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Abstract

This paper addresses the complexity of computing the
smallest-radius infinite cylinder that encloses an input
set of n points in 3-space. We show that the problem
can be solved in time O(n*log® n) in an algebraic
complexity model. We also achieve a time of O(n*L -
#(L)) in a bit complexity model.

These and several other results highlight a general lin-
earization technique which transforms non-linear prob-
lems into some higher dimensional but linear problems.
The technique is reminiscent of the use of Pliicker coor-
dinates, and is used here in conjunction with Megiddo’s
parametric searching.

1 Introduction
1.1 Motivation and Problem Statement

A major topic of geometric optimization is to ap-
proximate point sets by simple geometric figures. This
includes extensively studied planar problems such as
smallest enclosing circles, the minimum width annulus,
and the minimum width slab. In higher dimensions,
there are few non-trivial complexity results for geomet-
ric figures beyond hyperplanes or spheres. In this paper,
we consider the following:

Smallest Cylinder Problem (P1): Let ] be
a given set of n points in 3-space. Find a line
£ which minimizes max{ d(¢,¢) : ce I }.

Here, d(£, ¢) denotes the minimum Euclidean distance
between ¢ and a point of £.

Since cylinders constitute an important primitive
shape in computer-aided design and manufacturing, this
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problem has many applications. We give one example
from an area of importance to modern high precision
engineering, dimensional tolerancing and metrology (see
[SV, Ya]). Here the task is, given a physical object,
to verify its conformance to tolerance specifications by
taking probes of its surface. In industry, highly special-
ized, expensive equipment (called Coordinate Measure-
ment Machines) is used to perform these probes auto-
matically. Hence, high numerical accuracy is important,
and any exact solution is preferable to the frequently
used heuristic approaches.

To illustrate the intrinsic complexity of (P1) and the
optimization technique used, we shall also consider the
following subproblem:

Smallest Anchored Cylinder Problem
(P2): Let I be a given set of n points in
3-space. Find a line £ through the origin which
minimizes max{ d({,¢) : c€ [ }.

1.2 Outline of Results

We summarize two areas of contribution of this paper.
(See [SSTY] for the full version.)

(I) We design efficient algorithms for the smallest
cylinder problem in both an algebraic and a bit model
of computing.

Most geometric algorithms are developed within one
of two distinct computational frameworks. In the al-
gebraic framework, the complexity of an algorithm is
measured by the number of algebraic operations on real-
valued variables, assuming exact computations. The in-
put size corresponds to the number n of input values.
In the bt framework, the complexity is measured by the
number of bitwise boolean operations on binary strings.
The input generally consists of integers, and the parame-
ter n is supplemented by an additional parameter L that
bounds the maximal bit-size of any input value (in our
application, the coordinates of the points in I ).
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While the size of the input is measured differently in
the algebraic and in the bit model, the output can often
be treated in a uniform way by asking for a combinatorial
solution to the problem. In the case of (P1), we may
assume the required output to be a list of those input
points that determine the optimal cylinder(s).

Theorem 1

Problem (P1) can be solved in time

(i) O(n*1og®M n) in an dlgebraic model; and
(11) O(Lp(L)n*) in a bit model.

Here, p(L) = O(Llog LloglogL) denotes the com-
plexity of multiplying two L-bit integers.

Result (i) is obtained by using Megiddo’s parametric
search [Me]. Result (ii) is based on “exact approxima-
tion” and a bit complexity analysis that uses multivariate
root bounds.

While parametric search provides a clean dependency
of running time on the number n of input points, the bit
complexity approach is more suitable if accuracy is the
main goal to achieve. This gets increasingly important
as the algebraic source of complexity comes into play.

(II) We highlight a linearization technique for geo-
metric optimization problems.

The heart of both approximation and parametric
search algorithms is a decision scheme for a fized op-
timization parameter. To obtain efficient decision algo-
rithms that lend themselves to parametric search, it is
often possible to exploit geometric duality transforma-
tions. Examples in the recent literature include inversion
(as in [FSS]) and Pliicker coordinates (as in [ST]).

In this paper, we extend these principles to a more
general framework known as linearization.

We give this an abstract formulation. Let P(x,y) be
a polynomial in the real variables x = (z1,...,2¢) and

Yy=(1,---,¥Um)-

Abstract Decision Problem (D): Given a
set I C R™ of n points, decide if there exists a
point ¢ € R such that forallp € I, P(c,p) < 0.

We say P(x,y) has an order k linearization if there
exists 2k + 1 polynomials, X; = X;(x) (¢=1,...,k) and
Y; = Yi(y) (for i =0,...,k), such that

&
P(x,y) :Y0+ZX1'Y1'-

i=1

Theorem 2
(i) If P(x,y) has an order k linearization, the decision
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problem (D) can be solved in O(nl*/21) in the algebraic
model.

(ii) In the bit model, if each input coordinate has L bits,
the problem (D) can be solved in O(u(L)nl*/2!).

1.3 Related Work

Problem (P1) belongs to a class of problems that have
been considered from a complexity—theoretic viewpoint
in [KG]. Although problem (P1) is routinely solved
in engineering applications using numerical optimization
techniques, few complexity theoretic results have been
published. Concrete geometrical properties have first
been investigated in [Pa], with focus on the decision
problem to determine if there exists a cylinder with ra-
dius 7 = 1 (a unit cylinder) which encloses the input
points.

Proposition 1 ([Pa])

(a) If there ezists a unit cylinder that encloses all input
points, then there also erists a unit enclosing cylinder
which touches 4 of the input points, or whose azis is
parallel to an edge of the conver hull of I.

(b) There is only a finite number of unit cylinders that
touch 4 non-collinear points in 3-space.

With these (geometrically non-trivial) results, the de-
cision problem for fixed radius can be solved by enu-
merating all cylinders through choices of 4 points, and
by checking if one of these encloses the input points.
This algorithm has complexity O(n®). With this, it is
not hard to see that the optimization problem can be
solved in time O(n®logn) by a straightforward applica-
tion of parametric search. (The same time bound can
also be achieved by computing all locally smallest en-
closing cylinders for up to 5 input points, sorting them
by radius, and using binary search to find the smallest
enclosing among them.) We shall improve this bound by
using linearization.

The linearization technique appears to have been used
first by Yao [YY]. More recently, Agarwal and Ma-
tousek [AM] use linearization in the context of range
searching with semialgebraic sets. They also give a sim-
ple procedure for finding the optimal linearization for a
given polynomial.

In this paper, linearization is used directly and is
combined with the new parallel convex hull algorithm
in [AGR] to allow the application of parametric search.

1.4 Notes on Complexity

Problem (P2) can serve to illustrate the complexity
of the smallest cylinder problem: already this problem




can be shown to be neither convex nor LP-type. In the
following paragraph, we give a quadratic lower bound on
the number of possible local minima of (P2) (the bound
can easily be extended to (P1)):

Consider an even number n of points that are ar-
ranged on the unit sphere S?, n/2 on the circle C; (C3)
of intersection with the plane z = 0 (y = 0). We assume
that the points on each circle are uniformly stepped and
diametrically opposed. Further, let each line through
the origin be parameterized by its intersection with the
sphere S?. Now let us ask for the set of cylinders with
distance > 1 — £ to one input point c. This set cor-
responds to a thin stripe on 52, and describes the for-
bidden cylinders with respect to ¢. The set of enclosing
cylinders with radius < 1 — ¢ is the complement of the
union of the stripes for all ¢ € I. For € sufficiently small,
this set has quadratic complexity.

Our optimization technique yields a running time of
O(n?) for the decision problem for (P2), assuming the
algebraic model. Due to the possible number of min-
ima, this result may be optimal. It is an open question
whether (P2) belongs to the class of n?-hard problems
introduced in [GO]. Finally, it is noteworthy that a vari-
ant of (P2) where we ask for an enclosing silo instead
of a cylinder can be solved in time O(n log® nloglogn)
[Fo).

2 Preliminaries
2.1 Algebraic Formulation

A cylinder C in 3-space is specified by 5 real param-
eters: its axis line £ and its radius r. We follow the ap-
proach suggested by Proposition 1, and first specify the
set C(c1,...,cq) of cylinders that touch 4 given points
c1,...,c4 €1.

By translation of the coordinate system, we can as-
sume ¢; = (0,0,0). Let u € R3 be any direction vector
of £. Let E be the plane passing through the origin
and orthogonal to u, and let ¢}, ..., ¢} be the orthogonal
projection of the input points c,...,c4 onto £. Then
the cylinder C passes through ci,...,cq if and only if
¢i,...,C4 are cocircular.

The first problem that we face in the algebraic com-
putation of solutions is to find a suitable parametrization
for the direction vector u. We shall treat the case when
u is not parallel to the plane containing c2, ¢z, c4. (Oth-
erwise, we have a simpler subproblem.) Let

u = xcg + ye3 + zcq,

with z = 1 —z —y. The parameters z, y, z are also called
the barycentric coordinates of u with respect to ¢z, ¢3, c4.

Now, let R;(z,y,z) be the squared radius of the cir-
cumcircle of ¢},¢3,¢5 in E, and Ry(z,y, z) the squared
radius of the circumcircle of c},c3,c3. Then the set
C(e1,...,cs) can be interpreted as a 2-dimensional sur-
face in 3-space, defined by Ri(z,y,z) = Ra(z,y,2).
This condition is equivalent to P(z,y, z) = 0, with

P(z,y,z)= Ay 2 4(z2? + 2%2)
+A1,34(y2% + v%2)
+ A123(zy? + 2%y)
+(A124+ A1 34+ D123 — Az 34)(zy2),

where A; jx = ci(¢; X ck).

With z = 1—z—y, P can also be interpreted as a poly-
nomial in the 2 variables  and y, or as 1-dimensional
curve in the z-y-plane. We note that the total degree of
P is 3, and the degree in each variable is 2.

In order to compute the cylinders with fixed ra-
dius r in the set C(ei,...,cs), the additional condi-
tion Ri(z,y,z) = r has to be satisfied. Unfortunately,
this leads to a significantly more complicated polynomial
equation Q(z,y) = 0, with total degree 6.

The set Cy(c1,...,ca,r) of all cylinders with radius
r that pass through c;,...,c4 is given by the set of so-
lutions of the system { Q(z,y) = 0, P(z,y) = 0 }, and
can be obtained algebraically by computing the roots of
the resultants F, = Res(P, Q,y) and Fy, = Res(P,Q,z).
These resultants have degree 12.

Lemma 1 If ¢i,...,cq4 are not collinear, the set
Cyle1,...,cq,r) contains at most 12 cylinders. As-
suming c; are rational points, each cylinder is specified
uniquely by algebraic numbers of degree at most 12.

2.2 Bit Complexity

Lemma 1 implicates a simple decision algorithm for
the fixed-radius problem (P1), and hence an approxima-
tion algorithm for the optimization problem. By exploit-
ing ideas from the theory of exact computation, such
approximation algorithms can be made “exact” in the
sense of determining the combinatorial solution (see 1.2).
What is needed is a gap theorem that relates qualitative
changes of the solution to quantitative changes in the
optimization parameter (here, 7).

In the following, it is useful to consider the optimiza-
tion function (the radius r of a smallest enclosing cylin-
der) as a function of the axis direction, and thus as a
surface in R3. (Note that for any fixed axis direction
there exists a unique smallest enclosing cylinder !) This
surface is given by 2-dimensional surface patches (corre-
sponding to cylinders that touch 3 points), 1-dimensional
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ridges (corresponding to cylinders that touch 4 points),
and vertices (defined by tuples of 5 points).

Now assume that 7, i = 1,2, denotes a local min-
imum of a surface patch, a local minimum of a ridge,
or the “height” of a vertex. Further, let § be a separa-
tion gap between any two values 7§ and r§ that are not
equal, i.e., |7 —r§| > 4 for all r{ # r. Then the com-
binatorial solution of (P1) can easily be derived from a
d—approximate solution of (P1).

The computation of the gap d is non-trivial, requiring
an algebraic characterization of the local minima above,
and the application of multivariate root bounds. In the
sequel, we shall focus on the computation of ¢ for the
most complicated case, when 7§ and r§ are the local
minima of ridges.

Let c;,...,cq be an arbitrary choice of input points.
Our goal is to compute a discrete set of values which
contains 7§, a local minimum value with respect to
c1,...,c4. Following subsection 2.1, let R;(z,y) be
the squared radius of the circumcircle of ci, c3, ¢3, and
Pi(z,y) the polynomial which defines the cylinder with
direction parameters (z,y) passing through c¢y,...,cs.
Then the candidates for r§ are the local minimum val-
ues of \/Ri(z,y) under the side condition P;(z,y) = 0.
By the rule of Lagrange, there exists a parameter A such
that the following 2 conditions hold at the minima:

5R1 6P1 6R1 6P1
(1) x-‘l—/\ =0, (2) 3y —*w\ay =0.
Eliminating X in these equations, let Q:(z,y) be the nu-
merator of the expression

dR: ORy 0P <8P1>'1
oz dy Oz \ Oy ‘

Then r{ = \/Ry(z$,¥), where (z%,%3) is a solution of

the system { Pi(z,y) = 0,Qi(z,y) =0 }.

Analogously, let 7$ be a minimum candidate for a dif-
ferent choice of input points, and Pz, Q2, Rz the corre-
sponding defining formulas. Then the needed separation
gap can be obtained as a lower bound for |4] in the sys-
tem of equations

(1) Pi(z1,31) =0,
(2) Qi(z1,31) =0,
(3) Pa(z2,y2) =0,
(4) Q2(z2,32) =0,
(5)

By repeated squaring, formula (5) can be transformed
into a polynomial equation R(z1,¥1,Z2,¥y2,6) = 0 such
that the set of solutions is only increased by a finite

number of new candidates. Now, a bound for § can be
obtained from the gap-theorem of Canny [Ca).

Proposition 2 ([Ca]) Let fi,..., fn be n polynomials
in n variables, with degree < d and coefficient magnitude
< ¢. Assume that the system {fi = 0,...,fn = 0}
has only a finite number of solutions when homogenized.
If (ai,...,a,) is a solution with o; # 0, then |oy| >
(3dc)="4".

With ¢ = 2L, d = const and n = 5, we get |§] =
2-9(L) This gives us:

Lemma 2 Let C be a smallest enclosing cylinder for
input set I, with radius r*. Then any cylinder C' # C
that touches a different set of points than C has radius
r=r*orr>r*+2"°L for a suitable constant c.

Remark 1 The use of the general gap-theorem (propo-
sition 2) gives constants that are far beyond from being
practical. It would be desirable to derive sharper bounds
for special cases of this theorem.

3 Optimization Algorithms
3.1 Linearization

In order to illustrate the basic idea of the lineariza-
tion technique, we first consider the anchored problem
(P2). Our focus is the fixed-parameter problem to de-
cide whether there exists an anchored cylinder of given
radius 7 that encloses all input points.

Let £, be the line through the points a,b € R3. We
fix a at the origin and w.l.o.g. require b to lie on the
plane z = 1:

a=(0,0,0), b= (bs,by,1).

Further, let ¢ = (cz, ¢y, c;) be an arbitrary input point.
We call £,, admissible with respect to c if

d(£a,¢)? < r?, (1)
with

d(Lab, €)® = ((c2 + c2)b2 + (c2 + c2)b2
—2¢zcybrby — 2¢cz¢:b; — 2¢yc, by
+(c2+ ) [ (b2 402 +1).

We embed our problem into a higher-dimensional space
by setting

Xy =bgy, Xy =by, X3 =02, Xy = b2, Xs = bsby. (2)
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Now, equation (1) is true if and only if

P.(X1,...,X5) <0, (3)

where P, is the linear equation

P.(Xi1,...,X 5)
= (- crcz)X1+( 2¢yc.)Xo
(c +c—r HXz+ (2 +c2—r)Xy
+(—2¢zcy) X5 + (ci + cf/ - r2).

According to this equation, P, defines a hyperplane in
R°®, and inequality (3) a halfspace H.. The set of equa-
tions (2) defines a 2-dimensional manifold which can be
written as

M:{ (Xl,...,X5) & Q(Xl,...,X5)=0}
with

Q(X1,...,X5)

= (X7 = X3)? + (X3 — Xa)? + (X5 — X1 X2)*.

For the set I of input points, the fixed-parameter
problem has a solution if and only if there exists a line
£45 which is admissible with respect to each ¢ € I. This
is equivalent to the existence of a common intersection of
the halfspaces H. and the manifold M. The intersection

Hzch

cel

is a convex polytope of complexity O(n?), and can be
constructed in the same time bound by Chazelle’s result
[Ch]. In order to intersect H with M, we triangulate
H into O(n?) simplices. Each of these simplices can
be tested for intersection with M separately in constant
time if we assume an algebraic model of computing, and
in time O(u(L)) if we assume a bit model [Re]. (Note
here that M is a semi-algebraic set and the above test
corresponds to deciding the satisfiability for a system of
polynomial equations and inequalities.)

Concluding, we get a decision algorithm that runs in
time O(n?) (respectively O(u(L)n?)) in an algebraic (re-
spectively bit) model. This argument generalizes in a
straightforward way to proving the general theorem 2.

To apply the linearization technique to the problem
(P1), we consider — w.l.o.g. — axis lines that are not
parallel to the plane z = 0. Let £q; be the line through
the points a,b € R3, with

a = (az,ay,0), b= (az +bs,ay+by,1).

Then £, is admissible with respect to ¢ = (ez,c¢y,¢z)
and given radius r iff

Pc(axa Ay, b, by) <0,
with

Pc(aa:: ay:bx, by)
= c2(b2 + 1) + cZ(b2 + 1) + c2(b2 +52)
+egey(—2bzby) + cxc.(—2b2) + cyc. (—2by)
+c; (2byay + 2bzaz)
+ez(—2a, — 2axb§ + 2bzbyay)
+cy(—2ay — 2ayb2 + 2bzazby)
+(a2b? + aZbZ + a2 + o}
r2(b% + b2) — 2bsazbyay)

—7"2.

At first glance, P, has an order 10 linearization. How-
ever, we can save one variable by grouping the terms
with factors ¢2, c2 and ¢ differently:

c2(b2 +1) + cZ (b2 + 1) + 2 (b2 + b)
= (c§ + c)b2 + (c2 + c2)b) + (2 + cf).
Now, the linearization is given by

X1=b,X0= by,
X6 = byay + bzaz,

X3 =102, X4 = b, X5 = bsby,

X7 =—az; — axbz + bzbyay,

Xg = —ay — aybz + bzazby,

Xo = aZ(b2 +1) +a2(b] + 1) — r*(b7 +b3)
—2bzazbyay.

Applying theorem 2, we conclude that the fixed-
parameter problem for (P1) can be decided in time
O(n*) in an algebraic model, and in time O(u(L)n?)
in a bit model.

Remark 2 If P. has an order 8 linearization, this
fact would not improve the asymptotic complexity of
the problem. But it means we could use some of the
O(n'*/21) conver hull algorithms to achieve the same
complezity bounds.

3.2 Parametric Search vs. Exact Approxi-
mation

In this subsection we shall apply parametric search
and “exact approximation” to problem (P1), based on
the decision algorithm from the previous subsection.
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Note that the presented techniques apply as well to the
restricted setting (P2).

We shall use the parametric search paradigm in its
general form (see eg. [AST] for a detailed descrip-
tion). Let T, denote the running time of a sequen-
tial decision algorithm for the fixed-parameter problem,
and T, (resp., P) the time (resp., number of proces-
sors) of a parallel decision algorithm, then the optimal
value (here, r*) can be computed in sequential time
O(PT, + T, T, log P). It remains to give a parallel ver-
sion of the decision algorithm. Here we exploit the new
parallel algorithm for convex hulls in [AGR]: For di-
mension d > 4, there is an algorithm with time O(logn)
and work O(nl?/2 loge([4/21=14/2]) ) for some constant
¢ > 0. Further, with O(nl%/2!) processors, the test for
intersection of H with M can be done in constant time in
an algebraic model (resp., a real RAM, see [Re]). Plug-
ging this into the parametric search paradigm, and ob-
serving that — in an algebraic model - the combinatorial
solution of (P1) can easily be constructed from the com-
puted optimum value r*, we obtain:

Lemma 3 A combinatorial solution of (P1) can be
computed via parametric search in time O(n* logk n), for
a fired constant k > 0.

Turning our attention to the bit model, as shown in
subsection 2.2, the combinatorial solution of (P1) can
be obtained from an e-approximate solution for r* if
¢ = 2-9() To compute this approximate solution,
it suffices to run the decision algorithm for the fixed-
parameter problem O(L) times, with radii of bit-size
O(L) as input. This yields:

Lemma 4 A combinatorial solution of (P1) can be
computed in the bit model in time O(Lu(L)n?).

4 Final Remarks

As the field of geometric optimization matures, it
treats problems of increasingly non-trivial algebraic
complexity. The traditional neglect of bit complexity 1s
no longer justified. The smallest cylinder problem is one
of these problems. By combining the general lineariza-
tion technique with parametric search and multivariate
root bounds, we developed efficient algorithms in both
an algebraic and a bit model.
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