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Abstract

Given a finite point set P, of n points in the plane in general
position, we say that P, supports an n vertex planar graph G if there
is a rectilinear embedding of G such that all the vertices of G lie on
the elements of P,. G is called universal if any point set P, supports
it. In this paper we prove that the set of universal graphs is exactly
the set of outerplanar graphs. We also give an O(n)? time algorithm
that produces planar embeddings of outerplanar graphs on point sets.
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1 Introduction.

Let P, be a set of points on the plane in general position, and G a graph
with n vertices. We say that P, supports G if there is an embedding of G on
the plane in such a way that the vertices of G are mapped to the elements
of P,, and its edges to non-intersecting open straight line segments joining
pairs of elements of P, which correspond to pairs of adjacent vertices in G.
We call any such embedding a straight-line embedding of G on F,.

In 1990, Perles introduced the problem of embedding rooted trees on
point sets with the root of the tree located at a specific element of the point
set. In [3] it is shown that this embedding is always possible. Further results
on this topic are presented in [4] and [1] where an optimal O(nlogn) time
algorithm to obtain such embeddings is presented. A graph G is called
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outerplanar if there is a straight line embedding of G on the vertices of a
convex polygon.

In this paper, we extend the results in [3] as follows: We call a planar
graph G on n vertices a universal graph if any n point set supports G. By
the results in [3]it follows that trees are universal. Notice that if we choose
P, to be the set of vertices of a convex polygon, it follows right away that
if a graph G is universal, then it is outerplanar. In this paper we prove that
the set of universal graphs is exactly the set of outerplanar graphs. We also
give an algorithm to produce embeddings of n vertex planar graphs on n
point set P, in general position in O(n)? time.

2 Terminology and definitions

An embedding of a graph G on the plane is called a straight—line embedding
if all the edges of G are represented by line segments. A graph G is called
outerplanar if there is a straight-line embedding of G on the vertices of a
convex polygon. All point sets considered here will be assumed to be in
general position and P, will be used to denote such sets.

3 Outerplanar graphs are universal

In this section we prove the following result:

Theorem 1 The set of universal graphs is ezactly the set of outerplanar
graphs.

Some lemmas and results will be needed to prove Theorem 1.

Without loss of generality, we will assume that G is a maximal outerpla-
nar graph. We further assume that the vertices of G are labeled vo, . .., vn-1
such that v; is adjacent to v;_1, i = 1,...,n—1 addition taken mod n, i.e. the
unique Hamiltonean cycle of G is given by the ordered labeling of its ver-
tices. The edge v; —v;4+1 will be called an external edge of G, i =1,...,n—1.
Consider three mutually adjacent vertices u, v and w of G. We say that the
triangle u, v, w is an external triangle of G if at least one of its edges is on
the hamiltonean cycle of G. We call wvw an (r,s) — triangle of G if the
components of G — u, v, w have r and s vertices respectively. We will allow
either one of r or s to be 0; this allows us to cover the case when u,v,w
contains two consecutive edges of the Hamiltonean cycle of G.
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Consider a n point set P,, two integers r and s such that r+s=mn—3,
and a triangle t(a, b, c) with a and b consecutive vertices of Conv(F,), and
¢ € P,. We say that t(a, b, ¢) is an (r, s) — triangle of P, if:

i) No element of P, lies in the interior of t(a,b,¢)

ii) There is a line [ through ¢ that intersects the interior of ¢(a, b, ¢) such
that there are r elements of P, — {a, b, c} on the same side of [ as a, and s
elements of P, — {a,b, ¢} on the other side of I. See Figure 1.

A 6,2-triangle of F,

Figure 1

We denote by /(a) the subset of elements of P, on the same side of [ as
a and including also point ¢. Similarly, we define I(b).

Lemma 1 Let a and b be two consecutive points in Conv(F,), and two
integers v and s such that r+ s =n —3. Then there always ezxists a point ¢
in P, such that t(a,b,c) is an (r,s) — triangle of Pn.

Proof Consider all the points of P, such that each of them together
with a and b are the vertices of a triangle containing no point of P —n in
its interior. Assume that these points are labeled uj, ..., uk in the counter-
clockwise direction around a. Associate to each u; a weight w; equal to the
number of points in P, — {a, b, u;}, to the right of the line connecting a to
u;, 1 =1,...,k. See Figure 2.
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Figure 2

Let m be the index such that wm—1 < s and § < Wmp. If wy = s take
¢ = um and let [ be a line through um obtained by a slight counter-clockwise
rotation around u,, of the line joining a to um.-

Suppose then that s < wy,. We observe now that the number of points
to the right of the line joining b to um—_; is at least wm — 1. Furthermore,
the triangle bounded by the line segment ab and the lines joining a and b to
um contains no element of P, in its interior, otherwise um—1 and u,, would
not be consecutive vertices that generate empty triangles with a and d! It
now follows that there is a line through u,—1 intersecting the interior of the
triangle t(a, b, um_1) leaving exactly s elements of P, — {a,b, um—1} to its
right. Our result now follows. In Figure 2 we show the case when s = 4 and
m = 3.

Proof of Theorem 1. Let G be a universal graph and P, be the set of
vertices of a convex polygon. Since G is universal, P, supports G; hence
there is a planar straight-line embedding of G on P, and G is outerplanar.
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We now prove that any point set P, supports any outerplanar graph G. Re-
call that the vertices of G are labeled {vo, ..., vn—1} such that v; is adjacent
to viy1, ¢ = 0,...,n — 1 addition taken mod n. We will actually prove an
even stronger result, i.e. we prove that given two consecutive points a and
b in Conv(P,) and any external edge v; — vi41 of G, there is an embedding
of G on P, such that v; lies on a and v;+; lies on b.

Our result holds trivially if G has three vertices. Consider now any
outerplanar graph on n vertices and any n point set P,. Take an external
edge v; —viy1 of G and two consecutive vertices a and b in Conv(Py). Since
G is outerplanar, there is a unique vertex v of G adjacent to both v; and
vir1. Thus v;v;11vk is an external triangle of G. Assume without loss of
generality that i+1 < k and that k—(i+1)—1 = s. Then the components of
G —{vs, viy1, vk} have cardinalities r and s respectively such that r+s =n—3
and v;vi41vk is an (r, s) — triangle of G. See Figure 3.

Vit+1

Figure 3

By Lemma 1, there is an (r,s) — triangle t(a,b,c) of P,. Let [ be a
line through ¢ as in ii) and consider the subsets l(a) and I(b) of P, as
defined above. Notice that a and c lie on Conv(l(a)) and b and c lie on
Conv(l(b)). Let H; and H, be the subgraphs of G induced by {v,...,v:}
and {vit1,.-.,Vk} respectively, addition taken mod n. Clearly, v; — vx and
vk — Uiy are external edges of Hy and Ha respectively. Thus by induction
there is an embedding of H; on [(a) such that v; lies on a and vy lies on c.
Similarly there is an embedding of Hz on I(b) such that vi41 lies on b and
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vi lies on ¢. Combining these embeddings of H; and Hy we can obtain an
embedding of G on P, such that the edge v; — v;4; lies on the line segment
joining @ and b. Our result now follows.

We now present an algorithm that given a maximal outerplanar graph
G and a point set P,, obtains a rectilinear embedding of G on P, in O(n)?
time.

In our initial step, for each element a of P, we sort the slopes of all the
edges connecting a to all other elements of P,. This can be done in O(n)?
using well known techniques in computational geometry [2]. Assume then
that these orders are available at all the elements of P,. We now show that
having these orders available, we can implement the construction of Lemma
1 in linear time. This will prove our result.

As in the proof of Lemma 1, let {us, . .., ux} be the elements of P, —{a, b}
that form empty triangles with a and b. We now prove:

Lemma 2 Given two consecutive points a and b in Conv(Py,), and two
integers T and s such that r + s = n — 3 we can find an (r,s) — triangle
t(a,b,c) of P, in linear time.

Proof: We show first that {u,...,ux} and {wy,...,w,} as described in
Lemma 1 can be found in linear time. Let p be any element of P, — {a, b}.
Assign to p two integer coordinates, corresponding to the position of p when
sorting the elements of P, — {a,b} around a and b in the counter-clockwise
and clockwise direction respectively. For example point us in Figure 2 would
receive coordinates (2,5). This maps the points of P, — {a,b} to points on
the plane with integer coordinates, and points generating empty triangles
correspond to minimal elements under vector dominance. Using techniques
in [5] it follows that {uy,...,ux} can be found in linear time. We now notice
that if u; is in position k in the sorted order of the elements of P, — {a,b}
around a, w; is exactly k — 1. Using this, we can now easily determine c, [,
I(a) and I(b) as in Lemma 1 in linear time. Our result follows.

We now have:

Theorem 2 Given a mazimal outerplanar graph G and a point set P, we
can find an embedding of G on P, in O(n)? time.
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