Improved orthogonal drawings of 3-graphs

Therese C. Biedl

RUTCOR, Rutgers University,
P.O. Box 5062, New Brunswick, NJ 08903,
therese@rutcor.rutgers.edu, FAX (908) 445-54 72

Abstract

In this paper we deal with orthogonal drawings
of graphs with maximum degree 3. We present a
heuristic that works in linear time, and embeds
every connected simple graph in a grid where
the width and height each is at most [231], and
their sum is at most n. The number of bends is
at most % + 2. For the number of bends, this is
very close to optimality.

1 Background

Orthogonal graph drawings are an important
tool for graph layout, since the minimum an-
gle of 90° makes the drawings easily readable.
Specific uses include Data Flow Diagrams and
Entity Relationships Diagrams. The precise def-
inition is as follows:

An orthogonal drawing of a graph is an em-
bedding in the plane such that vertices are
drawn as points and edges are drawn as se-
quences of horizontal and vertical line segments.
A point where the drawing of an edge changes
its direction is called a bend of this edge. We
assume that all vertices and bends are placed
on points with integer coordinates. If the draw-
ing can be enclosed by a rectangle of width n;
and height n,, we call it a drawing with grid-size
ny X ng. The grid-size and the number of bends
are two of the most important measurements of
the quality of a drawing.

Orthogonal drawings exist only if every vertex
in the graph has at most four incident edges. On
the other hand, every such graph has an orthog-
onal drawing (for example with the algorithm in
[1]). The problem of minimizing the number of
bends is N'P-complete [3], and so is the question
whether a graph can be embedded in a grid of
prescribed size [4, 2].

Assume G is a simple connected graph with n
vertices. The algorithm of Biedl gives an n x n-

grid and 2n+2 bends [1]. The area was improved
by Papakostas and Tollis to 0.76n% [5]. In the
same paper, the authors also deal with 3-graphs,
i.e. graphs with maximum degree 3. They pro-
vided an algorithm for biconnected graphs that
produces a grid where the sum of the width and
height is at most n + 2, and there at most 3 +3
bends. For graphs that are not biconnected, the
number of bends increases.

In this paper, we develop a different algorithm
for 3-graphs, which improves on the one by Pa-
pakostas and Tollis in two ways. First, we show
that no increase is necessary for graphs that are
not biconnected: Every connected 3-graph can
be embedded with at most % + 2 bends. Sec-
ondly, we balance the relation of height and
width: in our algorithm, the height and the
width each is at most [2$!]. The difference
between the height and the width is at most 2,
while no such bounds are known for the algo-
rithm by Papakostas and Tollis.

Our algorithm is very close to optimality in
the number of bends. The K4 needs 4= 5 +2
bends in any orthogonal drawing. Concerning
larger n, there exist graphs which need 5 + 1
bends [6]. Our algorithm can be improved to
match this for graphs that are not biconnected.
Thus the only small gap is for biconnected graph
with n > 5 vertices. The best known lower
bound here is % bends [5].

2 Algorithm for 3-graphs
that are not 3-regular

Let G be a simple connected 3-graph with n =
n(G) vertices and m edges. G is called 3-regular
if every vertex has degree 3. In this case, m =
%n, and therefore n is even. In this section, we
assume that G is not 3-regular, i.e. there exists
at least one vertex with degree < 3. For a 3-

regular, we achieve this by subdividing one edge.

295

The basic idea to draw G is to build up
the drawing of G successively in some ordering
{v1,...,va} of the vertices. As first vertex, we
choose a vertex with degree < 3. We use a DFS-
ordering, which is the ordering produced while
traversing the graph with depth first search.

We consider the edges to be directed from the
lower-numbered to the higher-numbered vertex.
Thus, we have for every vertex the neighbors di-
vided into predecessors and successors, and the
edges divided into incoming and outgoing edges.
We denote the number of incoming (outgoing)
edges of v with indeg(v) (outdeg(v)). In a DFS-
ordering, all vertices but v; have indeg > 1.
Since we have a 3-graph and since deg(v1) < 2,
all vertices have outdeg < 2. When writing an
edge e as (v;,v;), we assume that e is directed
from v; to v;.

To route the edges, we color them with two
different colors in a special way. Namely, let an
rb-coloring be a coloring of the edges with the
colors red and blue, such that for every vertex v
(1) the incoming edges all have the same color,
and (2) the outgoing edges have both colors, if
outdeg(v) > 2. We will show the existence of
such a coloring later.

The invariant of our algorithm is that when
{v1,...,vs} are embedded, then for every edge
e = (vi,u), ¢ < k < [that is colored red (blue),
the ray leaving from v; to the right (bottom)
direction is empty. We embed v;,2=1,...,n as
follows:

o If indeg(v;) = 0: Since we used a DFS-
ordering, and since the graph was con-
nected, we must have i = 1, so this case
happens only once. If outdeg(v1) = 2, then
one outgoing edge is red, and another out-
going edge is blue. v; can be embedded
with one row and column.

T..r.. ..@..'...... ,
¢b i 3
.

Figure 1: Embedding of v;, for different degrees
and colorings. Free rays are show as thick dotted
lines.

o If indeg(v;) > 1: By the invariant, either
all incoming edges use rays to the right, or
they all use rays to the bottom. Therefore,
we can add a grid-line perpendicular to the
rays of the incoming edges of v;, and place
v; with indeg(v)—1 bends. If indeg(v;) = 2,

then we have two possible placements for v;,
and we choose the one as far to the right
and down as possible.

If indeg(vi) < 2, then thus we have the
ray to the right and the ray to the bot-
tom free at v;. Since we have a 3-graph, v;
has at most two outgoing edges, and if it
has two, then they are colored in different
colors. Therefore we can always assign the
correct ray to the outgoing edges.

Figure 2: Embedding v;, ¢ > 2. We show only
the case that all incoming edges are red.

Lemma 2.1 There are at most m—n+1 < 1%1
bends.

Proof: For every vertex v; # vy, we add
indeg(v;) — 1 bends; for vy, we use no bend.
Since indeg(v1) = 0, the total number of bends
is 3,y (indeg(v)—1)+1 = m—n+1. Since we
have a 3-graph and since deg(vy) < 2, we have
2m = Y v deg(v) < 3(n — 1) + 2, therefore
m < 32=1 "and the number of bends is at most
m-n+1<3+ % m]

Since we add rows and columns at the bot-
tom or at the right, we can assign them increas-
ing numbers. Then comparing them takes O(1)
time, and handling each vertex takes O(1) time
as well. This gives a total time complexity of
O(n), assuming that we can compute the rb-
coloring in O(n) time.

3 Computing an rb-coloring

We will show the existence of an 7b-coloring for
any finite graph, not only for 3-graphs. Per-
form a depth first search for computing the
DFS-ordering {v1,...,vs}, and for directing the
edges. This yields the DFS-tree T rooted at

296

v3. We distinguish the edges into tree-edges and
non-tree-edges (also called NT-edges). A DFS-
tree has the property that if (v;,v;) is an edge,
then there exists a directed path of tree-edges
from v; to v;. Therefore, if »; has any outgo-
ing edges, then it also must have at least one
outgoing tree-edge.

In the following, we show the algorithm to
compute the rb-coloring. While doing this, we
also define a partition of the edges into streaks.
These streaks are not necessary for computing
just any rb-coloring, but they will be useful later
when we want to compute a special rb-coloring.

rb-COLORING

for i = n — 1 downto 1:
if outdeg(v;) > 1:
Let e1,...,e, be the outgoing tree-edges
of v;. We have s > 1.
Let €),...,€e, be the outgoing NT-edges

of v;, r > 0.
We will show: e;,...,e, are uncolored,
€},...,e, are colored.
ifr=0:
Start a new streak,
consisting of ey, ..., e,.

Color e; red, and
color ez, ...,e, blue.
else
Assign €3,...,€;
to the streak of e}.
Color ey,...,e, in the
opposite color of e].

for j=1,...,s,
Assume e; = (vi, V).
Let €1,...,&p be the
incoming edges of v, €; = e;.
&z,...,€; are NT-edges.
Assign €, ...,€&p to the streak of e;.
Color them in the color of e;.

Clearly, rb-COLORING works in O(m) time.
By induction one can show directly that if
(vj,ve) is a tree-edge, then it is colored in step
i = j, while if it is an NT-edge, it is colored in
step ¢ = k. This proves the invariant of the algo-
rithm. So we only need to show the correctness.

Lemma 3.1 The resulting coloring is an rb-
coloring.

Proof: Assume v; has indeg(vi) > 1. Then
v must have an incoming tree-edge e = (vj, vk).

We colored e with some color in step 2 = 5. In
the same step, we also colored all incoming edges
of v; with the same color as e. So incoming
edges have one color.

Assume vy has outdeg(vi) > 2, and consider
the step ¢+ = k. We distinguish whether » = 0 or
r > 0. If » = 0, we colored e; red, and e3,...,e,
blue. Since s = outdeg(vi) > 2, we have both
colors among the outgoing edges. If » > 0, then
we colored e; in the opposite color of €}, so we
have both colors among the outgoing edges. O

4 A balanced rb-coloring

We will in the following assume again that we
have a 3-graph, and that deg(v;) < 2. Let an
rb-coloring be given, and define rv (bv) to be
the number of red (blue) tree-edges. We have a
width and height of 0 after embedding v;. Ev-
ery v;, ¢ > 2 must have an incoming tree-edge.
When embedding v;, we add one unit of width
if the incoming tree-edge is red, and one unit of
height if the incoming tree-edge is blue. There-
fore, the obtained grid-size is rv x bv. Using just
any rb-coloring, we could get a very big width
and small height. For example, for an n-cycle we
color all edges red, except for the edge (v1,v2),
so we get a (n—2)x 1-grid. But width and height
can be balanced with a special rb-coloring.
Assume that S is a streak computed during
rb-COLORING. For every edge in S, we define
the generation as follows. The tree-edges that
started the streak are the generation 0. An NT-
edge ¢’ is added to the streak because of a tree-
edge e incoming into the same vertex. We set
the generation of ¢’ to be one higher than the
generation of e. A tree-edge e that is not in the
first generation is added to the streak because
of an NT-edge €’ outgoing of the same vertex.
We set the generation of e to be the same as
the generation of ¢’. Set t(%) and nt(z) to be the
number of tree-edges (NT-edges) of generation 2.

Lemma 4.1 Assume G is a 3-graph and
deg(v1) < 2. Let e = (vj,vx) be a tree-edge
of generation g. If g > 1, then outdeg(v;) = 2,
and indeg(vi) < 2.

Proof: We know outdeg(v;) < 2 by the as-
sumptions. Since the generation of e was g > 1,
e was added to the streak due to some NT-edge
e’ = (vj,v). So outdeg(v;) > 2.

297

Since ¢’ was an NT-edge, there is a directed
path P of tree-edges from v; to v;. The first edge
on this path must be e, since we just showed that
v; has only one outgoing tree-edge. Therefore,
the endpoint v; of e also must have an outgoing
tree-edge (the second edge on P), which implies
indeg(vx) < 2. O

With this, one can show that t(i + 1) <
nt(i) = t(i) for 7 > 1. Also, since every vertex
has indeg < 3, we have t(1) = nt(1) < 2¢(0).
Since every vertex has outdeg(v) < 2, we have
t(0) < 2. The streak thus has a structure
as the one shown in Figure 3. Let R(S) and
B(S) be the number of red-colored and blue-
colored tree-edges in S, and define the discrep-
ancy A(S) = |R(S) — B(5)|.

#(3) =2
#(2) =3
t(1) =4
#(0) = 2

Figure 3: Examples of a streak, shown with the
solid arrows (the thick lines are tree-edges). The
dashed arrows mark that there must be a path of
tree-edges (they need not belong to the streak).

Lemma 4.2 Assume G is a 3$-graph and
deg(v1) < 2. Then for any streak S, A(S) < 2.

Proof: Assume first (0) = 1. We colored the
single tree-edge of generation 0 red. Therefore,
the NT-edges of generation 1 are colored blue,
and so are the tree-edge of generation 1. Iterat-
ing this, we find that the tree-edges of genera-
tion g are red if g is even, and blue if g is odd.
Therefore, R(S) = t(0) +t(2) +t(4) + ... <
t(0)+¢(1)+¢(3)+...=1+ B(S), and B(S) =
(1) +£(3)+4(5) +. .. < 2t(0)+t(2)+t(4)+... =
14+ R(S). So A(S)< 1.

Assume t(0) = 2. The two outgoing edges e;
and ez of v define two substreaks S; and S,
and each of those has discrepancy A(S;) < 1.
Combining the two, we get a discrepancy of at
most 2. O

For example, in Figure 3, the discrepancy is 2.

Note that if we switch all colors to the opposite
in one streak, the resulting coloring is still an
rb-coloring. Therefore, we can switch the color-
ings for some of the streaks to get an rb-coloring
where |rv — bv| < 2. We may switch all colors
to get rv > bv. Computing the A(S;) can be
done while coloring the streaks, and we recolor
every edge at most twice. Since m < %n, we
have shown the following.

Lemma 4.3 Let G be a 3-graph, oriented with
a DFS-ordering {v1,...,v,} with deg(v1) < 2.
Then there ezists an rb-coloring such that 0 <
rv — bv < 2. I can be computed in O(n) time.

Theorem 1 There ezists a linear time algo-
rithm to drew any connected 3-graph G orthogo-
nally in a [24] x [241]-grid. The sum of width
and height is at most n, and the number of bends
is at most 5 + 2.

Proof: Assume G is not 3-regular. Choose
v; with deg(v1) < 2, and start the depth first
search with v;. Then, compute an rb-coloring
as in Lemma 4.3, and apply the algorithm. We
get an rv X bv-grid, with rv > bv > rv—2. Since
rv + bv counts the tree-edges, rv + bv = n — 1;
therefore rv = n—1—-bv < n—-1-rv+2,
or rv < 231, The number of bends is 231, by
Lemma 2.1.

If G is 3-regular, we subdivide one edge and
get a graph G’ with n’ = n + 1 vertices. G’
is not 3-regular, so we can embed it in a grid
of width and height at most ["—';—1] = [242] =
[2£1], since n is even. As shown in the first
half of the proof, the sum of width and height
is in fact n’ — 1 = n, and there are at most
"—1;—1 bends. In order to get a drawing of G, we
remove the vertex of the subdivision, and this
may create one more bend. So the drawing of
Ghasl+ﬁz’—2=-’25+2bends. O

5 Remarks

In this paper, we presented an algorithm that
produces an orthogonal drawing of any 3-graph,
in a grid of width and height [2+1], and with
at most 5 + 2 bends. We have the following
remarks:

o Storer [6] gave a class of connected simple
3-graphs that need 3 + 1 bends in any or-
thogonal drawing, so for the bends we are

298

References

[1] T. Biedl, Embedding Nonplanar Graphs
into the Rectangular Grid, Rutcor Research
Report 27-93. 1

See also: T. Biedl, and G. Kant, A bet-

ter heuristic for orthogonal graph drawings,

Proc. 2nd European Symp. on Algorithms

(ESA’94), Lecture Notes in Comp. Science

855, Springer-Verlag (1994), pp. 124-135.

M. Formann, and F. Wagner, The VLSI

layout problem in various embedding mod-

els, Graph-Theoretic Concepts in Comp.

Science (16th WG’90), Springer-Verlag,

Berlin/Heidelberg, 1992, pp. 130-139.

[3] A. Garg, and R. Tamassia, On the compu-
tational complexity of upward and rectilin-
ear planarity testing, Proc. Graph Drawing
’94, Lecture Notes in Comp. Science 894,
Springer Verlag (1994), pp. 286-297 .

M.R. Kramer, and J. van Leeuwen, The
complexity of wire routing and finding min-
imum area layouts for arbitrary VLSI cir-
cuits. Advances in Computer Research, Vol.
2: VLSI Theory, JAI Press, Reading, MA,

close to optimality. In fact, we are opti-
mal for small n: The K4 has 4 vertices and
needs 4 bends in any orthogonal drawing
(otherwise the graphs by Storer could be
drawn with less bends).

e For graphs that are not biconnected, the
lower bound by Storer can be matched with
our algorithm, with only a small change.
There is hardly any practical advantage of
this change, but it is nice to know that the
upper and lower bounds match.

(2]

Namely, assume G is not biconnected.
Then there exists a cutvertex, and it is in-
cident to an edge whose removal splits G
into two subgraphs, G; and G2. Let the
endpoints of this edge be v; and vz, with
v; € Gi, i = 1,2. Embed G; with v; as
the first vertex, this gives a drawing with
ﬁ%l_ﬂ bends. v; is in the left upper cor-
ner of the drawing of G;, and by rotating
the drawing of G2, we can connect »; and
v, without adding a bend. Therefore, the
final drawing has "—(29 + 1 bends.

In our algorithm, we always added a new
row/column when needed. For an imple-
mentation, one should try whether it is pos-
sible to reuse an old row or column. This
will often save grid-size. Can any better
worst case lower bounds be shown using
this approach?

Is there a simpler way to determine the

1992, pp. 129-146.
(8]

Verlag (1994), pp. 40-51.
Revised and corrected version
http://wwwpub.utdalllas.edu/~tollis

A. Papakostas, and I.G. Tollis, Improved
algorithms and bounds for orthogonal
drawings, Proc. Graph Drawing °94, Lec-
ture Notes in Comp. Science 894, Springer-

[6] J. Storer, On minimal node-cost planar em-

rb-coloring with |[rv — bv| < 27 Is there 0
beddings, Networks 14 (1984), 181-212.

a straight-forward characterization of those
tree-edges that should be red?

e Is it possible to use colorings for other or-
thogonal graph drawing algorithms as well?
Notice that the algorithm in [1] is in some
sense an algorithm where all edges have
been colored with one color. It would be
nice to see algorithms where edges are col-
ored differently, so that then the drawing
grows to up to four sides simultaneously.
One would expect that this spreads out the
vertices more evenly in the grid.

Acknowledgements

1Rutcor Research Reports are available via anony-
mous FTP from rutcor.rutgers.edu, directory /pub/rrr;
or on the WWW at http://rutcor.rutgers.edu/~rrr.

The authors wants to thank Endre Boros and
Alexander Lawrenz for useful discussions.

299

