On a problem of immobilizing polygons.
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Abstract: For a given polygon P and a set I of points (pins) in the plane, we say that I immobilizes P if any
rigid motion of P in the plane forces at least one pin of I to penetrate the interior of P. We give an O(n) al-
gorithm checking whether a given set of n pins, different from convex vertices of P, immobilizes it. We
also prove that from any set of immobilizing pins we can choose four of them which will also immobilize P.

1.Introduction.

Let P be a polygon and I a set of n points (pins) in the plane.
We say that I immobilizes P if any rigid motion of P in the
plane forces at least one of the pins of I to penetrate the interior
of P. As for small motion only pins from the boundary of P
may penetrate it, we will suppose that all pins actually belong
to the boundary of the polygon. A rigid motion of polygon P
in the plane is a mapping M (different from identity) from the
set txP (t represents time) to the plane, continuous with re-
spect to its first coordinate, such that for every pair of points
u, ve P the distance between their images remains constant for
all t and M(0, u)=u for every element of P. A set of points I
immobilizes the shape P if the only motion of P which does
not allow the penetration of some element of I to the interior
of P is the identity M(t, u)=u for all t and u.

Problems of immobilization were introduced by W. Kuper-

berg [K] and some of them were later reported in [O]. These

problems generally concerned two classes of figures: shapes

and polygons. We call a shape any figure bounded by a Jor-

dan curve which is different from a circle. The circle is obvi-

ously excluded from consideration since any number of pins

on its boundary leave it free to rotate. For polygons, some in-

teresting algorithmic questions arise.

- Are four pins sufficient to immobilize any shape?

- Do three pins suffice for all smooth convex shapes?

- Find all classes of convex shapes for which three pins are not
sufficient.

- Design an algorithm finding a set of immobilizing pins for a
given polygon.

- Design an algorithm deciding whether a set of n given pins
immobilizes a given polygon.

Some of this questions may be partially answered using
known results from grasping. For piecewise smooth shape P,
Mishra, Schwartz and Sharir [MSS] as well as Markenscoff,
Ni and Papadimitriou [MNP] studied the problem of closure
grasp, i.e. the ability to respond to any external force or torque

by applying appropriate forces at the grasp points. They
proved that there exists the force-torque closure grasp of the
shape P, using a minimal set S of four finger points. The set S
may be found in O(k) time, for the shape S being a polygon of
k vertices, see [MSS]. It follows that any rigid velocity of P
causes at least one of point of S to have an instantaneous ve-
locity strictly directed towards the interior of P (see [MS]). As
a consequence, the set S of four pins would immobilize P.
However, such set S of four grasping fingers is not the small-
est possible for the immobilizing purpose. Czyzowicz, Stoj-
menovic and Urrutia [CSU2] proved that for most polygons,
including all polygons without parallel sides, three immobiliz-
ing pins may be always found. They propose an O(n) algo-
rithm finding these three pins. They also have exact
combinatorial bounds for higher dimensions. For the case of
smooth and convex shapes, using tools of differential geome-
try, Montejano and Urrutia [MU] proved that three immobi-
lizing pins are always sufficient. Finally Czyzowicz,
Stojmenovic and Urrutia [CSU1] settled the question for gen-
eral shapes, proving that four immobilizing pins are always
sufficient.

In this paper we propose an algorithm determining whether a
given set of n pins immobilizes the polygon P. If the positions
of the pins are different from convex vertices of P we have an
O(n) algorithm to check whether I immobilizes P. If I does not
immobilize P this algorithm may also output a possible motion
of P so that no pin of I penetrates the polygon. When k pins are
situated at the convex vertices of P, this algorithm must be ad-
justed correspondingly and, it may be proved, that its com-
plexity increases to O(n2), O(n-2K) or O((n+k2) log n). If the
set I immobilizes P we prove that we can choose four pins of
I which will also immobilize P.

The idea of the main algorithm is the following. Any position
of the polygon P may be expressed as a composition of a trans-
lation and a rotation, applied to the original position of P. This
new position of the polygon may be expressed as the point in
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the three-dimensional space. A motion of P is then represented
as a curve in this space (called motion space). For each pin p;,
we compute the region (called feasible region) of the motion
space representing the positions of P when p; does not pene-
trate the interior of P. If the intersection of such regions com-
puted for all the pins of I is not degenerated to a single point
(i.e. the original position of P) then there exists a motion of P.
In most cases, it is not necessary to compute the intersection
of all feasible regions. The algorithm will determine first,
whether this intersection is a zero-, one-, two- or three-dimen-
sional set. Then, depending on the case, the algorithm will act
accordingly.

1. Preliminaries.

Theorem 1.1. (Meggido [Me83]): Two dimensional linear
programming can be solved in linear time with respect to the
number of constrains.

Meggido’s theorem implies the following:

Corollary 1.1. Given a set H of n halfplanes in the plane we
can check in O(n) time whether their intersection is:

a) empty.

b) a point.

c) one-dimensional (segment, semiline or line).

d) non-degenerated two dimensional convex region.

Theorem 1.2. ([CSU]). Let be given a polygon P and three
points X, Y and Z belonging to the interior of three edges x, y
and z of P, respectively. X, Y and Z immobilize P, if and only
if two following conditions are verified:
1) perpendiculars to x, y and z at X, Y and Z respectively,
meet at a common point,
2) three halfplanes bounded by x, y and z, containing the in-
terior of P in the neighborhood of X, Y and Z respective-
ly, have a nonempty, finite intersection.

From the proof of this theorem it followed

Corollary 1.2. If the three perpendiculars do not meet at a
common point and no two of them are parallel then there exists
arotation of P, such that no pin penetrates the interior of P.

Theorem 1.3. (Helly [H]) There exists a point which inter-

sects a finite family of convex sets in Ed if and only if the in-
tersection of every d+1 sets is non-empty.

2. Releasing motions and feasible regions.

In order to decide whether a set of pins immobilize a given
polygon we have to check if there exists a releasing motion,
i.e. a motion with no pin penetrating the interior of the poly-
gon. In this section we will observe some facts concerning
these motions, essential to find an efficient algorithm.

For polygon P and a set I of pins on its boundary we choose as
€(P,I) a value smaller than a distance between any two pins of
I and smaller than a distance between any pin and any side of
P not meeting this pin. As P is simple, we can always choose
€(P,I)>0. A motion of P will be called small if the distance be-
tween any point of P and its image after the motion is smaller
that €(P,I). In the sequel a motion refers to a small motion. In-
deed, as motion any of P is a continuous function, the exist-
ence of a motion for given I implies the existence of a small
motion. For small motions, a pin may penetrate the interior of
polygon P only through the side of P containing it; penetration
of the interior of P by a pin is then equivalent to the penetration
of the halfplane determined by the side of P containing the pin.
The complement of such halfplane of penetration will be
called halfplane of release.

The definition of motion M in the introduction implies, that
for every t, the mapping M(z,.) is an even isometry of the
plane. As every even isometry of the plane is a composition of
a rotation around any point O and some translation, we may
consider the following alternative definition of motion.

Choose a point O in the plane. Motion in the plane is a map-
pingF(t)= (P(t), X(t), Y(t)); te [0..1], where F(0)=(0,0,0), and
®(1), X(t) and Y(t)) are continuous functions. F(t’) represents
here the position P’ of the polygon at the time moment t’. The
position P’ is obtained, by applying to the original position P,
arotation around O by an angle ®(t’), 0<®(t’)<m, followed by
the translation by a vector (X(t’), Y(t")). F(t) will be called a
motion curve in the three-dimensional motion space M. Obvi-
ously, the mapping M(t,.) is continuous if and only if ®(t),
X(t) and Y(t)) are all continuous.

We start by few lemmas. Their are either easy, or they are
omitted in this abstract.

Lemma 2.1. Let be given n points on the boundary of a given
polygon P but not at the convex vertices of P. In O(n) time we
can decide if there exists a releasing translation of P.

Lemma 2.2.Suppose that there exists a releasing (small) mo-
tion of the polygon P moving it to the new position P’. If P is
the image of some translation of P then this translation is also
areleasing motion.

For any particular pin on the boundary of a given polygon con-
sider the motions of this polygon to the new positions with the
pin not penetrating its interior. All such positions form a re-
gion in the motion space M which we will call the feasible re-
gion. Any releasing motion for a particular pin must be
represented by a motion curve belonging entirely to this re-
gion. To find the feasible region for a pin p suppose that the
polygon is given as a sequence of sides oriented clockwise,
and p belongs to the interior of a side of the polygon. Let o be

the vector of this side and oL vector orthogonal to o, oriented
towards the exterior of the polygon. Let y denote an angle,
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dist(p ., p’) = p(siny-sin(¢+y))

Figure 1.

oriented counterclockwise, between o and the vector (O,p)
and p= | ©O,p) | . Rotate the pin p counterclockwise around the
point O by an angle ¢ (see Fig. 1). This may be interpreted as
the rotation of the polygon clockwise by ¢ with the pin re-
maining fixed. What must be the translation following that ro-
tation to keep the pin p outside the interior of the polygon?
The distance between p’, the new position of the pin, and the
side of the polygon which contained p is equal to p | siny-
sin(¢+y) ' . In the situation from Fig.1, p’ is inside the poly-
gon, so the coordinate of the vector of translation in the direc-
tion o is at least equal to p(siny-sin(¢p+y)). Observe that this
value is positive when p’ is inside the polygon and negative
when it is outside, independently on the position of O with re-
spect to the pin p and the side containing it. The feasible re-
gion R(p) is now given by

R(p) =(0, (p(siny-sin(@+w))+ 1) * ot/ | ol [+ s o | a]), £20
For any fixed ¢ this region is a halfplane bounded by the line
parallel to o.. Cutting R(p) with the plane orthogonal to o we
get a sinusoid

oL (0)=p(siny-sin(o+y))/ | oL .

Lemma 2.3. Let x be the point in one of the halfspaces ¢>0 or
9<0 and not belonging to the plane tangent to R(p) at point O.
If x lies on the same side of tangent plane as the interior of
R(p) in the neighborhood of O, then some part of the segment
(0,x) in the neighborhood of O lies entirely in the interior of

R(p).
3. Main theorem.

If each of n pins of I lies on the boundary, but not at a vertex
of P, areleasing motion exists if and only if the common inter-
section of n feasible regions contains some curve starting at O.

Lemma 3.1. The feasible region for the pin placed at a reflex
(respectively convex) vertex is the intersection (respectively
union) of two feasible regions: each one arising from the pin
being placed on one of the segments adjacent to the vertex.

Figure 2a. Figure 2b.

This lemma will permit to extend the consideration from pins
placed in the interior of polygon edges to pins which may be
placed at reflex vertices as well. When checking immobiliza-
tion by a set of pins, a pin at a reflex vertex is equivalent to two
pins, one on each of the two adjacent sides.

The following two lemmas relate to the special cases of the
placement of the set of pins.

Lemma 3.2. Let be given a collection of n pins placed on the
parallel sides of the polygon P and belonging to a common or-
thogonal to these sides. There exists a releasing motion differ-
ent from translation if and only if no two halfplanes of release
have an empty intersection.

Lemma 3.3. Suppose that for a set of n pins, each belonging
to the interior of a side of a polygon P, such that the lines or-
thogonal to these sides at the pins are concurrent. There exists
areleasing motion different from translation if and only if nre-
leasing halfplanes have a nonempty intersection.

According to an earlier observation, there exists a releasing
motion different from translation, if and only if, in the neigh-
borhood of the origin O for @ 0, (or for® 0), the intersection of
all feasible regions R(p;), i=1,...,n, is nonempty. Take the case

@ 0 (by symmetry all the considerations will extend to the case
@ 0). As we do not really need to compute this intersection, we
will estimate its existence by approximating the boundary of
each feasible region R(p;) by a plane tangent to it at O. Thus
each feasible region is approximated in the neighborhood of
0, by a halfspace bounded by this tangent plane. Cut these
halfspaces by the plane ®=0¢,, ¢,>0, parallel to (X,Y). Let
H(p;) denote the halfplane being the intersection of this cut
®=0,, and the halfspace approximating R(p;). Consider the
intersection of all the halfplanes H(p;), i=1,...,n, resulting from

this cut. The following theorem will be used to decide if there
exists a releasing motion which is different from translation.

Theorem 3.1.

a) Let H denote the intersection of the halfplanes H(p;),
i=1,...,n, defined as above. If H is a two-dimensional object
(polygon) then there exists a releasing motion different from
translation.

b) if H is a one-dimensional object (line, semiline or line
segment) then let {p;}, pj2,--Pjk}> k 2, be the set of all pins,

such that each halfplane H(p,-j), 1jk, have H on its boundary.
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There exists a releasing motion different from translation if
and only if for any two pins Pip and piq,l p,q k, their halfplanes
of release have an empty intersection.

¢) if His a zero-dimensional object x (point) then let {p;,

Pio»-Pik}» k 2, be the set of all pins, such that each halfplane
H(P,‘j), 1j k, containsc on its boundary. There exists a releas-

ing motion different from translation if and only if the inter-
section of all the halfplanes of release for the pins {p;;,

Pi2s--Pik} 1s nonempty.
d) if H is empty then there exists no releasing motion dif-
ferent from translation.

Proof:

a) Take a point x in the interior of the polygon H. By lem-
ma 2.3, in the neighborhood of O, the line (O,x) belongs to
each feasible region. This line is then the releasing motion
curve.

b) Take a point x in the interior of the line (semiline, line
segment) H. From lemma 2.3 it follows that some cone with
the vertex O and axis (O,x) belongs entirely to any region
R(p), such that H does not lie on the boundary of H(p). On the
other hand if there exists a releasing motion then there exists a
releasing motion inside this cone. As a consequence a releas-
ing motion exists for the original set of pins, if and only if it
exists for the set of pins {p;], P;2:---Pik}-

Observe that as the planes H(pij), j=1,....k, are all the same
they correspond to the pins placed at the parallel sides of P.
We will prove that the pins p;J, pj2-...pj belong toacommon

orthogonal to these sides. Observe that the plane (9, obycuts
all the feasible regions R(p;;), R(p;2), - - -R(pj)) at the same

angle. Thus the derivative in the direction oL, that is the value
pij cosy;j must be the same for all pins p;;, j=1,....k. The locus

of such points is the line perpendicular to o (see Fig. 1). The
claim follows now from lemma 3.2.

c) The same argument as in point b) proves that releasing
motion exists if and only if it exists for the set of pins {p;},

pi2»-Pik} Where each halfplane H(pij), j=1,...,k, contains p

on its boundary.

We prove now that all the orthogonals at the points p;j,
Pi2»---Pik to the corresponding sides of the polygon P meet at
a common point. If p lies on the ¢ axis then O belongs to each
orthogonal; suppose then that p is outside the ¢ axis. It is suf-
ficient to prove that every three orthogonals meet a2 common
point. Take any three pins py, py and p,.. If among the half-
planes H(p, ), H(py ) and H(p; ) there are two (or three)
bounded by the same line, then, as in point b), the correspond-
ing pins lie on the common orthogonal and the three orthogo-
nals have a nonempty intersection. We may suppose then that

the three halfplanes are bounded by different lines. In such a
case we may reorient some of the halfplanes H(p. ), H(py )and

Hp,), if necessary, so that their intersection becomes exactly

point p. This reorientation corresponds to the reorientation of
the interior and exterior of the sides of polygon P containing
the corresponding pins. Obviously this does not affect the or-
thogonals and the reoriented sides may be completed to a new
polygon P’. The three pins py, , Py and p,. may (or may not)

immobilize P’, but it is easy to see that any releasing motion
must not be a rotation. Otherwise, some segment along the ¢
axis starting at O would have to belong to all feasible regions
R(py), R(py) and R(p,). As p does not lie on the ¢ axis this

cannot happen. Observe, that this is true for both halfspaces ¢ 0
and ¢ 0, that is for clockwise and counterclockwise rotations.
However, by corollary 1.2, this is possible only when the three
orthogonals at py, py, and p, to the corresponding sides of P’

meet at a common point.

d) By Helly’s theorem (1.3) there are three halfplanes with
empty intersection. There are two cases:

Case 1. Two lines bounding these halfplanes, say H(pj) and
H(py), are parallel. The plane containing some line located be-

tween these two and parallel to them as well as point O will
separate R(p;) and R(p)) for small values of ¢>0.

Case 2. Three halfplanes, say H(p;), H(pp) and H(p3), are
bounded, respectively, by three lines 11, 17 and 13 forming a

triangle. Choose a point x in the interior of this triangle and
three lines1y’, 1o’ andl3’, such thatl;’ is parallel to l; and such

that 1;” separates 1; from x, i=1,2,3. In some neighborhood of
O the halfspace bounded by the plane containing l;” and O, and
not including x, contains R(p;). As these three halfspaces have
only O in common, the three feasible regions R(p), R(»2)
and R(p3) have empty intersection in the neighborhood of O.

Theorem 3.2. In a set of pins immobilizing a polygon there
exists a subset of four pins which also immobilize it.

Proof: omitted in the abstract. It’s idea in general case is to ap-
ply Helly’s theorem to the set of open halfspaces, each bound-
ed by a halfplane tangent to a feasible region.

Theorem 3.3. The smallest set of pins immobilizing polygon
P may be found in O(n3) time.

Idea of the proof: It is possible to check in O(nz) time if P ad-
mits two immobilizing pins, because one pin must be at a re-
flex vertex, and another one on a side or at another reflex
vertex.
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We use corollary 1.2 and lemma 3.3 to check whether three
pins, each placed in the interior of some side of P, immobilize
it. For every triple of sides of P, we check whether three half-
planes of release have a nonempty intersection. We can also
check in constant time existence of a point in the plane whose
perpendicular projections lie, respectively, on actual sides
(rather that their extensions). Such projections would be the
positions of immobilizing pins. More technical and longer
analysis is needed to deal with pins which may be placed at the

vertices of P. This step is completed within O(n3) time.

If three immobilizing pins are not found, four pins are found
applying O(n) algorithm resulting from [MSS], [MNP] and
[MS] (see introduction).

4. The Algorithm.

Lemma 2.2 permits to investigate the existence of the motion

by considering only:

a) translations (motion curve being a segment in the plane
©=0),

b) motions whose curves lie entirely in the halfspace =0 or
in the halfspace ®<0.

Indeed, suppose that F(t)= (D(t), X(t), Y(t)) is a releasing mo-
tion. If the curve F(t) crosses the plane ®=0 in every neighbor-
hood of the point O, then we can find a position P’ of the
polygon which is the image of a (small) translation of P. Ac-
cording to lemma 2.2 this translation is also a releasing mo-
tion. In other case, in some neighborhood of O the motion
curve F(t) lies entirely in one of the halfspaces ®>0 or ®<0.
The following algorithm will search for the releasing motion
in the halfspace ®>0 (the same algorithm applies in the sym-
metric case).

Algorithm 4.1.:

Input: Set I of n pins on the oriented sides of the polygon P.

Output: Decision whether there exists a releasing motion of
P in the halfspace ®>0, which is different from translation.

1. for eachpin p; on the side s; do compute R(p;);

2. for each R(p;) do
compute H(p;) the halfplane arising from intersection
of the plane ®=0,,, (¢,>0), with the halfspace
approximating R(p;), bounded by the plane tangent to
R(p;) at the point O.

3. decide if the intersection H of H(p;), i=1,2,...,.n,is a

nondegenerated polygon, line, semiline, point or empty.
4.1. if H is a nondegenerated polygon

then there exists a releasing motion
4.2. elseif His a segment, semiline or line then

begin
Sp={}:Sy={}h
for each p; do
if H(p; ) is bounded by the line containing H then

42.1.

if H(p; ) is oriented upwards
then S; :=5; U {p;}
else Sy :=Sy U {p;};

422. compute Ry - intersection of halfplanes of release

of all pins in S1 and Ry - intersection of halfplanes
of release of all pins in Sp;

423. if Ry N Ry is non-empty

then there exists a releasing motion
else all motions for ®>0 cause penetration
end
4.3. elseif H is a point then
begin
S:={}

43.1. for each p; do

if H(p; ) contains H on its boundary
then S :=S U {p;};

432. decide whether R - intersection of halfplanes of

release of all pins in S is empty;
433. if R is nonempty
then there exists a releasing motion
else all motions for >0 cause penetration
end

4.4. else all motions for ®>0 cause penetration.

Theorem 4.1. It can be decided in O(n) time whether the poly-
gon P is immobilized by a given set I of n pins, different from
convex vertices of P.

Proof: Observe first that if the pin p is at a reflex vertex of P,
according to lemma 3.1, it may be treated as two pins, belong-
ing to two sides of P adjacent at p. To find a releasing motion
we check first in O(n) time, following lemma 2.1 whether
there exists a releasing translation. Then we run Algorithm
4.1. twice (once for ®>0 and second time for ®<0). The first
two steps of the algorithm obviously take O(n) time. Using lin-
ear programming, steps 3 and 4.3.3 take O(n) times following
corollary 1.1. Each iteration of the for loops from step 4.2.1
and 4.2.3. takes a constant time. Steps 4.2.2 and 4.2.3 are also
linear as all the halfplanes of release are bounded by the par-
allel lines. §

An interested reader may observe that if some pin p is placed
at a convex vertex of P, according to lemma 3.1, H(p) is a
union of two halplanes rather than a single halfplane. Steps 2
and 3 of Algorithm 4.1 must be adjusted accordingly. As re-
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gion H from step 3 is now nonconvex and not necessarily con-
nected, linear programming algorithm can no longer be used
here (note that H was not in fact computed in the algorithm).

Instead, we can apply, for example, the O(n2) topological
sweep (see [EG]). The treatment in steps 4.2 and 4.3 must be

also modified. Other O(n-2k) or O((n+k2) log n) algorithms (k
is the number of pins placed at convex vertices) may be also
possible here.

5. Conclusions and open problems

One natural way of extension of this work is to consider high-
er-dimensional case. Although the general case (nondegener-
ated or empty H) may still be treated in O(n) time, it is not
clear how to deal with degenerated cases.

We conjecture that theorem 3.2 will also extend to d-dimen-
sional polytopes and that from the set of n immobilizing pins
we can choose 2d of them which will be also sufficient to im-
mobilize.

It is also interesting to give a good algorithm dealing with pins
placed at convex vertices. However, as H may then split into
Q(k?) connected components, we suspect that a linear time al-
gorithm may be impossible to find. It is unclear whether theo-
rem 3.2 may be extended to the case when pins may be placed
at convex vertices.
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