Optimal orthogonal drawings of connected plane graphs *

Therese C. Biedl
Extended Abstract

1 Introduction and Definitions

A (2-dimensional) orthogonal drawing of a graph is a drawing such that every vertex is drawn as a
point in the plane, and every edge is drawn as a sequence of horizontal and vertical lines. Orthog-
onal graph drawings are an important layout tool, for example to display Data Flow Diagrams
and Entity Relationships Diagrams. Two of the most important measurements of the quality of a
drawing are the grid-size and the number of bends. Orthogonal drawings exist only if every vertex
in the graph has at most four incident edges, such a graph is called a 4-graph. On the other hand,
every planar 4-graph with fixed planar drawing has an orthogonal drawing exactly reflecting the
drawing. For example, the algorithm of Tamassia computes such a drawing with the minimum
number of bends [7].

In this paper, we assume that G is a given 4-graph with fixed planar drawing (i.e. it is plane).
Let it have n = n(G) vertices and m = m(G) edges. The algorithm by Tamassia takes O(n? logn)
time. Sometimes heuristics are preferred that work quickly (i.e. in linear time) and produce
reasonable bounds. Such heuristics are know both for biconnected graphs [6, 8, 9] and triconnected
graphs [5, 2].

For connected graphs, no such heuristic was known that exactly reflects the planar drawing.
That is, the algorithms for biconnected graphs presented in [6, 8, 9] can be extended to work for
connected graphs, but at the cost of exactly reflecting the drawing. This can be seen since both
algorithms produce an (n + 1) x (n + 1)-grid for connected graphs. But there exists a connected
plane graph that needs a width and height of gn - -131 in any orthogonal drawing that exactly
reflects the planar drawing [3].

In this paper, we will present a linear-time heuristic to embed any connected plane graph while
reflecting the planar drawing. To that matter, we present a scheme how a heuristic for biconnected
graphs can be used to obtain a heuristic for connected graphs. In our case, we use the heuristic of
Biedl and Kant [4]. We analyze the produced grid-size for simple graphs, for graph without loops
(multi-graphs), and for graphs with loops. For all these graph classes, the upper bounds achieved
with our algorithm are optimal up to a constant, since there exist graphs which need this grid-size
and this number of bends in any orthogonal drawing that reflects the embedding.

The algorithm depends heavily on how a graph is split into its biconnected components (or
blocks). A vertex v is called a cutvertez if v is incident to a loop, or if removing v from G gives
two disconnected subgraphs. A graph is biconnected if it is not a loop, and if it has no cutvertex.
A block is a loop or a maximal biconnected subgraph. With the blocks we associate a graph 7,
the blocktree. T has a vertex for every block, and a vertex for every cutvertex. Two vertices of 7
are adjacent if and only if one is a cutvertex that belongs to the block represented by the other.
Let T be rooted at a block B,. For a block B; # B, then define the parent-vertez (parent(B;))
to be the cutvertex in B; that is closest to B, in 7.

*Some of these results were part of a diploma thesis written at TU Berlin.
A full version of this paper has appeared in [1].
tRUTCOR, P.O. Box 5062, New Brunswick, NJ 08903,therese€rutcor.rutgers.edu, FAX (908) 445-5472

306

2 Drawing graphs that are not biconnected

Assume G is a 4-graph that is connected, but not biconnected. The idea for drawing G is to split
it into its blocks, to embed them separately, and to merge them into one drawing. This “merging
scheme” has been used in [4] without being given abstractly. It can be used for any orthogonal
graph drawing heuristic BICONN that fulfills the (very weak) Condition 1. To get drawings that
reflect a planar drawing, we also need Condition 2.

Let T be a drawing of G. Let v be a vertex of G with deg(v) < 3, drawn at (c(v),r(v)). We
say that v is drawn as final vertez in T, if the grid-points in S are unused, except for (¢(v), r(v)),
where S is defined as follows: (1) if deg(v) = 1, then S = {(¢,7), r > r(v)}, (2) if deg(v) = 2,
then S = {(c,7), ¢ > ¢(v), r > r(v)}, (3) if deg(v) = 3, then S = {(¢,7), ¢ = ¢(v), r > r(v)}.

Condition 1 BICONN gets as input a biconnected graph G and a vertez v with deg(v) < 3. It
outputs an orthogonal drawing such that v is drawn as final vertez.

Let for a vertex in a drawing the ports be the adjacent grid-segments. We say a vertex is drawn
straight if it has degree 2, and if the two used ports are on opposite sides.

Condition 2 BICONN gets as input a biconnected plane graph G and some vertices wy, ..., wp
of degree 2. It outputs a plane drawing such that w; is drawn straight, j =1,...,p.

We choose as the root of the blocktree 7 a block on the outer-face of the planar drawing of G.
For any subtree 7" of 7, denote by G(7”) the graph represented by 7’. The following lemma states
the invariant that we uphold during the merging scheme, and its proof contains the algorithm.

Lemma 2.1 Let 7' be a subtree of T, and let B be the block in T' closest to the root. We can
draw G' = G(T"') such that parent(B}), if it ezists, is drawn as final vertez.

Proof: We prove the claim by induction on the number of blocks in 7', and assume that
v = parent(B.) is defined. In the base case there is only one block. So G’ either is biconnected,
then we are done by Condition 1. Or G’ is a loop, and v is its only vertex. Then this loop can be
embedded such that v is drawn as final vertex. The inductive step falls into two cases:

Case 1: B] contains a cutvertex v; that is incident to a bridge:

A bridge is an edge whose removal splits G into two graphs. Removing the corresponding block
from 77, we get two smaller subtrees, call them 7; and 7,. We assume B, € 7; and apply induction
on 7; and T3. Then the graph G; = G(7;) is embedded with v as final vertex, while the graph
G, = G(T3) is embedded with the other endpoint of the bridge, v2, as final vertex.

In the drawing of G, there is one port free at v, assume it is the left one. Assume first that
adding the subgraph at this port reflects the planar drawing. By adding rows and columns to the
left of the drawing of v; and rotating the drawing of G2, we can merge it into the drawing. This
is possible since v, was drawn as final vertex in G and degg,(v2) < 3. If adding the subgraph at
the free port contradicts the planar drawing of the graph, then we add a column and a bend to
the drawing, and cut it, so that an appropriate port is free. See also Figure 1.

Figure 1: How to merge a subgraph connected by a bridge. In the second case the port could not
be used, and we add a extra column (shown a.s3gz;shed line), and a bend.

Case 2: Otherwise:

Since we are not in the base case, there are at least two blocks in 7’. So there must be at least
one cutvertex v; in B.. We must have v; # v, otherwise we had a bridge incident to v. Removing
v; from 77, we get two smaller subtrees, call them 7; and 75.

We assume B, € 7 and apply induction on 7; and 7;. Then the graph G; = G(Th) is
embedded with v as final vertex, while the graph G» = G(7) is embedded with v, as final vertex.
Also, we prespecify that v; must be drawn straight in the drawing of G;. By cutting the drawing
and adding one column and a bend, we achieve that v, is drawn with right angle. After doing this
we merge G2 by adding columns and rows. We have two possible placements of v;, and depending
on this we add G2 “to the right” or “to the left” of v;. We do this as dictated by the planar
drawing. See also Figure 2.]

]
3
i
'
]
]
'

Figure 2: To merge at a cutvertex that is drawn straight, we add a column to draw it with right
angle. In exchange, we get the choice whether to add the graph to the right or to the left.

One can verify that the planar drawing is exactly reflected with this algorithm. The grid-size
and number of bends depend on the grid-size and number of bends of BICONN. We now give a
“formula” for computing this relationship.

A critical cutvertez of a block B is a cutvertex of G in B that is not parent(B), and that is
not incident to a bridge. In other words, a critical cutvertex is a cutvertex v; encountered in the
second case of the proof of Lemma 2.1. The number of critical cutvertices in B is denoted cr(B).
Call a drawing of a block B a proper drawing, if no increase is necessary to merge the subgraphs.
So parent(B) is drawn as final vertex, and all critical cutvertices have added the columns already,
so they are now drawn with a right angle, and in such a way that the planar drawing is reflecting
after merging the subgraph.

Definition 1 Let B be a block of G that is not a bridge. The correction terms ®,,, %, ®},
and ®} are functions such that B has a proper drawing of width n(B) — 1 + ®,,(B), and height
n(B) — 1+ ®x(B).

Furthermore, the number of bends is either of the following two terms: 2m(B) — 2n(B) + 1 +
cr(B) + ®}(B), or m(B) + ®2(B). Finally, define ®max(B) = max{®x(B), ®.(B)}.

The correction terms are defined only for the proper blocks, i.e. those blocks that are not

bridges. Denote this set by B(G). By induction on the steps of the algorithm, one can prove the
following lemma.

Lemma 2.2 The drawing produced has at most
o widthn —1+ 3 pegc) Pu(B), and height n— 1+ Y Bes(c) 2n(B), if G has no bridge,
o width and height n — 1+ EBGB(G) ®ax(B),
o min{2m — 20+ 1+ Y 5cpc) B3(B)ym + L pes(e) B3(B)} bends.

This merging scheme works in O(n), provided that BICONN works in O(n) and produces O(n)
many bends. The crucial point is that we need not recompute the coordinates after each merging.
Instead, we store the coordinates of a vertex as relative to the placement of the parent-vertex. We
also store the angle of rotation of the block, or whether the block has been flipped. Thus, we need
to recompute the coordinates only once, after all mergings are done.

308

3 The merging scheme applied

We now analyze the sizes obtained by combining the merging scheme with the algorithm by Biedl
and Kant [4]. This algorithm works for biconnected graphs in linear time. We have no space to
present this algorithm and its properties here. Using it, we get the following correction terms.

Lemma 3.1 Let B be a proper block, where parent(B) is defined. Then ®,(B) <1, &,(B) <1,
®}(B) < 2, and ®}(B) < 2.

Lemma 3.2 For the root of T, we have ®,,(B,) < 2, ®4(B,) < 2, ®}(B,) < 3, and ®}(B,) < 4.

We can now get an estimation of the grid-size and the number of bends with Lemma 2.2. Note
that we do not use ®? here, this will be useful only for simple graphs.

Lemma 3.3 Let G be a plane graph with bl proper blocks. Then G can be embedded in an (n +
bl) x (n + bl)-grid with at most 2m — 2n + 2 + 2bl bends.

One can show that every 4-graph has at most n + 1 proper blocks (the extreme case being a
graph that consists of an n-cycle with n loops attached). If a graph has no loops, then it can have
at most n — 1 blocks (this is shown easily by induction on the number of blocks). Thus we get

Theorem 1 Let G be a plane 4-graph that is not biconnected. Then in linear time, it can be
embedded in a (2n + 1) x (2n + 1)-grid with 2m + 4 bends. If G is a multi-graph, then in linear
time it can be embedded in a (2n — 1) X (2n — 1)-grid with 2m bends.

For simple graphs, Biedl and Kant give an improvement of their algorithm [4]. Unfortunately,
with this change the algorithm does not fulfill Condition 2, and we apply it only to blocks without
critical cutvertices. The correction terms can be reduced further for simple blocks with at most
5 vertices. However, the reduction depends on the number of vertices and the number of critical
cutvertices. With a detailed case analysis we get the bounds shown in Table 1 for a simple block.

n(B) < 4 n(B) =5 n(B) =5 n(B) > 6
deg(v) =2 deg(v) =3
cr(B) =0]=1[>2[=0][=1[>2]=0]=1][>2[=0[=1]>2
3,B)< | -1] 0 | 1 | -1] 0 1T o] 1] 1]o]1]1
®(B)< || -1| 0O 0 0 0 0 0 0 0 1 1
®B)< | O 1 2 1 2 2 1 2 2 1 2 2
3B)< | 2| 0 | 2 || -1| 1| 2] 0] 2|2 o0]cz2] 2

Table 1: Correction terms for a simple block B where v = parent(B) is defined.

We distinguish these different kinds of blocks as follows. B} are the blocks, where i is the bound
for the critical cutvertices (¢ = 0,1, 2), and j is the bound for the number of vertices (5 = 4, 5, 6).
Furthermore, we distinguish B,-s '? and B,5 " by the degree of the parent-vertex. b! is the cardinality
of B]. If a subscript/superscript is missing, we count over all possible subscripts/superscripts.

Lemma 3.4 Assume G has a vertez v with deg(v) < 3 on the outer-face. Then (1) by < by —1,
(2) 2b% + 4b° + 50° < n — 1, (8) if G has no bridge, then b>3 < 1.

Proof: The first claim is shown by counting the number of edges in the blocktree in two different
ways. For the second claim, we assign the vertices that are not the parent-vertex to each block.
This assigns the appropriate number of vertices to each block, counts every vertex at most once,
and does not count the parent-vertex of the root. The third claim holds since two blocks in B®3
imply that one of them is incident to a bridge. m]

309

Lemma 3.5 Assume G has no bridge. If a vertez of degree < 3 is on the outer-face, then
* Y pene)Pv(B) < % -1, Ypepe) B(B) < -1,
* Ypene) @(B) < 5 -3, and Tpeg(q) ‘I’b(B) <$n-1{.

Proof: For space reasons, we show only the argument for ;. By Table 1, we have Y &7 <
—2b8 — b2 + 032 426772 + 258 + 2b, < by% + 26573 + 285 — 2+ b3 2 + 2633 + 265 < BS 46534+ 205 —2 <
b° +2b° — 1 < (n — 1) — 1, by the claims of Lemma 3.4. u]

If every vertex on the outer-face has degree 4, then these estimations have to be increased
somewhat. By applying Lemma 2.2, and by induction on the number of bridges, one can show
the following result.

Theorem 2 Let G be a simple plane 4-graph. Then in linear time, it can be embedded in a grid
of width and height gn, and with min{2m — :—;n + %, m+ %n + 2} bends.

If a vertez of degree < 3 is on the outer—face, G can be embedded in a grid of width and height
$n — 2 with min{2m — gn —1,m+2n— 1} bends.

4 Remarks

In this paper, we presented a heuristic that gives an orthogonal drawing of any connected plane
graph, while exactly reﬁectmg the glven planar drawing. No linear-time heunstlc was known
before. We produce at most a 5n X -s-n-gnd The number of bends is bound by m+ —n + 2, which
is at most 32n + 2. It is also bound by 2m — 3(n — 1), which is smaller if m < Ln.

We also presented a scheme of how an algonthm for biconnected graphs gives an algorithm that
draws connected graphs. The algorithm must fulfill two conditions; however, the second condition
can be dropped if it is not required that the resulting drawing reflects the planar embedding. In
fact, this merging scheme does not use planarity at all, and can thus be also applied for heuristics
for non-planar graphs. We got a formula how one can compute the grid-sizes and bends, by
considering the grid-size and the bends achieved with the algorithm for biconnected graphs. This
scheme should be useful to apply to other heuristics as well.

We have the following remarks:

o We are very close to optimality in all cases (the lower bounds are from [3]).

For simple graphs, the graph shown in Figure 3.a has 2n — 2 edges and needs a grid of width
and height gn - 1—51 and %n - %7 bends in any drawing exactly reflecting the plane drawing.
For multi-graphs, there exists a multi-graph with 2n edges which needs a (2n—3) x (2n —3)-
grid and 4n — 4 bends in any drawing exactly reflecting the plane drawing.

For graphs with loops, there exists a graph with 2n edges which needs a (2n+1) x (2n+1)-grid
and 4n + 4 bends in any drawing exactly reflecting the plane drawing.

e For simple graphs, we bounded the number of bends by 2m— -n+ - This is almost optimal,
since the graph C; shown in Figure 3.b needs 2m— 3 —n—— bends Namely, let C; be a triangle,
and let C; result from C;_; by adding two new vertlces, and a triangle that encloses C;_;.
Then n(C;) = 2+ 1, and m(C;) = 3: + 1. One can show that C; needs a width and height
of 2i — 1, and 3: — 2 bends, in any drawing that exactly reflects the embedding.

e The bound of min{2m — 3n + %, m + %n + 2} bends can be used to show bounds for the

grid-size of Tamassia’s algorithm [7]. With the tools presented in [2], one can show that
the width and height is at most min{2 in— 5, l—sln - —} for connected plane graphs. The
half-perimeter is at most min{% +m — 1, n}.

e One open problem concerns plane graphs of maximum degree 3. With the scheme of Kant
[5] we can obtain a 3 x 3-grid with 3 + 1 bends. But this algorithm does not reflect the
planar drawing, as can be seen since the graph of Figure 3.c needs a bigger grid in any plane
drawing. What algorithms exists for such graphs?

310

i) B &

Figure 3: Three graphs for lower bounds for plane drawings. The first graph needs a width and

height of $n — !, and L2n — &’ bends. The second graph needs 2m — 3n — 3 bends. The third

graph has maximum degree 3 and needs a width and height of %n —1, and %n — 1 bends.

References

[1] T. Biedl, Optimal Orthogonal Drawings of Connected Plane Graphs, Ruicor Research
Report 10-96.1

[2] T. Biedl, Optimal Orthogonal Drawings of Triconnected Plane Graphs, Rutcor Research
Report 8-96.1

[3] T. Biedl, New Lower Bounds for Orthogonal Graph Drawing, Proc. Graph Drawing ’95,
Lecture Notes in Comp. Science 1027, Springer-Verlag (1995), pp. 28-39. Also: Rutcor
Research Report 19-95.1

[4] T. Biedl, and G. Kant, A better heuristic for orthogonal graph drawings, Proc. of the 2nd
European Symp. on Algorithms (ESA 94), Lecture Notes in Comp. Science 855, Springer-
Verlag (1994), pp. 124-135. Also: Rutcor Research Report 12-95.1

[5] G. Kant, Drawing planar graphs using the Imc-ordering, Extended Abstract in: Proc. 33th
Ann. IEEE Symp. on Found. of Comp. Science 1992, pp. 101-110. Extended and revised
version to appear in Algorithmica, special issue on Graph Drawing.

[6] J. Storer, On minimal node-cost planar embeddings, Networks 14 (1984), 181-212.

[7] R. Tamassia, On embedding a graph in the grid with the minimum number of bends,
SIAM J. Comp. 16 (1987), pp. 421-444.

[8] R. Tamassia, and I.G. Tollis, Efficient embedding of planar graphs in linear time, Proc.
IEEE Int. Symp. on Circuits and Systems (1987), pp. 495-498.

[9] R. Tamassia, and I.G. Tollis, Planar grid embedding in linear time, JEEE Trans. Circ.
Syst. 36 (9), 1989, pp. 1230-1234.

1Rutcor Research Reports are available via anonymous FTP from rutcor.rutgers.edu, directory /pub/rrr; or on
the WWW at http://rutcor.rutgers.edu/~rrr.

For a comprised version of these four papers, see T. Biedl, Orthogonal Graph Drawings, Algorithms and Lower
Bounds, Diploma Thesis TU Berlin, December 1996. Available on the WWW at http://rutcor. rutgers.edu/~therese.

311

