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1 Introduction

We consider the dynamic problems of computing
e approximate nearest neighbor,
e approximate k-nearest neighbor,
e approximate range searching,
e approximate furthest neighbor and
¢ approximate diameter.

1.1 Approximate nearest neighbor

problem

The nearest neighbor searching is one of the fun-
damental problems in computational geometry.
We are given a set S of n points in R4, d > 2, and
a distance metric L;,1 <t < co. It is assumed
that the dimension d is a constant independent
of n. Each point p is given as a d-tuple of real
numbers (p1,--.,pd)- Let dist(p,q) denote the
distance between points p and q.

Definition 1.1 Given any ¢ > 0 and any
query point g € R4, a point p € Sis a (1+¢)-
approzimate nearest neighbor of ¢ if, for any
re S\ {q}, dist(p,q) < (1 + e)dist(r,q).

Kapoor and Smid [14] presented the dy-
namic data structure of size O(nlog? ! n) with
an amortized update time O(logd'1 nloglogn)
and query time O(log?!nloglogn). In [7]
the author gave the data structure of size
O(nlog®%n) with query and update times of
O(log?*! nloglogn). Arya et al. [4] used the
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box-decomposition tree (with midpoint decom-
position) and the topology trees of Frederick-
son [13] to solve the approximate nearest neigh-
bor problem. This data structure has size O(n)
and update time of O(logn). The query time is
O((1+1/¢)?logn).

In Section 3, we present a dynamic algo-
rithm that computes an approximate neighbor in
O(logn + 1/£971) time. This algorithm is based
on the fair split tree. To maintain the fair split
tree we apply the dynamic trees of Sleator and
Tarjan [16]. These trees have linear space and
logarithmic update time.

1.2 Approximate searching

problem

range

Arya and Mount [5] introduced the approxi-
mate range searching problem and showed that
the approximate queries can be answered in
O(logn + 1/¢%) time (for convex ranges time is
O(logn+1/¢471)). In Section 4, we extend these
results to the dynamic version of the problem.

1.3 Approximate furthest neighbor
problem

The situation with the furthest neighbor search-
ing is similar to that with the nearest neighbor
searching. In planar case the static version of
the problem can be solved optimally by using




furthest-neighbor Voronoi diagram [15]. In pla-
nar case and dynamic version of the problem,
Agarwal et al.[1] obtained a data structure of
size O(n'**), for any ¢ > 0, so that points can
be inserted into or deleted from S in time O(n¢)
per update, and a furthest-neighbor query, un-
der any Ls-metric, can be answered in O(log n)
time. It is natural to consider the approzimate
furthest-neighbor problem.

Definition 1.2 Given any ¢ > 0 and any
query point g € RY, a point p € Sisa (1 +¢)-
approzimate furthest neighbor of ¢ if, for any
r e S, dist(r,q) < (1+e)dist(p, q).

Agarwal et al. [2] proposed an algorithm that
computes, for each point p € §, approximate
furthest neighbor in O(ne(1=9/2) time.

In Section 5 we modify the fair split tree
and give an dynamic algorithm for finding (1 +
¢)-approximate furthest neighbor in O(1/¢471)
time. Note that the query time is independent
of n.

1.4 Approximate diameter problem

The diameter of S is defined as diam(S) =
max{dist(p,q) : p,q € S}. It is well known that
the diameter of n-point set in plane can be found
in O(nlogn) time. Using parametric searching,
Chazelle et al. [12] showed that the diameter in
3-space can be computed in O(n!*?) time, for
any v > 0.

In Section 6, we consider the dynamic version
of the problem and show that (14¢)-approximate
diameter can be computed in O((1 + 1/¢)?(4~1)
time.

2 The fair split tree

The fair split tree is a hierarchical subdivision of
the space into boxes. We define a box to be the
product [a1,a;") X ... X [aq,aq’) of d semiclosed
intervals. i-th side of this box is the interval
[a;,a;"). If all sides have the same length, we
say that the box is a d-cube. The cubes are use-
ful in some proximity algorithms (for example,
all-nearest-neighbors algorithm of Vaidya [17]).
Unfortunately we cannot directly use the cubes
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in subdivision of space for dynamic problem, be-
cause a split of cube by a hyperplane z; = const
does not give cubes. Another way is the using of
the almost cubical boxes (or c-boxes for brevity)
[8] and a fair split [9, 10, 11] or an almost middle
cut [8]. The almost middle cut is similar to the
fair split (but there is the difference of the defi-
nitions). In this paper, for the split of boxes, we
shall use the definition as in [8] but we shall call
its the fair split.

The constant factors in the update and query
time are exponential in the dimension. To de-
crease the constant factors we generalize the fair
split by introducing a separator s > 1. In fact
both the fair split [9, 10, 11] and the almost mid-
dle cut [8] use the separator that is equal 2. We
establish geometric criteria for the fair split with
separator to be suitable for maintenance of the
fair split tree. The separator must be at least
Golden Ratio ﬁzﬁ ~ 1.62.

Definition 2.1 Let [a,a’) be an interval in
R and b be a point in this interval. The split of
the interval into the intervals [a,b) and [b,a’) is
fair split if 7% € [L,s].

Definition 2.2 Let B = [aj,a;’) X ... X
[ag,aq’) be abox and ¢; € (a;,a;’) be a real num-
ber for some . The split of B by the hyperplane
z; = ¢; is fair split of B if the split of the interval
[a;,ai") by ¢; is fair split.

The fair-split operation generates a relation on
the set of boxes.

Definition 2.3 Let A and B  be
d-dimensional boxes. The box A is said to be
a s-sub-boz of B if A can be constructed from B
by applying a (possibly empty) sequence of fair
cuts. We shall write B ~+ A. For d = 1, we shall
say that A is s-sub-interval of B.

The second definition of s-sub-interval [8] can
be generalized.

Definition 2.4 Let [a,a’) and [b,b’) be in-
tervals in R. Let [a,a) is the sub-interval of
b,b),i.e. b<a<a <O The interval [a,d’) is
called s-sub-interval of the interval [b,b’) if one
of the following conditions holds

1. [a,a") = [b,b'), or
2. a=band |’ —a| < Z5|0' - bf, or
3.d =b and |a —a| < (b~ 0|, or




4. |a'=b| < 5[0’ —b| and |a'—a| < Fxla’'-b],

or

5. |b'—a| < 745[b'=b| and |a'~a| £ ;5[0 —al.

This definition allows us to retrieve the se-
quence of fair cuts for two boxes A and B if
B ~- A. The following Theorem gives the con-
dition for separator when definitions 2.3 and 2.4
are equivalent.

Theorem 2.5 The definitions 2.3 and 2.4
define the same relation of s-sub-interval if and
only if the separator is at least Golden Ratio, i.e
s > lé,j—l =~ 1.62

The dependence of the constant factors in the
query answering efficiency is O((s + 1)%). The
decreasing of the separator reduces these factors.

Definition 2.6 Let B be a box with sides
$1,...,5:. The box B is said to be a c-boz if, for
any 1,5 € {1,...,k}, f: € [T;lk—s,l-i-s].

The fair split tree is the binary tree 7. With
each node v of the tree T', we store a box B(v)
and a shrunken box SB(v). The boxes satisfy
the following conditions.

1. For any node v, the boxes B(v) and SB(v)
are c-boxes.

2. For any node v, the box SB(v) is a s-sub-
box of B(v).

3. For any node v, SB(v)NS = B(v)NS.

4. If w has two children » and v, then boxes
B(u) and B(v) are the results of an fair split of
the box SB(w).

5. If v is a leaf, then |[S N B(v)] = 1 and
SB(v) = SN B(v).

For a point p € S corresponding to the leaf v,
let B(p) denotes the box B(v).

Let parent(v), lson(v), and rson(v) denote
parent, left son, and right son of the node v of
T.

We omit the description of the dynamic tree
for brevity. It can be found in [6, 16, 8].

3 The approximate nearest
neighbor queries

To find an approximate nearest neighbor we shall
use dynamic tree. (It is easy to see that the depth
of fair split tree can be linear in the worst case.
) We apply the technique similar to the finding
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the sets £, and A(v) [8]. We give two algorithms.
The code of the first algorithm is simple but the
second algorithm has better computational com-
plexity.

Both algorithms use a set V. An element of
V is a node of the fair split tree or a node of a
path tree. With each node v € V we associate
a domain D(v) C R9. To define a domain D(v)
we consider three cases.

Case 1. v is a node of fair split tree. D(v) =
SB(v).

In the next two cases v is a node of a path tree
PT.

Case 2. vis aleaf of a path tree. v corresponds
to a node v’ of T. We replace v in V' with a node
of T which is determined as follows. Note that
v’ is an internal node of T. Let u and w be sons
of v’. If v and w are linked to v by dashed edges
then we replace v with v’. If the edge (v',u)
is dashed and the edge (v'w) is solid then we
replace v with u.

Case 3. v is an internal node of a path tree.
The node v covers nodes vy,..., v of solid path
where parent(vi41) = v; for ¢ = 1,...,k = 1.
If v is the bottommost node of path tree then
D(v) = SB(v1) (v1 = btail(v)). Otherwise vy
has a son vg4; linked to it by a solid edge. The
domain D(v) = SB(v1)\ SB(vk+1)-

To process domains D(v) for internal nodes of
path trees we store two boxes B,y:(v) and Bin(v)
(possibly empty) such that D(v) = Byu(v) \
B;n(v). This information allows us, for a node
veV,

e compute dpin(g, D(v)) and dimez(g, D(v)) in
O(d) time

e compute D(vy) and D(vy) where v; and v,
appear when we traverse the node v.

The variable R contains an upper bound of
the distance from query point g to (1 + ¢)-
approximate nearest neighbor. In fact this
bound is R = min{dma.(g, D(v)) | v is traversed
in search step}. Let vg be a node such that
R = dpmaz(q, D(vR)). The procedure refresh_R
computes this node and R after updates of V.
procedure refresh_R(v)

R’ := dnaz(q, D(v))

if R>R then R:=R:vg:=v fi
end refresh_R;




Now we describe the first algorithm. Initially
V= {vroot}a VR = VUroot and R = dmax(qv D(UR))
We repeat the search step while V' # (.

SEARCH STEP. Take any v € V. Remove v
from V. If dpnin(q,D(v)) > l—}f_—s- then return
(start new search step). If v is a leaf of T' then
return. If v is a leaf of path tree then we re-
place it with a node of T' (see Case 2 above).
If v is an internal node of 7" and v is linked to
sons u and w by dashed edges then add u,w to
V. If v is a topmost node of a solid path that
contains more than one node then add sons u,w
of pt_root(v) (in the path tree) to V. If v is an
internal node of path tree then add sons u,w of
vtoV. Refresh_R(u) and Refresh_R(w).

After all search steps (V' = 0) any point in
D(vg) is the (1 + ¢)-approximate nearest neigh-
bor and can be found in O(logn) time. It is clear
that the algorithm is correct. One can prove that
the number of visited nodes is O((log n)/e~1).

The second algorithm has three phases. In the
first phase, we compute (1+¢&g)-approximate dis-
tance from query point to nearest neighbor. To
do this, we apply the first algorithm. ¢&o is a
constant and we assign o = 1.

Our goal in the second phase is to obtain the
set V' of nodes of T such that

e for distinct nodes v and v, B(u) N B(v) =0

e the boxes B(v),v € V contain points of S
that are within distance at most R, i.e. {p €
S,dist(p,q) < R} C Urev B(v).

e for a node v € V', diam(B(v)) < R and (if v
has a parent) diam(B(parent(v))) > R.

To construct such a set of nodes we apply the
search that is similar to the first algorithm.

In the third phase, we compute an (1 + ¢)-
approximate nearest neighbor of query point.
The algorithm has O(log(1 + ¢)) iterations. At
the beginning of iteration

e compute R = minyev dmar(g, D(v)). Note
that v € T and computing dp,, is simple.

e compute 7 = minyev dmin(q, D(v)).

e compute d; = max,ev diam(SB(v)).

e remove v from V if dmin(q, D(v)) > R.

If R < (1 4 ¢)r then any point in
D(v).dmin(g. D(v)) = 1 is the (1 + ¢)-
approximate nearest neighbor and can be found
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in O(logn) time. Set U = 0. We repeat the
search step while V # 0.

SEARCH STEP. Take any v € V. Remove v
from V. If vis aleaf of T or dmin(q, SB(v)) > R
then return. If diam(SB(v)) < d1/2 then add v
to U and return. Add sons u,w of v to V and
Refresh_R(u) and Refresh_R(w).

After the iteration we set V = U. Note that
each iteration decreases maximal diameter d; of
SB(v),v € V at least to dy/2. The first and sec-
ond phases take O(logn) time. The third phase
without final finding of the (1 + ¢)-approximate
nearest neighbor (in Section 5 it is shown that
the sampling a point can be done in O(1) time)
takes O((1+ 1/¢)4"1) time.

Theorem 3.1 Using the fair split tree and
dynamic tree, for query point g, any ¢ > 0 and
metric Ly, (1 + ¢)-approzimate nearest neighbor
query can be answered in O((1+ 1/¢)4"' +logn)
time.

3.1 The approximate k-nearest neigh-
bor queries

Consider the problem of computing approxima-
tions to the k nearest neighbors of a query point.
Definition 3.2 Given any ¢ > 0 and any

query point ¢ € RY, a point p € §is a (1 +¢)-
approzimate k-th nearest neighbor of g if, for a
true k-th nearest neighbor of ¢, ‘Zi;gfg; <l+e.

We can use the dynamic algorithm for approxi-
mate nearest neighbor searching. Let ann(g,<.?)
be the function that returns (1 + ¢)-approximate
nearest neighbor of query point ¢ under L.-
metric. The procedure aknn(g,¢,t) returns a list
of points py, ..., px that is an answer for (1+¢)-
approximate k-nearest neighbor query.
procedure aknn(g.<,t)

for::=1,....k

p; = ann(q, &, 1)
delete(p;) (* from § *)

rof
fori:=1,...,k
insert(p;) (* to S *)
rof
end aknn;

It is clear that the running time of the algo-
rithm is O(k((1+1/¢)¥1+logn)). In fact (1+¢)-




approximate k-nearest neighbor problem can be
solved O(k + (14 1/¢)%"! + logn) time but the
space restriction does not allow us to describe
such algorithm. -

4 The approximate
searching

range

We assume that the points have been assigned
weights. In precise range searching, given any
query range @, we have to compute the accumu-
lated weight of the points in SNQ, weight(SNQ),
under some commutative semigroup.

Definition 4.1 Given any ¢ > 0 and any
query range @ of diameter d, define Q7 to be
the locus of points whose distance from a point
exterior to Q is at least de, and Q% to be the lo-
cus of points whose distance from a point interior
to Q is at most de. Define a legal answer to an
(14¢)-approximate range query to be weight(S")
for any subset §’ such that SNQ~ C §’ C $NQ™.

We can adapt the algorithm of Arya and
Mount [5] to fair split tree and dynamic tree.
The cells cell(v) correspond to the domains D(v).
With each node of path trees we shall store
weight(v) = weight(D(v)). We can maintain
weights of nodes in O(logn) time per update of
S.

Theorem 4.2 Using the fair split tree and
modified dynamic tree, for a spherical query
range. any ¢ > 0 and metric Ly, (1 + ¢)-
approzimate range count can be computed in

O((1+ 1/¢)?) time.

5 The approximate furthest
neighbor queries

In this Section we shall give an algorithm for
approximate furthest neighbor searching. The
algorithm has simple code. The algorithm
uses a set V of nodes of T. The variable 7
contains a lower bound for distance to (1 +
c)-approximate furthest neighbor and the box
B(v,) contains it. Initialization: V = {Vroot }>
r= dmin(QaSB(vroot))v and v, = Vroot-
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The procedure Refresh_r() is analog of
Refresh_R() in Section 3.
procedure refresh_r(v)

= dmin(Qv SB(U))

ifr<r'then r:=r5v.:=v fi
end refresh_r;

We apply the scaling technique of phase 3 of
approximate nearest neighbor algorithm in Sec-
tion 3. The algorithm has O(lg(1 + 1/¢)) itera-
tions. At the beginning of iteration

e compute di = maxyey diam(SB(v)).

e set U=0.

We carry out the search step while the set V
is non-empty.

SEARCH STEP. Take any node v € V. Remove
v from V. If dmaz(q, SB(v)) < (1 + ¢)r then
return. If diam(SB(v)) < dy/2 then add v to U
and return. Let u and w be sons of v (in T'). Add
uwand wto V. Refresh_r(u) and Refresh_r(w).

After iteration we assign V = U.

This algorithm without final finding of the (1+
¢)-approximate furthest neighbor takes O((1 +
1/£)4"1) time. We can compute the approximate
furthest neighbor using the point location. How-
ever the point location has O(log n) time in worst
case. We modify the fair split tree such that the
final finding can be performed in constant time.
We add the pointer point() to nodes of V. For a
node v € V, point(v) is a point in SN B(v) if the
edge (v, parent(v)) of A(T) is dashed. We can
maintain this pointer in O(logn) time per up-
date of S. To find any point in B(v,) we choose
a son u of v such that the edge (u,v) is dashed
(if v is a leaf then the finding is trivial). point(u)
points to required point of S.

6 The approximate diameter

In this Section we shall give an algorithm for
approximate diameter searching. The algorithm
uses a set V of nodes of T. We apply the scal-
ing technique. The algorithm has O(lg(1 + 1/¢))
iterations. At the beginning of iteration

e compute 7 = maXyyev dmin(SB(u), SB(v))
and nodes wu, and v, such that r =

dmin(SB(uy), SB(v,)).




e for any node v € V, compute R, =
maxyey dmaz(SB(u),$B(v)). I Ry < (1+ e)r
then remove node v from V.

o If V = 0 then (1 + ¢)-approximate diameter
is dist(p,q) where p € SN SB(u,) and ¢ € SN
SB(v,) and the algorithm stops.

o compute d; = max,ev diam(5B(v)).

eset U =0.

We carry out the scaling step while the set V'
is non-empty.

SEARCHING STEP. Take any node v € V. Re-
move v from V. If diam(SB(v)) < d1/2 then
add v to U and return. Let u and w be sons of
v (in T). Add v and wto V.

After iteration we assign V =U.

As in the preceding Section we use pointers
point() to determine the pair (p,q) that gives
approximate diameter. The number of nodes
in V is at most O((1 + 1/¢)¢7!). The running
time of an iteration (i.e. searching steps) is
O((1 + 1/e)?"!). The part before an iteration
(i.e. computing 7, R,) takes O((1 + Lfe)Ald-1))
time. One can prove that the running time of
the algorithm is within a constant factor of this
time.
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