Algorithms on Polygonal Embeddings of Graphs®

Leizhen Cai

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
E-mail:lcai@cs.cuhk.edu.hk

April 26, 1996

Abstract

This paper is concerned with graphs embedded in
the plane. We introduce the notion of polygonal
embeddings and present an efficient algorithm for
recognizing a polygonal embedding of a 2-connected
graph. We also give an efficient algorithm for com-
puting a shortest crossing-free path between any two
vertices in a polygonal embedding.

Keywords: embedded graph, polygonal embedding,
cross-free path.

1 Introduction

An embedding of a graph G = (V, E) is a map-
ping of the vertices of G onto different points
in the plane and the edges of G' onto line seg-
ments that preserves the incidence relation be-
tween edges and vertices. Therefore an edge uv
will be mapped onto the line segment linking
the corresponding points of u and v. Further-
more, the point corresponding to a vertex v will
not lie on any line segment that does not corre-
spond to an edge incident with v in G. Figure 1
gives three different embeddings of a path with

*This work was partially supported by a Direct
Grant for Research from the Chinese University of Hong
Kong and an Earmarked Research Grant from the Re-
search Grants Council of Hong Kong.

300

five vertices. We refer to an embedding of a
graph as an embedded graph. In this paper, G
will always denote an embedded graph. For
simplicity, we also use vertex and edge, respec-
tively, to refer to their corresponding point and
line segment in the plane.

Figure 1: Three embeddings of a path with five
vertices

Embedded graphs arise naturally when the
geometric information of a graph is of concern.
For example, consider the problem of triangu-
lating a set S of points in the plane when the
precise locations of points are unknown. We
wish to find a triangulation T of S that is ro-
bust to inaccurate representation of the points
in S in the sense that T remains to be a trian-
gulation as far as each point in S is within dis-
tance € from its actual location for some fixed
number €. This triangulation problem can be




Polygonal Embeddings

described as a problem on an embedded graph
as follows: Construct an embedded graph G by
taking each point in S as a vertex, and adding
an edge between two points iff an 2e-disc mov-
ing from one point to another does not collide
with any other points in S. Then the triangu-
lation problem is equivalent to the problem of
finding a plane triangulation of G.

In this paper, we are interested in embed-
dings that have “nice” structures and efficient
algorithms on such embeddings. For this pur-
pose, we consider embeddings related to sim-
ple polygons and introduce the following no-
tion of polygonal embeddings. An embedding
G is polygonal if there is a polygon whose ver-
tices are the vertices of the embedded graph
such that no edge of G is in the exterior of the
polygon; and such a polygon will be called the
host polygon of the embedding. In Figure 1,
the embedded graph on the top is polygonal
but the two on the bottom are not polygonal.
A polygonal embedding G also has a very close
connection with the visibility graph G’ of the
host polygon P of G: it is an embedded sub-
graph of G’ when we regard G’ as an embedded
graph.

The main results of this paper are an efficient
algorithm for recognizing a polygonal embed-
ding of a 2-connected graph, and an efficient al-
gorithm for computing a shortest crossing-free
path between any two vertices in a polygonal
embedding.

2 Recognition of Polygonal
Embeddings

In this section, we present an efficient algo-
rithm for recognizing polygonal embeddings of
2-connected graphs. The complexity of the
recognition problem for general graphs is un-
known.

The main idea of the algorithm is to start

301

with a lowest vertex (a vertex with the smallest
y-coordinate) of G, and wrap around G coun-
terclockwise. In the process, we wrap as close
to G as possible. To guide the wrapping, we
use the vertez visibility graph G’ of G, which is
defined to be the embedded graph on the ver-
tices of G where two vertices u and v are joined
by an edge e iff e does not intersect any other
edges of G. The host polygon P is formed by
growing a chain pi,ps,... of vertices. In the
algorithm, p is the leading vertex in the chain
and p’ is the vertex next to p in the chain.

Algorithm polygonal-embedding

Input: An embedding G of a 2-connected
graph.

Output: The host polygon P = (p1,...,pa) of

G if G is polygonal.

Step 1. Construct the vertex visibility graph
G' of G.

Step 2. Let p; be a lowest vertex in G,
i.e., a vertex of G with the minimum y-
coordinate.

Step 3. Pick an arbitrary point p’ that lies to
the left of and is lower than p;. Set p to
be p; and set 7 = 2.

Step 4. While p is unmarked do the following:
find the edge pg in G that has the maxi-
mum angle clockwise from pp’ and then lo-
cate the edge pg’ in G’ that has the small-
est angle clockwise from pg (in case that
there are several edges collinear with pg’
then pqg’ is the shortest edge among these
edges); set p; = ¢/, p' = p, p = ¢', mark p,
and increase i by one.

Step 5. If P is a simple polygon that includes
all vertices of G, then G is polygonal else
G is not polygonal.

See Figure 2 for an example of the execution
of the algorithm.




Polygonal Embeddings

Figure 2: An execution of the algorithm
polygonal-embedding. Dashed lines indicate
edges in the vertex visibility graph G'.

We now sketch a proof for the correctness of
the algorithm. It is clear that we only need to
show that, whenever G is polygonal, P is the
host polygon of G. For this purpose, we use in-
duction to show that p;p;4; forms a side of the
host polygon P of G. Consider p;p;;1. Sup-
pose that it is not a side of P. Then there is a
vertex r of G such that p;r forms a side of P.
Two cases arise depending on whether p;r lies
in between p;q and p;p;—1 (see Figure 3). In
Case 1, there are two vertex-disjoint paths be-
tween r and p;_; since G is 2-connected. This
implies that there is a path () between r and
p;—1 that does not intersect p;p;4+1. Then @ to-
gether with p;_1p; and p;r form a closed circle
C whose interior is in the interior of P. How-
ever, vertex p;y1 is in the interior of C and thus
in the interior of P, a contradiction. In Case 2,
we can use a similar argument to deduce that
r is in the interior of P, a contradiction. This
establishes the correctness of the algorithm.

For the complexity of the algorithm, we note
that the vertex visibility graph G’ can be con-
structed in O(n?logn) time by fattening edges
of G and applying a visibility graph algorithm
of Ghosh and Mount [1]. The rest of the algo-
rithm can be implemented in O(n?) time.

Theorem 2.1 Given an embedding G of a 2-

302

Pi_1

Case 2

Figure 3: Two cases

connected graph, it can be determined in time
O(n?logn) whether G is a polygonal embed-
ding.

We remark that the 2-connectivity of G is
crucial for the algorithm to work. The algo-
rithm may fail when G has cut vertices.

3 Shortest Crossing-Free Paths

In this section, each edge e of G is associated
with a positive integer w(e) as its weight. A
path in G between two vertices is a crossing-
free path if no edge in the path intersects any
other edges and vertices in the path. A short-
est crossing-free path between two vertices is
a crossing-free path of the minimum weight.
We consider the problem of finding a shortest
crossing-free path in G between two given ver-
tices.

In spite of extensive research on shortest
path problems in graphs [5], to the best of
my knowledge, the shortest crossing-free path
problem has not been studied so far [2, 3, 4].




Polygonal Embeddings

Algorithms for shortest path problems fail to
work for the shortest crossing-free path prob-
lem. In fact, the complexity of the short-
est crossing-free path problem is unknown for
general embedded graphs; even the complex-
ity of finding a crossing-free path in G between
two vertices is unknown. In this section, we
present a polynomial-time algorithm for find-
ing a shortest crossing-free path between two
vertices in a polygonal embedding.

An important property of a polygonal em-
bedding is that the host polygon of the embed-
ding gives an ordering of the vertices along the
boundary of the polygon. This ordering of ver-
tices allows us to explore the embedded graph
in an orderly fashion by using a dynamic pro-
gramming approach.

Let v; and vy be the two vertices be-
tween which we wish to find a shortest
crossing-free path in G. For convenience,
we may assume that the vertices of G are
Vlye- s Uky Un—k, - .., u; counterclockwise along
the boundary of the host polygon P of G.
Let U; = {u1,...,u;} and V; = {vy,...,v;}.
For convenience, we regard Uy = { for any
k & {1,...,1}. Let G;; denote the embedded
subgraph of G that is induced by U; UV;. Then
Go,; is the embedded subgraph of G induced by
Vi and G = Gp—k k-

In order to construct a shortest crossing-
free path between v; and vk, we first define
two matrices Dy, = (dy(%,7))1.n~k1.k-1 and
D, = (dy(t,7))o..n—k,1.k to compute the length
of a shortest crossing-free path between v; and
vk. Let dy(2,5),1 <t <n—kand 1< j <Kk,
be the length of a shortest crossing-free path
between v; and w; in G;j;; and let d,(z,7),
0<i<n-—kand 1l < j <k, be the length
of a shortest crossing-free path between v; and
v; in G;;. Then dy(n — k,k) is the length of
a shortest crossing-free path in G between v;
and vy.

We will compute the two matrices D,, and D,

303

by a dynamic programming algorithm. Sup-
pose that @ is a shortest crossing-free path
in G;; between v; and u;. Then, obviously,
@ contains an edge u;z for some vertex z €
Uiy UVj. If ¢ = v for some 1 < j' < j then
the [vy, vjs]-section of @ is a shortest crossing-
free path between v; and v in G;-y ;. Oth-
erwise, z = uy for some 1 < ¢/ < 7, and the
[v1, uss]-section of @ is a shortest crossing-free
path between vy and wu; in Gy ;. Therefore,
we have the following recurrence relation for
dy(i,7), where Ng(z) denotes the set of ver-
tices adjacent to z in G:

For each 1 <7 < m—-—%kand 1l < j <
k, dy(i,7) = min{w(u;,vj) + dy(t — 1,7,
w(ui, ) + du(i',7) © vy € Ng(u;)) NV, and
uy € Ng(ui) N Ui}

Similarly, we have the following recurrence
relation for d, (¢, 7):

For each 0 <7< n—k, dy(3,1) = 0; and for
each0<i<n-—kand2<j<k dyij)=
min{w(vj, ui)+du (7, 7—1), w(vj, vj7)+dy (3, )
Tuy € N(;(vj) NU; and vy € Ng(vj) N V]}

It is important to note that in the above re-
currence relations, we assume that min ) = oc.
Now we can use these two recurrence relations
to compute the length of a shortest crossing-
free path in G between v; and vi. Figure 4 in-
dicates the entries in D, and D, that might be
used in computing d,(¢,7) and d,(¢,7). From
the figure, we see that we can fill matrices D,
and D, alternatively in a row-by-row manner:

d,(0,1) := 0;
for j := 2 to k do compute d,(0, j);
fori:=1ton—k do
begin for j:=1to k-1 do
begin
compute dy(7,7);
compute dy(2,7); { dy(3,1):=0}
end;
compute dy (%, k);
end;




Polygonal Embeddings

n-k

Figure 4: Dependence of entries in comput-
ing D, and D,. Black boxes indicate entries
that might be used in computing d,(z,7), and
shaded boxes indicate entries that might be
used in computing d,(z, j)-

To obtain a shortest crossing-free path in G
between v; and vi, we use p(z) to record a ver-
tex which is the current best candidate for the
vertex that lies on a shortest crossing-free path
from v; to z and immediately proceeds z. For
each vertex u;, whenever dy(7, ) is computed
for some 1 < j < k, p(u;) is updated to be
a vertex in U;—; UV, that produces the value
dy(2,7). For each vertex v;, p(v;) is updated in
a similar fashion. Now a shortest crossing-free
path in G from v; to vx can be obtained by
tracing back p(vk) recursively.

Figure 5 gives an example of the execution
of the algorithm on a polygonal embedding.

It is clear that the algorithm runs in time
O(n?), and we have the following theorem:

Theorem 3.1 A shortest crossing-free path
between any two vertices in a polygonal embed-
ding of a weighted graph can be found in O(n®)
time.

304

d,Gj) 1 2 3 4

0/0 1 o 5

u 1{0 1 3 4
V3 2\0 1 3 4

dyd 1 2 3
\] 1/eo 2 2

2\5 5 4
Vi p(X) Vo V3 V4 U u,

if[m] ¥2 (%] i

Figure 5: The execution of the shortest
crossing-free path algorithm on a polygonal em-
bedding. Thick edges indicate the resulting
path. Vertices inside boxes are the final ver-
tices stored in p(z).

4 Concluding Remarks

In this paper, we have introduced the notion of
polygonal embeddings of graphs, and presented
an efficient algorithm for recognizing polygo-
nal embeddings of 2-connected graphs. Fur-
thermore, we have also given an efficient algo-
rithm for finding a shortest crossing-free path
between any two vertices in a polygonal em-
bedding.

The subject of embedded graphs has not
been well studied, and many interesting prob-
lems remain open. We list a few open problems
pertaining to the material discussed in this pa-

per.

1. What is the complexity of determining
whether an embedding of a general graph
is polygonal?

2. Define interesting and useful classes of em-
bedded graphs.

3. What is the complexity of finding a




Polygonal Embeddings

crossing-free path between two given ver-
tices of a general embedded graph?

4. Design efficient algorithms for the single-
source and the all-pair shortest crossing-
free path problems on polygonal embed-
dings.

References

[1] S.K. Ghosh and D.M. Mount, “An
Output-Sensitive Algorithm for Comput-
ing Visibility Graphs”, STAM J. Comput.,
Vol. 20, No. 5, pp. 888-910, 1991.

[2] L. Guibas, private communication, 1995.

[3] H. Edelsbrunner, private communication,
1995.

[4] J. O’Rourke, private communication,
1995.

[5] R.E. Tarjan, “Data Structures and Net-
work Algorithms”, SIAM, 1983.

305




