butnot @;_,. Upon completing these searches it is not
too difficult to see that every cell in C; — C;_ is visited
since there must exist a path in the adjacency graph from
each cell in C;_; — C; to some cell in B;_; that intersects

Qi

321

The heart of our algorithm is the structure of Ss, but be-
fore describing it, we first motivate why we need it. An ob-
vious solution to the extending rectangle reporting prob-
lem is, in the i(th) extension, to start from any cell inter-
secting the boundary of Q;—; and search the adjacency
graph visiting all cells intersecting Q; — Q;—1 and report
their points if they are located in Q; —@Q;—1. This solution,
however, is inefficient when queries grow by small enough
increments to cause the same cells to be visited on many
extensions. Our data structure .S, avoids this problem by
imposing a partial order on the search so that only the new
cells (and new points) intersecting the current query are
examined. It is not immediately obvious how to order the
search since each query in the sequence may have a differ-
ent aspect ratio and hence there is no single distance func-
tion for ordering the cells.

S, is organized to efficiently find the cells B;_; inter-
secting @; in the i(th) extension. Since cells B;_; do not
intersect Q;—1, if they intersect); then some part of their
boundary (one or more of their edges) must intersect Q;.
Therefore, we only need to determine the edges of cells
B;_; that intersect @;. Let =’ and 3’ be the axes of a co-
ordinate system aligned with the sequence of queries (see
Figure 2), and let P,.(r) be the projection of any region
r C R? onto the axis ', let Py (r) be r’s projection onto
y', and let Py(r) be r’s projection onto a line with orienta-
tion 6. The following lemma will help us find these edges
and therefore dictate the organization of Ss.

Lemma 3.1 An edge e with orientation 0+ /2 intersects
rectangular query Q; iff

1. Py(e) N Pr(Q:) # 0,
2. Py(e)N Py (Q:) #0, and
3. Py(e) N Py(Q:) # 0.

Proof: Proving that the three conditions hold if e inter-
sects Q; is trivial. Now suppose (for the sake of contra-
diction) that the three conditions hold but e does not inter-
sect ;. Conditions 1 and 2 imply that e has at least one
point in region Ry ,, or R,/ ; and at least one point in re-
gion Ry, or Ry (see Figure 2 where e has a point in
R, . and one in R, ;) and the closest point to e in Q; is
the corner of @;, call it ¢, located on the border of both re-
gions (again, see Figure 2). c is located at some distance
d > 0 from e. No point of @); may be located less than
distance é from the line containing e (or else ¢ would not
be the closest point to €). But then condition 3 must not
hold, resulting in a contradiction. O

Now we can define Sy. It is a three stage “pipeline,”
each stage corresponding to one of the three conditions
above. We assume inductively that having processed the
(—1)(th) extension, S, contains the edges of cells B;_1,
and these edges are stored in Ss as follows: The first stage
of Sa, call it H;, holds all edges whose projections on the
z' axis do not intersect the projection of Q;_;. It consists
of two heaps of edges; one heap holds those edges whose

Figure 2:

projections have smaller z’' coordinates than the projec-
tion of the centroid of Q1 ; the other heap holds those with
larger z’ coordinate. Both heaps are ordered by the min-
imum distance of the projected edges to the projection of
Q1’s centroid. The second stage of S, call it H», is analo-
gous except that it holds all edges not in H; whose projec-
tions on the y’ axis do not intersect the projection of Q;—1.
The third stage of Ss, call it H3, is also analogous except
that it holds all edges not in H; or H, whose projections
onto a line perpendicular to their orientations do not inter-
sect the projection of ();—; onto that line. For each of the
two edge orientations, two heaps (as described for H; but
w.r.t. this projection) are required. Only two edge orienta-
tions are possible since each edge of a box-decomposition
is aligned with one of the two (original) coordinate axes.

In the i(th) extension, to determine those cells in Ss in-
tersecting (J;, we propagate edges though S,. First, all
edges whose projections on the z’ axis intersect (); are re-
moved from H; and inserted into H». For the heap in H;
containing edges whose projections have smaller z’ co-
ordinates than the projection of Q);’s centroid, removing
these edges just involves repeatedly removing the mini-
mum item until the minimum item is farther from the pro-
jection of ;s centroid than the projected point of Q; with
smallest z’ value; the other heap is handled similarly. Sec-
ond, all edges whose projections on the ¥’ axis intersect Q;
are removed from H> and inserted into H3. And finally,
all edges whose projections on a line orthogonal to their
orientation intersect the projection of @; on that line are
removed from Hs.

Edges removed from S, had to satisfy conditions 1-3
for some queries @), 7 < @. But, it is easy to see thatif a
condition is satisfied for Q;, then it is also satisfied for Q;.
Hence, if e is removed from S in the i(th) extension, then
it satisfies the three conditions for (); and by Lemma 3.1
the edge, and hence its cell, intersects Q;.

We have described how the intersecting cells are found,
but we have not mentioned how the previously unreported
points in cells C;_; located in Q; are reported. It is not
difficult to see that they can be propagated though S, just
as the edges are since a lemma similar to Lemma 3.1 but
using only conditions 1 and 2 applies to points. The third
stage of S is then not actually necessary for points, and

322

points can be removed from S2 as soon as they are re-
moved from the second stage of S,.

To update S, in preparation for the (i + 1)(th) exten-
sion, observe first that for any cell that is in both B;_; and
B;, all its edges will still be in S after processing the i(th)
extension. For any edge removed from S2 during the i(th)
extension, we remove from Sy all other edges associated
with its cell. Therefore the edges of every cell in B;—;
that is not in B; (because it intersects @;) will not be in
S, after the i(th) extension. Any cell bin B; —B;_; must
be adjacent to a cell ¢ in C; — C;_; so it is easy to insert
b’s edges into S2 when c is visited during the i(th) exten-
sion’s depth first searches. Any still unreported point in a
cell C;_1 will still be in S,. Points in cells C; — C;_1 not
reported in the i(th) extension are found when the cells are
visited and they are added to S2. Whenever a cell edge or
an unreported point is added to S, the proper stage of So
to add it is easy to determine in constant time.

Query @), is handled uniquely. Using the point location
data structure for the subdivision, a cell intersecting @ is
determined in O(log N) time. Starting from that cell, a
pruned depth first search like those described above vis-
its all cells in Cy, reports the appropriate points contained
in cells C, and builds S, appropriately.

3.1 Asymptotic Analysis

We now bound asymptotically the overall time to pro-
cess a sequence of two dimensional extending rectangular
queries in terms of NV, E and the number of cells C inter-
secting query Q k.

Theorem 3.1 With O(N) storage, an on-line sequence of
E extending two dimensional rectangular range reporting
queries can be processed in O(log N +C'log C' + E) time,

where C is the total number of subdivision cells intersect-

ing Q. As a special case, a single query (E =1) can be
processed in O(log N + C) time.

Proof: We first bound the total number of cell edges
and points inserted into (and extracted from) S over the
course of all E extensions. Each cell intersecting Qg can
have its point inserted into S at most one time making
the total number of points inserted into So O(C). A cell’s
edges are only inserted into So when the cell first becomes
a surrounding cell for one of the E queries. Any cell con-
sidered a surrounding cell at some time during the FE ex-
tensions must either intersect Q) g or be adjacentto a cell in
QE, thus there are O(C) surrounding cells and, since each
cell’s boundary can be represented by O(1) edges (follow-
ing from property [P2]), O(C) edges are inserted into Ss.
Hence, the size of each heap comprising Sz is O(C') and
each heap operation takes O(log C) time.

The total amount of time spent in propagating each of
the O(C') edges and points through S5 is O(log C) since it
is inserted into (and removed from) at most 3 heaps. De-
termining which heaps in S, require processing takes only
constant time per extension. For the searches started from
cells in B;_; intersecting @;, only a constant amount of

time is spent at each cell in C; — C;—; determining if its
point should be reported or added to Sz, checking its O(1)
neighboring cells to see if their edges should be added to
S,, and determining the adjacent cells from which to con-
tinue the search. Since Y ;_; |C; — Ci—1| = C, this takes
O(C) time. An additional O(log N) is required by the
first query to identify a cell to begin the search. There-
fore, the total time spent performing all E extensions is
O(log N + Clog C + E). Inthe special case when E=1,
the first query takes only O(log N + C) time since Sz does
not have to be built.

The storage is bounded by O(N) since the box-
decomposition is of size O(N), the point location data
structure is of size O(INV), and S, consists of 8 heaps each
of size O(C) which is also O(N). O

3.2 Query Sensitive Analysis

Our goal here is to express the number of cells C in-
tersecting @ g in terms of @ g’s characterizing parameters
k, a, and I. This analysis is similar to the analysis of the
approximate range searching algorithm in [1] which per-
forms a partial top down search of a box-decomposition
tree. Our analysis depends only on the subdivision’s prop-
erties listed in Section 2.

Lemma 3.2 The number of BD subdivision cells inter-
secting any d-dimensional rectangular region Q charac-
terized by k, a and l is O(k + (I/@)?71).

Proof: By property [P3], there exists an association (or
a mapping) between cells and data points such that a cell
of size s is associated with a data point located within dis-
tance c; s of the cell’s outer box, where ¢; is a constant,
and at most a constant number of cells are associated with
each data point. For the following proof, we do not actu-
ally need to know the association, just that it exists.

The cells intersecting @ can be partitioned into two
types: type (1) cells intersect @ and have associated data
points in Q or within distance o of Q’s boundary, and type
(2) cells intersect @ and have associated data points lo-
cated farther than o from @’s boundary.

For type (1) cells, since there are 2k data points located
in Q or within distance a of @’s boundary and every data
point is associated with at most a constant number of cells,
the number of type (1) cells is O(k).

For type (2) cells, we first observe that their outer boxes
must be larger than a/(c; + +/d) for their cells (and thus
their outer boxes) to intersect and their associated data
points (contained within ¢; s of their outer boxes) to be
farther than ¢ from @’s boundary. To count cells of type
(2), we partition them into those that intersect Q’s bound-
ary and those that do not. Because they are of size at
least a/(c; + v/d), the number of type (2) cells intersect-
ing Q’s boundary is at most cs[l(c; + Vd)/a)]¢! =
O((1/a)?~1) by property [P4].

Now consider type (2) cells not intersecting @’s bound-
ary. These cells, located entirely inside (), cannot be too

323

far from Q’s boundary since their associated points are
located outside Q). Specifically, for cells of size s, their
outer boxes cannot be farther than ¢; s from Q’s boundary.
Therefore, their outer boxes (and hence the cells them-
selves) are located completely within ¢;s + Vds of Q’s
boundary. But this means all these cells are packed within
a volume A of size A < P(cis + Vds), where P is
Q’s surface area. Since P < 2dl¢7!, we have A <
2d191(c;s + V/ds). Cells of size s are pairwise dis-
joint and each cell occupies a volume of at least s¢/cg
by property [P5], so at most Acg/s? < 2dI4(cys +
Vids)cd/s? = cq(l/s)4! cells can be packed into A,
where ¢s = 2dcd(c; + V/d) is a constant. Therefore,
c4(1/s)%* bounds the number of type (2) cells not inter-
secting the boundary of ¢ and of size s.

This bound applies specifically to cells of size s so we
now sum over all possible sizes of s. Noting that s = 1/2°
for some integeri, s > a/(c1++/d), and s cannot be larger
than 1 since the largest box, the unit hypercube, is of size
1, we have the following geometric series,

Llog((c1+Vd)/e)]

>

=0

ca(129)41 (1

whichis O((l/a)41). Therefore the total number of type
(2) cells not intersecting Q’s boundary is O((I/a)4™1).
Combining this with the number of type (2) cells intersect-
ing Q)’s boundary and the number of type (1) cells gives us
ourresult. O

Our bound on C is obtained by substituting d = 2 into
the preceding lemma. With any type of query, we cannot
avoid the k term in the definition of C' since we must re-
port the points in @, so ideally we would like the [/a term
to be O(k). For what we might think of as a worst case
targeted query — when the data points inside and outside
Q have the same density — we have k > [/« for reason-
able values of k. To see this, for query @, let h;y < ho
be the lengths of its two sides. Suppose the data points
outside @ but within « of its boundary are uniformly dis-
tributed with density k/hy ho, the same as the average den-
sity of data points in). In this case, we can show that
for any k and [, the expected value of o is larger than
hy/8. Hence, l/o: < 81/hy < 8/2hy/h,. Therefore, if
k > 8v/2hs/hy, then k > I/a and C = O(k). Note that
for a more typical targeted query where the density outside
@ is much less than the average density of points inside @,
@ may contain fewer data points and still C = O(k).

4 Three Dimensional Extending Queries

Processing extending rectangular queries in three di-
mensions is similar to that in two dimensions. The main
difference is that instead of propagating cell edges through
S, we propagate cell faces through a data structure we
call S3. As before, we assume that during a preprocess-
ing stage an adjacency graph representation of a three di-
mensional, smoothed box-decomposition subdivision and

a point location data structure satisfying all the properties
of Section 2 are constructed.

To process the i(th) extension, we assume inductively
that having completed the (i —1)(th) extension we have a
data structure S3 (described below) containing all points
located in cells C;—; that have not yet been reported and
all faces of cells B;_;. Analogous to the case of two di-
mensions, in the i(th) extension, we extract from S3 points
it contains that are in @); and faces it contains whose cells
intersect @;. Extracted points are just reported. Faces ex-
tracted are used to start pruned depth first searches of the
BD adjacency graph (analogous to those in two dimen-
sions) which (collectively) visit each cell in C;—C;_; and
report its point if it is located in Q; —Q;—1.

Ss is organized to efficiently find the cells B;—; inter-
secting @; in the #(th) extension. Since cells B;_; do not
intersect Q;_1, if they intersect (); then some part of their
boundary (one or more of their faces) must intersect Q;.
Therefore, we only need to determine the faces of cells
B;_; that intersect Q;. Let z', ¥, and 2’ be the axes of
a coordinate system aligned with the sequence of queries,
let P,y (r) be the projection of any region r C R® onto
the ', y' plane, and let Py, (r) and Py /(r) be defined
similarly. Let Py 4(r) be r’s projection onto a line with
orientation determined by angles 6 and ¢. The following
lemma determines the structure of S3; we omit the proof
since it is similar to Lemma 3.1.

Lemma 4.1 A face f with normal direction (0, ¢) inter-
sects rectangular query Q; iff

1. Ppy ()N Poy (Qi) #0,

2. Poo(f)N P2 (Qi) #0,

3. Py (f) NPy (Q;) #0, and
4. Py o(f) N Pos(Q:) # 0.

Ss is a four stage pipeline, each stage corresponding
to one of the four conditions above. The first stage of S3
holds all faces whose projections on the z', y' plane do not
intersect the projection of Q;—;. Since three dimensional
BD subdivision cells are aligned with the three original
coordinate axes, the face of any cell is a planar polygon
with sides parallel to two of three orthogonal directions
(in R®). Parallel projection preserves incidence and paral-
lelism, so the face’s projection onto the 2, y' plane is also
a polygon with sides parallel to two directions (although
not necessarily orthogonal). The sequence of E nested,
three dimensional, rectangular queries projected onto the
z',y' plane is just a sequence of nested, two dimensional,
rectangular queries. In the i(th) extension, we will want
to determine those faces contained in the first stage of S3
that intersect the projection of @); so that they may be prop-
agated to stage 2. But then we can just implement the first
stage as an instance of S, for the ', 3’ plane, the projected
queries, and the projected faces. (Note that the last stage
of this instance of Sz requires three sets of heaps, two for
each of the three possible face’s edge orientations.) The
next two stages are analogous. The last stage, which is

324

a one-dimensional problem since the projection is onto a
line, consists of three sets (one for each face orientation)
of two heaps analogous to those used in the stages of S,.

In the i(th) extension, to determine those cells in S3 in-
tersecting ;, we propagate faces though S3 similarly as
was done in two dimensions. Unreported points contained
in cells C;_ are handled similarly but may be removed af-
ter stage 2 of S3. S is updated in preparation for the next
extension when the cells in C; — C;_ are visited. Query
@, is handled uniquely, as was done in two dimensions.
The following theorem summarizes the asymptotic analy-
sis; we omit the proof since it is similar to to Theorem 3.1.

Theorem 4.1 With O(N) storage, an on-line sequence of
E extending three dimensional rectangular range report-
ing queries can be processed in O(log N + Clog C + E)
time, where C is the total number of subdivision cells in-
tersecting Q. As a special case, a single query (E =1)
can be processed in O(log N + C) time.

By substituting d = 3 into Lemma 3.2, we obtain C =
O(k + (I/a)?). Generalizing the analysis at the end of
Section 3, if h; < hs < hg are the lengths of @Q’s sides,
we can show that (under conditions defined in Section 3)
when k > 3(8)2h3/h2, we have C = O(k).

References

[1] S. Arya and D. M. Mount. Approximate range searching. In Proc.
11th Annu. ACM Sympos. Comput. Geom., pages 172-181, 1995.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest
neighbor searching. In Proc. 5th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 573-582, 1994. In revised form at
ftp://ftp.cs.umd.edw/pub/faculty/mount/Papers/dist.ps.gz.

[3] B.Chazelle and B. Rosenberg. Lower bounds on the complexity of
simplex range reporting on a pointer machine. In Proc. 19th Intl.
Collog. on Automata, Lang., and Prog., volume 623 of Lect. Notes
in Comp. Sci., pages 439—449. Springer-Verlag, 1992.

[4] K.L.Clarkson. Fast algorithms for the all nearest neighbors prob-
lem. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pages
226-232, 1983.

[5S] M. de Berg, M. van Kreveld, and J. Snoeyink. Two- and three-
dimensional point location in rectangular subdivisions. J. Algo-
rithms, 18:256-277, 1995.

[6] R.Y.Flatland. PhD dissertation. Department of Computer Science,
Rensselaer Polytechnic Institute. To appear 1996.

[7]1 R.Y.Flatland and C. V. Stewart. Extending range queries and near-
est neighbors. In Proc. of the Seventh Canad. Conf. on Comput.
Geom., pages 267-272, 1995.

[8] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray
shooting. To appear in Intl. Journal of Comp. Geom. and App.

[9] D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. Chro-
matic nearest neighbour searching: a query sensitive approach. In
Proc. 7th Canad. Conf. Comput. Geom., pages 261-266, 1995.

[10] F. P. Preparata and M. 1. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

