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Abstract

In this paper, we establish the Q(n*/3) lower
bounds constructively for some 3D geometric prob-
lems. The model we are using is essentially that of
[ES93]. However, besides the primitive which can be
used to solve a specific problem directly (with a brute-
force method) we also allow the primitive “Is this point
to the left or right of (above or below) the intersection
of these two lines?”, which has been used to divide
some similar problems into subproblems and obtain
good upper bounds. Our problems include computing
the shortest red/blue vertical distance between a set
of red and blue line segments in 3D and computing
the depth order of a set of line segments in 3D, etc.

1 Introduction

Proving the lower bounds of problems is one of the
central part in algorithm theory. Established lower
bound for a specific problem usually convinces people
not to try obtaining better algorithms unless under
a different model of computation or when some ex-
tra primitives are allowed. In computational geome-
try (as well as in the general algorithm design area)
lower bound is usually obtained via problem reduc-
tion, probablistic argument, combinatorial counting.
However, in general the lower bound results are very
sparse compared with the vast upper bound results in
computational geometry [Cha94].

We briefly mention three techniques for proving
lower bounds in computational geometry. The most
fundamental technique is problem reduction. Many
fundamental problems in two and three dimensions,
like convex hull, Voronoi Diagram, Euclidean Mini-
mum Spanning Tree, closest pair, etc., can be shown to
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have Q(n logn) lower bounds by a reduction from sort-
ing, element uniqueness, set disjointness, etc [PS85].
Similarly, most of the NP-hard results in computa-
tional geometry are obtained via problem reduction.
Another important technique is combinatorial count-
ing, i.e., computing the combinatorial complexity of
the problem. For instance, we can simply obtain the
Q(n?) lower bound for constructing the arrangement
of n lines in the plane. A nontrivial technique in
this respect is to use the Davenport-Schinzel sequence
[DS65, HS86] to establish the lower bound of (the
space complexity of) some geometric problems. An
example is the Q(na(n)) lower bound for constructing
the lower envelope of a set of n line segments. The
probablistic argument method is largely used to prove
the lower bounds of range queries, simplex queries, etc
[Cha89, Cha90a, Cha90b, CR92].

Besides the above standard lower bound techniques,
Gajentaan and Overmars recently defined a class of
3SUM-hard problems [GO93]. They showed that un-
less the 3SUM problem can be solved in o(n?) time
there is no hope to solve this class of geometric prob-
lems in o(n?) time. Erickson and Seidel proved, with
an adversary argument, that the problem of testing
whether a set of points in d-dimension is degenerate
requires Q(n?) sideness queries [ES93]. The model of
Erickson and Seidel, which will be called ES-model
throughout this paper, restricts any algorithm to have
only a fixed primitive which “seems” of direct use for
solving a specific problem. (Usually such a primitive
enables us to solve the problem with an easy brute-
forth algorithm.) For the problem of testing whether
a set of points in d-dimension is degenerate, it is clear
that such a primitive is the sideness query, i.e., testing
whether d + 1 points are coplanar on a d-hyperplane

[ES93)].

In the field of computational geometry there are
a list of problems whose best known upper bounds
are a little bit higher than O(n*/3) and most of these




results are obtained via randomized divide and con-
quer. A typical example is the famous Hopcroft’s
problem: Given n points and n lines in the plane,
does any point lie on any line? Another example,
which has application in computer graphics, is the fol-
lowing: Given n line segments (lines) in space, com-
pute the depth order of these line segments (lines).
The best O(n4/320(l°g' ”)) upper bound for Hopcroft’s
problem is obtained in [Mat93]. The best O(n*/3+¢)
upper bound for computing the depth order of a set
of lines is due to Chazelle et al. [CEG190]. The same
upper bound for computing the depth order of a set
of line segments is due to de Berg et al. [dBOS92].
Although great effort has been made, no upper bound
better than 0(n4/ 3) has been achieved. Consequently,
it is meaningful to study the lower bounds for these
problems.

As with Hopcroft’s problem, Erickson recently es-
tablished an (n*/3) lower bound for all the partition-
ing algorithms solving this problem [Eri95a]. With re-
spect to the ES-model, if the only allowed primitive is
“On which side of this line does this point lie?” then it
is easy to prove the Q(n?) lower bound for Hopcroft’s
problem. Since Hopcroft’s problem has already been
solved in o(n?) time this implies that the ES-model
is too weak (for most of these geometric problems).
However, if either of the primitives “Is this point to
the left or right of (above or below) the intersection of
these two lines?” and “Is the slope of this line larger or
smaller than the slope of the line connecting these two
points”, which have been used to obtain some of those
o(n?) randomized divide and conquer algorithms, is
also allowed then it is not known whether nontrivial
lower bounds can be obtained on the ES-model.

In this paper, we establish the Q(n*/%) weak lower
bounds ! for several geometric problems which are
closely related to Hopcroft’s problem. An enhanced
ES-model is used throughout this paper, i.e., besides
the primitives seemingly of direct use for these prob-
lems the primitive “Is this point to the left or right
of (above or below) the intersection of these two line
segments?” is allowed. (Since this model is not a
general one, we use the term “weak” to distinguish
the lower bounds under this model from the standard
lower bounds under the algebraic computation tree
model. For the ease of presentation we mix the use of
“lower bound” and “weak lower bound” and from now
on any lower bound mentioned will be under the above
enhanced ES-model, unless otherwise specified.) The
four problems we consider are as follows.

1 The best known lower bound for these problems under the
algebraic computation tree model is Q(nlogn).
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(1) Given n red line segments and n blue line seg-
ments in 2D, decide whether there is a red/blue inter-
section.

(2) Given n red line segments and n blue line seg-
ments in 3D, compute the shortest red/blue vertical
distance between them.

(3) Given n red line segments and n blue line seg-
ments in 3D, decide whether all the red segments are
above the blue segments.

(4) Given n line segments 3D, compute the depth

order of these segments.
The first and the third problem are special cases of the
second problem. Therefore we will mainly study the
second and the fourth problem. As with the second
problem, it can clearly be solved in O(n?) time with
a brute-force method. The primitive of such a brute-
force algorithm is the red/blue vertical distance: given
a pair of red and blue line segments in 3D, return
the vertical distance between them. We prove that
with the red/blue vertical distance function, together
with the primitive “Is this point to the left or right of
(above or below) the intersection of these two line seg-
ments?” Q(n%/3) is the lower bound for this problem.
The technique used is mainly combinatorial counting
and an adversary argument similar to [ES93]. The
lower bound of the fourth problem can be established
similarly with a more complex proof.

2 Preliminaries

In this section we present some known results which
are the basis for our lower bound results in the sub-
sequent sections. We first introduce the following
lemma.

Lemma 1. Let ¢(j) denote Euler’s function: ¢(j)
[{il1 <i < j and ged(,j) = 1}|. Then

(1) Xj<m 9(3) = Fm? + O(mlogm),
and

() Ljcmioli) = =m® + O(m?).

This lemma is proved in [HW65] (page 268) and is
used in [Fre81]. Suppose we have a set of m? points
defined by M = {(3,7)|1 < 4,7 < m}. Given aline l in
the Euclidean plane, we refer to the number of points
of M through which [ passes as the rank of [ with re-
spect to M. The following lemma is proved in [Fre81]
and since it is crucial to our result we also rewrite the
proof.

Lemma 2 [Fre81]. There exists O(m?) distinct lines
in the Euclidean plane so that their sum of ranks with




respect to M is Q(m®/3).

Proof. Let (4, j, a,b) denote the line passing through
the points (¢,7) and (i + a,j + b). First we define a
class of lines F, = {I(i,7,a,b)|]l < a < [m'/3],1<
i<al<j<m/2,1<b<aq, andgcd(ab)

1}. Second we show that all lines in Fi, are dis-
tinct. Suppose that l(z j,a, b) = l( ] a b) Since
I(i,7,a,b) = I(i',5,a',b), b/a = b /a' and conse-
quently, smce gcd(a, b) = T gcd(a b) = 1 we have
a=da,b="b. Since l(z ,j ,a’,b) passes through (z )
and gcd(a by=1,i = z(MODa) and therefore; since
1< z 1 < a,it follows that s = i . Similarly we have

J—J

The number of lines in F, 1is given by
Im/2) Sk ag(a) < m?/a2+0(m®3) < m? (when
m is sufficiently large). The rank of (4,7, a,b) with
respect to M is at least MIN(m/a,m/2b) > m/2a.
Therefore the sum of ranks of the lines in Fj,, with re-
spect to M, is at least (m/2a) x [m/2| >,

st Lm ") ag(a)
=(m/2)|m/2] =7 ¢(a) = Q(m¥?). D

In the subsequent sections, we establish our lower
bound results based on Lemma 2.

3 Weak lower bound for the shortest
red /blue vertical distance problem

The vertical distance between a pair of red and blue
segments in 3D is defined as the length of the vertical
line segment connecting the two segments and if such
a vertical connecting line segment does not exist then
the distance is defined as +co. The problem of com-
puting the shortest red/blue vertical distance between
a set of n red segments and a set of n blue segments
can clearly be solved in O(n?) time with a brute-force
method. The primitive of such a brute-force algorithm
is the red/blue vertical distance (RBVD): given a pair
of red and blue line segments in 3D, return the vertical
distance between them. If the only primitive allowed
is RBVD then it is easy to prove that Q(n?) is the
lower bound for this problem. We show that if the
primitive “Is this point to the left or right of (above
or below) the intersection of these two line segments?”
is also allowed then Q(n*/3) is the lower bound of this
problem.

Theorem 3. There exist O(n) distinct red and blue
line segments in the Euclidean space so that it takes
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Q(n*/3) time to compute the shortest red/blue ver-
tical distance between these line segments even if the
primitive “Is this point to the left or right of (above or
below) the intersection of these two line segments?”,
besides RBVD, is allowed.

Proof. Let s(z,y,z1,y1) be a line segment con-
necting (z,y) and (¢ + 1,y + y1) in the Euclidean
plane. We construct a set of 2D line segments G, =
{s(i+a,—j,j+ﬂij,a,-j,0)|1 <1t,7 < mand o5, Bi; > 0}.
In other words, the line segments in G, are all hor-
izontal, tiny and are at the upper right corner of the
points in M. a;;, 3;; can be made very very small. It
is clear that |G| = m?

The set of 3D blue line segments F,, is obtained
by taking an arbitrary set of 3D lines whose verti-
cal projections corresponding the set of lines in Fi,.
For each point (i,j) in M we associate a set S(z,J)
which contains all the lines in F,, whose planar pro-
jection pass through (z,j). Clearly, following Lemma
2,5, 190, )| > mls.

We construct a set of 3D red line segments G, =
{sij = [s( + eij, 5 + Bij, @i, 0), Z = 2;]|1 < 4,5 < m,
and ij, Bij,z; > 0}. In other words, the line seg-
ments in G,, are obtained by elevating the segments
in G,, vertically to 3D.

Now the adversary controls the red line segments
Gm by selecting suitable a;;, G;;, for all ¢, 7, so that
the shortest vertical distance between the red/blue
segments is infinity. To report this shortest vertical
distance, any algorithm must compute, for all i, j,
the vertical distance between all the line segments in
S(,7) and s;;. If an algorithm fails to check the dis-
tance between some segments in S(i,j) and s;j, the
adversary perturbs c;j,0;; so that the distance be-
tween some unchecked line segments in S(, j) and s;;
becomes the minimum (i.e., finite). This holds for all
S(i,7) since s;; (consequently a;j,(;;) are indepen-
dent with each other for all 7,j, and moreover, after
this perturbation the algorithm can not distinguish
the two input with the RBVD function and the prim-
itive “Is this point to the left or right of (above or
below) the intersection of these two line segments?”

. Consequently, computing the shortest vertical dis-
tance between the blue segments in Fy, and the red
segments in Gm takes at least >, ;[S(i,7)| 2 m8/3

2However, if the primitive “Is the slope of this line larger or
smaller than the slope of the line connecting these two points”
is allowed then the algorithm can detect the perturbation and
therefore this proof fails.




time.

Finally, to complete the proof of the theorem we
simply set n = m? and make the lines in F,, into line
segments. O

We can apply the above proof immediately to es-
tablish the lower bound for detecting the red/blue in-
tersection among a set of red segments and a set of
blue segments in 2D.

4 Weak lower bound for testing the
towering property of red/blue seg-
ments

It should be note that the above proof can be di-
rectly used to prove the lower bound of testing the
“towering property of red/blue segments”: given n
red segments and n blue segments, does there exist a
red segment above some blue segments? Clearly the
primitive of direct use to this problem is the red/blue
aboveness testing function: given a pair of red and
blue segments, it returns YES if the red segment is
above the blue one, it returns NO if the red segment
is below the blue one and it returns NIL if the vertical
projections of the two segments have no intersection
(or equivalently, if the vertical distance of the two seg-
ments is +00). We simply state the result as follows.

Corollary 4. There exist O(n) distinct red and blue
line segments in the Euclidean space so that it takes
Q(n*/?) time to decide whether there exists a red seg-
ment above some blue segments even if the primitive
“Is this point to the left or right of (above or below)
the intersection of these two line segments?”, besides
the red/blue aboveness testing function, is allowed.

A closely related problem of testing the “towering
property of red/blue lines”: given n red lines and n
blue lines, does there exist a red line above some blue
lines? (or equivalently, are all blue lines above all red
lines?) can be solved in O(n%/3+¢) time [CEGS89].
This problem has been used to obtain the O(n*/3+¢)
upper bounds for computing the shortest vertical dis-
tance between two terrains [CEGS89], computing the
depth order of n lines [CEG*90] and computing the
longest vertical distance between n lines [GP92]. How-
ever, the above lower bound result on testing the
towering property of red/blue segments can not be
claimed on lines.
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5 Weak lower bound for computing
the depth order of a set of line seg-
ments

In this section, we prove the lower bound for com-
puting the depth order of a set of n line segments in
3D. A depth order of a set of 3D line segments is an or-
der such that segment s; comes before s; if s is above
s;. It is easy to see that a depth order of a set of seg-
ments in 3D does not always exist since there can be
cyclic overlap among segments. The best known up-
per bound for computing the depth order of a set of
line segments is due to de Berg et al. [dBOS92].

Clearly, the aboveness testing function is the prim-
itive which can be applied to solve this problem di-
rectly. (The aboveness testing function: given a pair
of 3D segments (rods) s; and ss, it returns YES if 5, is
above s,, it returns NO if s; is below s5 and it returns
NIL if the vertical projections of s;,s2 have no inter-
section (or equivalently, if the vertical distance of the
two segments is +00).) We prove that the lower bound
of this problem is Q(n*/3) even an extra primitive “Is
this point to the left or right of (above or below) the
intersection of these two line segments?” is allowed.
In fact we prove a stronger result that even checking
whether the n rods have a cyclic overlap takes Q(n*/?)
time with these two primitives.

Theorem 5. There exist O(n) distinct line segments
in the Euclidean space so that it takes Q(n*/3) time to
compute the depth order of these segments even if the
primitive “Is this point to the left or right of (above or
below) the intersection of these two line segments?”,
besides the red/blue aboveness testing function, is al-
lowed.

Proof. Let s(z,y,z1,y1) be a line segment con-
necting (z,y) and (z + 1,y + y1) in the Euclidean
plane. We construct a set of 2D line segments G, =
{si;lsi; = s(E + yjud + Bijo vy, 63511 < 4,5 < m
a,nd a”‘ﬂz],'}’”,éu > 0} U{Sijlsij = S(Z -+ a”,] =+
B v 6i)11 < 4,5 < m and o5, 85,75, 65 > O}
Moreover we can choose aij,ﬁij,'y,-]-,éij, a,;]-,ﬁij,')/,-]-
and §; so that s;; intersects s;;. In other words,
at the upper right corner of each point inl M Ithe,re
ar”e tv;zo t}ny intefsecting segments. (oy;, ﬂij,'yij,éij,
@;;, B;;,7; and §;; can all be made very very small.)

It is clear that |Gp,| = 2m?.

We construct a set of 3D line segments F,,, by first
taking an arbitrary set of 3D lines whose vertical pro-




jections corresponding the set of lines in Fy,, and then
we translate these segments one by one along the -
Z direction so that there is no cyclic overlap among
these segments. For each point (¢,j) in M we asso-
ciate a set S(¢,j) which contains all the lines in Fy,
whose planar projection pass through (¢, 7). Clearly,
> 1860 2 m8/3,

Let s(z,y, z,21,y1,21) be a 3D line segment con-
necting (z,y, z) and (z + 1,y + ¥1, 2 + z1) in the Eu-
clidean space. We construct another set of 3D line
segments G, by mappmg each s . to s(7 + aJ,] +

ﬁ;], l:],'y”,&ij, ) and each s] to s(i + a”,] +
) where z1;;,22;

ﬂ”,zll],'yz],éz], ij2 %25 zl;fj,z2;fj are
arbitrary reals. The set G,, contains all these mapped
segments. Clearly the vertical projections of the line
segments in G,, correspond to those 2D segments in
Gm.

The input to the original problems is set as 7, UG,.
Now the adversary cqntrols the segments G,, by se-
lecting suitable a,], i Tig> 5,1, :], :J,'y” and 6,],
for all %, 7, so that no segment in F,, is above or below
those in G, (i.e., their vertical projections have no in-
tersection). To report this, any algorithm must com-
pute, for all 4,7, the a.boveness testlng functions be-
tween s(z+a,1,]+,3”,zlu,7,], zJ,z2”) (s(z+azJ,]+
Bi;» 2135, 75,655, 22;;)) and all the line segments in
S(7, j). If an algorithm fails to compute any of these
functlons the adversary first perturbs a”,ﬂ,],'y” , 5“,

”, ﬂu,‘y” and 6” so that s ;j and s;; all intersects
with the vertical projection of this hne segment I

in S(s, ]) Then, the adversary perturbs 21, 22,

z]) z]:
1”,z2 so that s(z+a”,] +,8, 5; z2 )

1_7 ’ 72] » Vi
(z+am ,]+ﬂ,J , zlm , 7”, 6” , 2221) and l*J forms a cychc
overlap (Figure 1). This holds for all 4, j since all the
values perturbed are independent with each other for
all 7,7, and moreover, after this perturbation the al-
gorithm can not distinguish the two input with the
aboveness testing function and the primitive “Is this
point to the left or right of (above or below) the inter-
section of these two line segments?” 3. Consequently,
computing the depth order of a set of O(m?) segments

in Frn UG, takes at least 3, . |S(¢,5)| > m®/3 time.

Finally, to complete the proof of the theorem we
simply set n = m? and make the lines in F,, into line

3 Again, if the primitive “Is the slope of this line larger or
smaller than the slope of the line connecting these two points”
is allowed then the algorithm can detect the perturbation and
therefore this proof fails.
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segments. O

It should be noted that similar to the claim in the
last section, this proof can not be immediately gen-
eralized to prove the lower bound of computing the
depth order of a set of lines in 3D.

6 Concluding Remarks

We mention some related problems as a closing re-
mark. An interesting question is whether one can es-
tablish the lower bounds (better than Q(nlogn)) for
these problems under a stronger model, e.g., by allow-
ing more primitives. Although the ultimate objective
is to establish these lower bounds under the algebraic
decision tree model we feel this is a very hard problem.
Another question is whether we can prove other closely
related problems under the model used in this paper.
With respect to the result of Theorem 3, it should be
noted that the constructive proof can not be immedi-
ately generalized to establish the lower bounds for the
following related problems. '

(1) Compute the longest red/blue vertical distance
between two sets of red and blue line segments each
with size O(n).

(2) Compute the shortest red/blue vertical distance
between two sets of red and blue lines each with size
O(n).

(3) Compute the shortest red/blue vertical distance

between a pair of red and blue polyhedral terrains each
with size O(n).
These problems are very closely related to the problem
we study in Theorem 3; in fact, the best known upper
bounds for solving these problems are either O(n*/3+¢)
or a little bit higher. Therefore it is interesting to
ask whether one can find the lower bound proof for
the above problems (and those mentioned in Section 4
and 5: testing the towering property of red/blue lines
and computing the depth order of 3D lines) under the
model used in this paper.

Very recently Erickson used the method of [GO93]
to attack the lower bounds of some related geometric
problems [Eri95b]. He showed that many of the prob-
lems are “harder than” or “almost harder than” some
others. But there is no single base problem to which
all those problems can be reduced. We note that our
model is hence different from that of [Eri95b].
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