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Abstract

The computational geometry impact task force (Chazelle et al.) has done an
outstanding and comprehensive job of reviewing a number of potential
application areas for geometric computing. Their report identifies a number
of areas where geometric computing has potential for impact, as well as
techniques in computational geometry that could be invoked for these
applications. This talk will view these areas from a business and industrial
perspective, pointing out where we believe the biggest impact will be
outside of the research community.
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Probabilistic algorithms for efficient grasping and fixturing

Marek Teichmann*

Abstract

Given an object with n points on its boundary where
fingers can be placed, we give algorithms to select a
“strong” grasp with a minimal number ¢ of fingers (up
to a logarithmic factor) for several measures of good-
ness. Along similar lines, given an integer ¢, we find the
“best” kclogc finger grasp for a small constant . Fur-
thermore, we generalize existing measures for the case
of frictionless assemblies of many objects in contact.
Depending on the measure, the algorithms run in ex-
pected time O(c?n!*%) or O((ne)!*+ + c*lognlog®c).
Here § is any positive constant. This setting general-
izes to higher dimensions in the context of finding sets
of fixtures. These problems translate into a collection
of conver set covering problems. We are given a con-
vex set L, and a set of points U with L C conv U in
dimension d. There are two basic questions: (1) what
is the smallest subset C of U or cover with L C conv C,
and (2) given an integer ¢, what is the largest A with
AL C conv C among all C C U of ¢ points. We present
an algorithmic framework which handles these problems
in a uniform way and give approximation algorithms for
specific instances of L including convex polytopes and
balls. It generalizes an algorithm for polytope cover-
ing and approximation by Clarkson [Cla93] in several
different directions: we show it can be used not only
for minimizing cover size, but also maximizing the scal-
ing factor A (see above), and further more it is valid
for smaller cover sizes than previously possible, with
appropriate modifications.

1 Introduction

Consider an idealized robot hand, consisting of sev-
eral independently movable force-sensing fingers; this
hand is used to grasp a rigid object B. Each finger con-
tacts the object only at one point on B and can apply a
positive force. We assume that at that point the normal
to B is unique, and that the contact is frictionless. We
wish to find a grasp: a set of points on the boundary
of B. The fingers will then apply forces at these points
to grasp the object. In general, we want the number of
fingers to be small. Another desirable characteristic of
a grasp is that by varying these forces within certain
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limits, we can resist an arbitrary external force-torque
or wrench of the largest possible magnitude. See for
example [MNP90, MSS87, FC92] for a more detailed
description.

Most existing grasp synthesis algorithms either do
not attempt to optimize the grasps found with respect
to grasp strength, or do so for very specific situations
such as small numbers of fingers, or planar objects. The
algorithmic situation for fixturing assemblies is similar.
Here we address both of these issues and present an
algorithm which works in general dimension for an ari-
trary number of fingers.

We first describe the geometric formulation of grasp-
ing and fixturing theory, and grasp efficiency measures.
We generalize these measures for the case of fixturing,
and then exhibit a collection of related geometric op-
timization problems which arise, along with some con-
nections to existing results in geometry.

1.1 Grasping Theory

The finger-body contacts being frictionless, a finger
can only apply force f on the body in the direction of
the inward pointing normal n(p) at a point p on the
boundary of B. With each point p we associate a six-
dimensional force-torque:

I'(p) = [n(p),p x n(p)].

This represents the effect of a unit force applied at p in
the direction of n(p). For an illustration of the wrench
map for planar objects, see Figure 1. We assume that
we can select the grasp points from a finite set S of n
points on the boundary of B. In practice this restriction
is circumvented by providing a grid of points on the
polygon faces. Thus we obtain an n-point set U = I'(S)
in force-torque space.

For a set G C S of ¢ points, we call G a c-finger clo-
sure grasp if the interior of conv {I'(p) : p € G} con-
tains the origin o. It is shown in [MSS87] that for all
but a certain class of objects having a boundary de-
fined by an ezceptional surface (a surface of revolution,
for example) there is such a set of size ¢ < 12. For poly-
hedral objects [MSS87] give an algorithm for find such
a grasp in linear time. However there is no guarantee
on the “quality” of the grasp. In [KMY92] such a mea-
sure of efficiency is proposed. It measures the amount
of external force and torque that can be resisted by ap-
plying at most a unit force distributed among the grasp
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Wrench Map

Object

Its Image under the Wrench Map

Figure 1: The wrench map.

points. This is measured by the radius of the largest
ball, centered at the origin and contained in conv I'(G).
See also [FC92].

Let B(p) be the ball of radius p centered at the origin.
For a set A C R¢ denote the largest radius of such a
ball in conv A by r4(A) and call it the residual radius of
A. When the dimension is given by the context we shall
simply write r(A). Also denote by 0B the boundary
of the object B. The efficiency of a grasp G is then
7(I'(G)). Note that it cannot be greater than r(I'(0B)).
It is also of interest (see section 1.3) to replace the ball
by a certain convex polytope.

We would like to obtain grasps of high efficiency
but with few fingers.  These are two conflicting
goals [KMY92], so in this paper we provide algorithms
for optimizing one quantity or the other.

1.2 Optimization problems.

At this point let us describe the setting for the op-
timization algorithms in their full generality. Let p(-)
be some grasp efficiency measure, generalized to higher
dimension (see below). It has an associated geometric
object L containing o, which can be scaled about 0. We
define

p(U) = max{\: AL CU}.

For p(-) = r(-), L = B(1) in the appropriate dimension.
Let a set of points C be a cover for L if L C conv C.
One class of problems is: for a desired grasp efficiency
po, select a smallest possible set G out of n points on 0B
such that p(T'(G)) > po. This translates to the following
purely geometric problem (valid in any dimension): let
U be a set of n points in R? such that the origin is
contained in the interior of its convex hull.

[MinCover-L]: Given po, we wish to find the
smallest set C C U or cover of size ¢* with
p(conv C) > po.

Since this problem is difficult (see section 2), we will
solve a corresponding approximation problem: that of
finding a cover of size O(c*dlogc*). We will call this a
d log c*-approximation of the optimal cover.

The companion problem is: given a maximum num-
ber of fingers ¢, which grasp G of size ¢ maximizes
p(T'(G))? The geometric version of this problem is:

[MaxScale-L]: Given an integer c, find the set
C C U of size ¢ which maximizes p(C). Let
p*(c) be this maximum.

In the approximation version, we ask for a dlogc”-
approximation of the best cover C. In the sequel, we
will replace L by various convex sets.

We present an algorithmic framework derived from
an algorithm by Clarkson [Cla93] for polytope cover-
ing that yields efficient randomized approximation al-
gorithms for the above problems for various types of
the set L. In fact, this approach works for any set L for
which we can determine whether it lies entirely on one
side of a query hyperplane. When L is a ball centered
at the origin, the corresponding optimization problems
will be MaxScale-B and MinCover-B, and when L is
a polytope containing the origin, “-L” will be replaced
by “P”.

Let v = 1/|d/2] and é be any positive con-
stant. The approximation versions of MaxScale-B and
MinCover-B can be solved in expected time O((n!*¢ +
(nc)/(+1/(149)) 4 clog(n/c)(clogc)l¥/?) when d is
fixed, using sophisticated data structures. Here c rep-
resents the optimal cover size for MinCover-B and
the desired cover size for MaxScale-B. In both
cases a cover of size 4cdlogc is returned. For a
polytope P of £ vertices, the MinCover-P dlogc-
approximation problem was already solved by Clark-
son’s algorithm in expected time O(n't® 4 c£'+° +
(L) A/ (148) 4 (ne)l/(A+7/(14+0)y or O(Lecloge +
n)clog(n/c) using a simpler version of the algorithm. In
the same time bound, we can solve the approximation
version of MaxScale-P (with ¢ an input parameter),
and MinCover-P (with ¢ the optimal cover size.)

1.3 Further applications.

Other efficiency measures closely related to the previ-
ous one have been proposed, see for example [FC92] for
a measure based on Minkowski sums instead of convex
hulls. Yet another measure was proposed by W. Meyer
and was described in [Mis94] — see this paper for a
survey of grasp efficiency measures. Imagine an ad-
versarial external finger capable of applying a force of
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an arbitrary magnitude on the grasped object. Define
Tnasty(G) to be the magnitude of the least amount of
force the “nasty” finger must apply to break the grasp.
Then rpqsty(G) = max{A : AI'(8B) C conv —I'(G)}.
It turns out that the image of any set S C 0B by T
is a set of points in non-strictly-convex position, that
is they all lie on the boundary of conv I'(S). In addi-
tion, if the object B is polyhedral, then I'(9B) is a set
of two-dimensional polygons in R® hence conv I'(8B)
is also polyhedral [Tei95]. The corresponding opti-
mization problems are then simply MinCover-P and
MaxScale-P.

Fizturing. We now consider the case of grasping sev-
eral objects that are possibly in contact with each other,
using a set of fingers, or firture elements. This prob-
lem arises in manufacturing where many assembly tasks
require a set of contacting objects to be held firmly. Fix-
ture elements or firtures are positioned in contact with
the objects to achieve this. Often there is only a finite
set of possible placements due to the construction of
the workholding table [ZGW94]. In this setting, forces
applied to an object are due both to contacts between
objects, and between objects and fixtures. As in grasp-
ing, it is desirable to use a small number of fixtures,
and/or limit the forces they must apply on the objects.
The previous framework generalizes to this case by es-
sentially concatenating the force-torque vectors for each
object and working in R®* where k is the number of ob-
jects [BMK94].

Let m; be the center of mass of object 7. In the
following definitions 0 is the 6 dimensional zero vector.
For each object B; and contact point p let I';(p) =
[n(p), (p — m;) x n(p)]. A fixture applied at p to B;
generates the generalized force-torque

I.(p)=[0,...,0,Ti(p),0,...,0] € R®.
| —
i—1

The i-th position contains I';(p). A contact between

object B; and object B; generates

I.(p)=1[0,...,0,Ti(p),0,...,0,T;(p),0,...,0].
N e’ N et

i-1 j—i-1

In this context force-torque closure can be defined
analogously to the previous one-object case: a set G of
fixtures (i.e. of these generalized force-torque vectors)
is a force/torque closure fixture set if and only if 0 is in
the interior of conv I'.(G).

Fizture quality measures. We now introduce new
grasp efficiency measures for the case of several objects.
Informally the goal again is to keep the boundary of
conv I'.(G) bounded away from the origin for all ob-
jects. In fact the above grasp efficiency measures gen-
eralize quite naturally to this case, but we work in di-
mension 6k (or 3k for planar objects) instead of d = 6

(or 3). The definition of residual radius still applies.
Hence the measure will be defined as rgx(conv I'x(G)).
As is the case in grasping a single object, here we as-
sume that the sum of the magnitudes of all wrenches
due either to the fingers or inter-object contacts must
be bounded by 1. If a generalized wrench W € R is
outside of conv I',(G), then W cannot be expressed as
a convex combination of finger and inter-object contact
wrenches, and the fixture is broken if W is applied to
the assembly, i.e. the component of W corresponding
to each object is applied to that object.

Other geometric objects can be used for L with
slightly different geometric interpretations. For ex-
ample, consider the nasty finger measure. For the
inscribed set L, we simply take the direct product
&), conv I'(0B;). For the set U, we take —L. The cor-
responding optimization problems are MaxScale-P and
MinCover-P.

2 Related Results

Exact algorithms for the problems mentioned in the
previous section that run in polynomial time seem un-
likely. In fact problems similar to these have been
shown to be NP-hard [BMK94] or NP-complete [DJ90].
We therefore consider approximation algorithms for the
MinCover and MaxScale problems. The MinCover-P
problem arises in a dual form in the context of sep-
arating two nested polyhedra [MS92, Cla93]. These
problems can in turn be cast as Hitting Set prob-
lems [MS92]. There is also a deterministic analogue
of Clarkson’s algorithm which solves this problem and
which provides a O(dlogc)-approximation [BG94] in
time O (nLd/zJ +cn logd(dc)) clog(n/c).

It is easy to verify that these hitting set techniques
also apply to our MinCover-B problem as well as more
general versions. It is unclear however whether these
techniques can be applied to yield approximation algo-
rithms for MaxScale-B or MaxScale-P, as they depend
on the fact that the set L is fixed.

For the MaxScale-B problem, Kirkpatrick et
al. [KMY92] give an algorithm that finds a cover
C of size ¢ containing a ball of radius r(C) =

[1-3d (202/)" V| r(U), for n > ¢ > 13942
in time O(LP(n,d)c). The radius found is almost op-
timal for that cover size. Here LP(n,d) is the time re-
quired to solve a linear program of size n and dimen-
sion d. Currently the best deterministic algorithm runs
in O(d"t°(9)n) time [CM93] and the best randomized
algorithm in time O(d%n + e9(Vd1084))  Gee [Gol95]
for this bound and a recent survey. Unfortunately this
result applies only for large cover sizes.
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3 The Computational Framework

Consider a set U of n points in R¢, and a convex
set L with 0 € L C convU. We will use a routine
FIND COVER which, for a given cover size ¢ outputs a
cover of L of size 4cd log c, if a cover of size ¢ exists, oth-
erwise it fails. Let c* be the size of the smallest cover
C c U for L. If we wish to find ¢* for fixed, un-scaled
L, we use OPTIMAL COVER. In OPTIMAL COVER, we
simply call FIND COVER with cover sizes ¢ = (3)’, with
i = lgd,lgd + 1,.... This loop finds an approxima-
tion of ¢* up to a factor of 5/4, without increasing the
asymptotic running time.

The algorithm FIND COVER is defined below. It takes
as input the desired cover size ¢, and uses another rou-
tine FIND BAD FACET. Given a half space h with a pos-
itive side, FIND BAD FACET determines whether L lies
entirely in the positive half-space defined by k. In fact
for the MaxScale problems we will need more: given a
direction u, we will need the supporting hyperplane for
L with normal u which is the furthest in that direction.

The algorithm goes as follows. We repeatedly take a
random sample R, of expected size s = 4cdloge, and
test whether L (or some scaled version of L) is contained
in conv R using FIND BAD FACET.

FIND COVER

Input: Size c of desired optimal cover;
Maximum number I of iterations.

Output: Cover of size c4dlogc.

1. s = c4dInc, {the exzpected size of cover}

2. forallpeU,let wp=1

3. repeat for I successful iterations:

4. Choose R C U at random. (see text)

5. FIND BAD FACET F of conv R.

6. if no bad facet, return R.

7. Let Ur = points of U seeing F

8. if w(Ur) < w(U)/(kc) then

9. forallp € U, let wp = 2wp

{reweight}
10. else {not a successful iteration}
end{FIND COVER}.

Let k be a constant to be specified later. Call an iter-
ation of the loop in FIND COVER successful if the weights
were doubled, i.e. if w(Ur) < w(U)/(kc). We also re-
quire that |R| =& 4cdInc. This can be ensured by tak-
ing new random samples if necessary. This additional
requirement does not change the expected asymptotic
running time.

If a cover of size ¢ is not found in the number of
iterations specified, FIND COVER fails; otherwise, it re-
turns a cover of expected size 4cdloge. This number
is chosen in Lemma 3.3 to guarantee success if a cover
of size ¢ exists. The random selection of R is done by

picking each point p of U independently with proba-
bility Pr(p) = 1 — (1 — wp/w(U))* < swp/w(U). The
expected size of Ris Y oy Pr(p) < 3 vy sufy = 5
Finally the heart of the work is done in FIND BAD FACET
whose variations are described in the next section.

The correctness of the general algorithm follows from
a series of lemmas. The following lemmas were shown
in [Cla93] for L a convex polytope, but the proofs do
not use the fact that L is polyhedral and actually apply
to any set L. We state them here for completeness, and
also to bound some constants explicitly.

Lemma 3.1 (Clarkson) Let L be any conver set not
contained in conv R, with a point p € L on the negative
side of some facet F of conv R. Let Ur be the set of
points of U that see F. Then there is a point of the
optimal cover C of L among the points of Up.

This lemma is the basis of this algorithm, and its
derivatives. It essentially says that by finding a set Up,
we have gained some information about C since one
of its members must be in the relatively small set Up.
We restrict the size of this set to be bounded by the
condition w(Ur) < w(U)/(kc).

We say that a facet F' of a polytope P is visible from
a point q if for every p € F, the segment pg does not
meet P. Here P will be conv R. Following [Cla93], we
define an L-facet to be a facet visible from of point of L.
Then we have the following lemma, which is a slightly
modified version of Clarkson’s lemma 2.2.

Lemma 3.2 Given that an L-facet F is found, the
probability that an iteration of FIND COVER will be suc-
cessful (i.e. the set Up satisfies w(Ur) < w(U)/(kc)),
is at least 1/2.

Proof. The proof follows Clarkson’s closely, but is
addition we note that the probability that an iteration of
FIND COVER will be not be successful is bounded above
by 1/2 for k = 2,d > 2 and ¢ > 43; or for k¥ = 1.501,
d > 2 and ¢ > 6. See [Tei95] for details. O

Finally, to obtain a bound on the running time, we
need to bound the number of iterations of the loop in
FIND COVER. Again this lemma is a slight variation of
Clarkson’s and a similar lemma also appears in [BG94].

Lemma 3.3 The number of successful iterations of the
loop in FIND COVER before a cover is found is bounded
above by z2Ezclg(n/c) which is 4clg(n/c) for k = 2,
1501clg(n/c) for k = 1.501.

Proof. See [Tei95] for details. O

This implies together with Lemma 3.2 that the ex-
pected number of iterations of the loop in FIND COVER
is O(clg(n/c)). It is interesting to note the tradeoff in
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the constants between the constant in the running time,
and the constant k, which in turn determines the mini-
mum cover size for which these lemmas are valid.

Note also that these lemmas hold for small values of ¢,
which makes the algorithm useful for small size covers.
Of course ¢ > d, since we cannot have a cover of any
smaller size unless the input is highly degenerate.

4 Particular Measures

In this section we describe several versions of
FIND BAD FACET and give the corresponding running
times of the entire algorithms.

MinCover-B:

We are given a ball B(r) of radius r centered at the
origin, and we would like to find an approximation of
its minimal cover among the points of U. To do this, we
use OPTIMAL COVER, but we define FIND BAD FACET to
test whether the ball is contained in the convex hull of
the random sample R. This can be done by computing
the convex hull of R and finding a facet that is at a
distance of less than r to the origin. This takes time
O(|R|\¥?) for fixed d > 4 (or O(|R|log|R|) if d <
3) [Cha93]. For variable d, we can use the algorithm
in [AF92], which finds f facets of the convex hull of n
points in dimension d in time O(ndf).

Let ¥ = 1/|d/2] and é be any positive constant.
Since the expected number of iterations is O(clog(n/c))
and the expected size of R is 4c¢d In ¢, the expected run-
ning time of OPTIMAL COVER for B(r) is:

0 (n1+6 + (ne)/1+7/(149) 4 clog(n/c)(clogc) Ld/ZJ)
for fixed d, or
O(nedlog(n/c) + cd?2* log(n/c) (4cdlog c) 4/ +1)

for any d (and non-degenerate convex hull of the covers)
using the result in [AF92] and the crude bound on the
complexity of the convex hull of d2dyls] (derived from
the Upper Bound Theorem [MS71].)

MinCover-P:

The geometric object to be covered is a fixed polytope P
with £ vertices containing the origin. Clarkson’s original
algorithm solves this approximation problem for fixed d
in expected time O(n!*? + c£1+% + c(Le)t/ (1 +7/(1+0)) 4
(nc)/(1+7/(1+9)) or O(Leloge + n)clog(n/c) using a
simpler version of the algorithm. Let the positive side
of a facet of a polytope be the side containing the poly-
tope. Here FIND BAD FACET finds a facet F' of conv R
such that there is a vertex of P on the side of F not con-
taining the origin, i.e. on its negative side, if P is not

contained in conv R. This is done using linear program-
ming. Each such step can be done in O(LP(4cd logc, d))
time. For variable d, the entire algorithm runs in ex-
pected time

0 (ncd log(n/c) + £c*d®log clog(n/c) +
Lclog(n/c)elV ‘“°gd)).

For fixed d, we can also use linear program-
ming queries using the recent batched version of
Chan [Cha95] to improve slightly the running time for
large . If £ = O(n), a much simplified expression of the
running time is O(n!*% + ¢?nlognloge).

MaxScale-B:

Let 7*(s) be the radius of the largest ball centered at the
origin and contained in a cover of size s. In this prob-
lem we are given a desired cover size ¢, and we would
like to find 7*(c). We will not use OPTIMAL COVER but
skip directly to FIND COVER. Here again we get only
an O(dlogc) approximation to this cover. The cor-
responding version of FIND BAD FACET will be to use
FIND BAD FACET as for the MinCover-B problem, but
always return the facet closest to the origin, i.e. never
say that a ball of some radius has been covered. We
also remember the maximum distance to the origin of
the closest facet at each iteration, and the correspond-
ing cover. Here again we do only 4clg(n/c) successful
iterations, i.e. O(clog(n/c)) calls to FIND BAD FACET.
This will guarantee that the version of FIND COVER for
MaxScale-B finds a cover of size at most 4cdlnc con-
taining a ball of radius r*(c). This can be seen as fol-
lows. By Lemma 3.3 we are certain to find a cover if
it exists. Hence if B(r*(c)) is the largest ball in cov-
ers of size ¢, a cover of size 4cd In ¢ containing B(r*(c))
must be found. The running time is the same as for the
MinCover-B approximation.

MaxScale-P:

The solution to this problem is very similar to the pre-
vious case.  Here FIND BAD FACET finds the largest
possible scaling factor A such that AP C conv R using
linear programming queries as for MinCover-P. We
summarize both results in

Theorem 4.1 The versions of FIND COVER for
MaxScale-B (resp. MaxScale-P) find a cover of size at
most 4cdIn ¢ containing a ball of radius r*(c) (resp. P
scaled by A*(c)) in time identical to their MinCover-B
and -P counterparts.

Similar techniques can be used for other sets L.
4.1 Speeding up MinCover-B and MaxScale-B

To avoid taking the expensive convex hull of R to
find a facet closest to the origin, we can approzimate
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r*(c). We sample conv R by performing the ray shoot-
ing queries described above for the case of polytopes,
along equally distributed rays on the set of directions
(or points on a sphere.) We can use the upper bound
contruction of [KMY92] to find such a set of points or
rays. We get

Theorem 4.2 The optimal radius (for a cover of

size c¢) for both MaxScale-B and MinCover-B can

be 1 — ¢ approzimated in ezpected time O(n'*® +

d=—

(nc)l/(1+1/(1+5))+[ 24° (%)T’
1777

simplified version of expression for the running time.

] c?log 2 logc) using a

5 Concluding remarks

It is possible to extend the framework to the following
case: instead of a set of points U, we have a set of
planar polygons. This corresponds to the situation in
grasping where we allow fingers to be placed anywhere
on OB. However we no not know how to analyze the
performance of this modification in terms of optimality
of cover size.

On a different note, the physical interpretation of the
fixturing metrics do not seem to be as natural as the
corresponding ones for a single object. Finally, we are
in the process of implementing this algorithm. This
might shed some light on whether the special structure
of the point sets in our application has any impact on
the efficiency.

We wish to thank Bud Mishra, Ken Clarkson and
Chee Yap for helpful discussions on this subject.
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