Visibility graph of a set of line segments: A dynamic
sequential algorithm and its parallel version

Yosser ATASSI
CRIN-CNRS BP 239
54506 Vandoeuvre-les-Nancy
Cedex France (e-mail: atassi@loria.fr)

I Introduction

The visibility graph of a set of nonintersecting line segments G in the plane is a graph
whose vertices are the endpoints of the segments and whose edges are the pairs of end-
points (u,v) such that the open line segment between u and v does not intersect any of
the line segments of G.

Asano et al. [AGHI86] and Welzl [Wel85] presented optimal algorithms for construct-
ing the visibility graph for n line segments in O(n?) time. Hershberger [Her89] studied
the visibility graph of triangulated simple polygon with n sides. He described an algo-
rithm that finds the visibility graph in O(m) time where m is the number of edges in
the visibility graph. Because m can be as small as O(n). Vegter [Veg91] presented an
algorithm to maintain dynamically the visibility graph of a set of n line segments in the
plane in O(log? n + Klog n) time, where K is the total number of arcs of the visibility
graph that are destroyed or created upon insertion or deletion of a line segment.

Goodrich et al. [GSGY92] presented an algorithm for computing the shortest path
between two vertices in a simple polygon by constructing the visibility graph in O(n)
time using O(nlog n + 32;) processors, where m is the number of edges of the resulted
visibility graph.

In this paper, an on-line algorithm and its parallel version to construct the visibility
graph of a set of line segments using the dynamic data structure I-DAG are developed.
This algorithm is simple, easy to code and efficient in practice.

IT I-DAG (Influence Directed Acyclic Graph)

Randomised incremental construction is a new paradigm in computational geometry that
has been successfully applied to a variety of problems [CS89] [BDS*92] [BY95] [Dev96).
These algorithms are rather simple, easy to code and efficient in practice. Moreover,
they do not require that the input data satisfy some probabilistic distribution but that
they are inserted in random order.

246

In this s.tructure, geometrical problems are stated in terms of objects, regions and
conflicts between objects and regions.

The objects are member of a universe U and are the input data of the problem. The
regions are defined by subsets of the universe U of cardinality less than a constant b.
The definition of conflicts between objects and regions has to be made precise for each
specific problem. The subset of objects of U which are in conflict with a region is called °
the influence range of the region.

For a finite set of objects G we denote F(G) the set of regions defined by the objects
in G. We call the number of objects of G that belong to the influence range of a region
width with respect to G. Let Fj(G) be the subset of F(G) consisting of the regions that
have width j with respect to G.

Let G be the set of objects which have already been introduced. At a given stage, the
incremental algorithm inserts a new object in G and updates the set Fo(G) of regions
of zero width defined by G. This is performed through the maintenance of a dynamic
structure called Influence DAG (I-DAG) described below.

The I-DAG is a rooted directed acyclic graph whose nodes are associated with regions
that at some stage of the algorithm have appeared as regions of zero width defined by the
set of objects that have been introduced at that stage.

The construction of I-DAG can be sketched as follows:

e We initialise G with the first b objects. A node of the I-DAG is created for each
region of Fy(G) and made a child of the root of I-DAG.

e At each subsequent step, a new object O is added to G and the I-DAG is updated.
The two following substeps are performed:

— Location substep. This substep finds all the nodes of the [-DAG whose regions
have zero width and are in conflict with O.

— Creation substep. From the information collected during the location substep,
the creation substep creates a new node for each region Fo(GU {O}) — Fo(G)
and links the new nodes to already-existing nodes in the structure.

We have the following main theorem [BDS+92]:

Theorem 1 If the set of already-inserted objects G has cardinality n, the I-DAG of G

fo(

. 2],G . . .
requires O(Z 7=, —Lg‘l—) ezpected memory space. The insertion of a new object can be

done in O(Z-EL{:#?—J—G—)-) ezpected update time.

ITTI A sequential algorithm for constructing the visibility graph
of a set of line segments

We present in this section a sequential on-line algorithm for constructing the visibility
graph of a set G of n line segments in the plane.

247

The objects are the segments of G. A region is an angular sector QPR defined by
three endpoints P, Q, and R such that PQ ¢ G and PR ¢ G (see Figure 1), the angle
QPR can be more than 7. The region corresponding to an angular sector QPR is called
PQR. When QR € G and the angle QPR is less than 7, the region PQR is bounded by
the line segment QR. A line segment S is in conflict with a region PQR if and only if it
intersects this region. A region of I-DAG has zero width if and only if PQ and PR are

/\

Region2 PRQ corresponding to the sector QPR

Regionl PRQ corresponding to the complement sector QPR

Figure 1: The region of the I-DAG

edges of the visibility graph of G. So computing the visibility graph of G is equivalent
to computing the zero width regions.

Let us describe the algorithm. Suppose that I-DAG has been constructed for the
subset S7 (S; C G) and that we want to insert a new segment S (S =).

The location substep gives the regions LT of Fo(Ss) intersected by S. The I-DAG is

modified in the following manner:

1. The width of selected regions LT is incremented.
2. For every region T € LT and T in the form of V3V, V5 do:

(a) If S intersects the line segments V3V, and V3Vs then (see Figure 2.a):

(a) (b) ©)

Figure 2: The relations between the line segment S and the region T

248

Let V; be the first endpoint of S;U {S} met while rotating V3V;; around V3 in
the inverse direction of V5. Let V; be the first endpoint of S;U{S} met while -
rotating V3Vs around V3 in the inverse direction of V;. We add the region
VaV.V; as a child of T if this region has not been added before, else T' has.no
child. '
(b) Else, if S intersects only V3Vj then (see Figure 2.b):
Let V; be the first endpoint of S; U {S} met while rotating V3Vs around V3
in the direction of V4. Let V; be the first endpoint of Sy U {S} met while
rotating V3V; around V4 in the direction of the other endpoint of 5. We add
the regions V3VsV; and V3V;V; as children of T if these regions have not been
added before.
(c) Else, if S intersects only V3V5 then:

Similar to the preceding case.

(d) Else, if S is in T then (see Figure 2.c):

Let V; be the first endpoint of S;U {S} met while rotating V3V, around V3 in
the direction of V5. Let V; be the first endpoint of S;U{S} met while rotating
V3Vs around V3 in the direction of V. We add the regions V3V, V;, VaV;V; and
V3V; Vs as children of T if these regions have not been added before.

3. For every endpoint V3 of T' € LT do:

Let V; be the first endpoint of S; met while rotating V1 V3 around V; counterclock-
wise. We add the region V1 V3V; as a child of the I-'DAG.

4. For every endpoint V3 of T' € LT do:

Let V; be the first endpoint of S; met while rotating V,V3 around V; counterclock-
wise. We add the region V,V3V; as a child of the I-'DAG.

IV A parallel algorithm for constructing the visibility graph of
a set of line segments

We use the same definitions of object, region and conflict relation used in the preceding
section. Suppose that I-DAG has been constructed for the subset Sy (S; C G) and that
we want to insert a new segment S (S = V;V,). We associate every endpoint V; with a
processor P; which is responsible of regions whose first endpoint is V;. At the location
substep, every processor P; tests if one of its regions of zero width has been influenced
by the insertion of S, then P; constructs the list of influenced regions LT;.

At the creation substep, every processor P; performs the sequential algorithm in the
following manner:

1. The width of selected regions LT; is incremented.

2. For every region T; € LT; and T in the form of V3V, V5, the processor P3 (P; = P3)
associated to V; realises the following operations:

249

(a) If S intersects the line segments V3V and V3V5 then (see Figure 2.a)
Let Vi be the first endpoint of S; U {S} met while rotating V3V around V3
in the inverse direction of V4. Let V; be the first endpoint of S; U {S} met
while rotating V3V around V3 in the inverse direction of V4. The processor
P; adds the region V3V, V; as a child of T; if this region has not been added
before, else T; has no child.

(b) Else, if S intersects only V3V, then (see Figure 2.b):
Let Vi be the first endpoint of Sy U {S} met while rotating V3V5 around V3 in
the direction of Vi. Let V; be the first endpoint of S;U{S} met while rotating
V3Vi around V5 in the direction of the other endpoint of S. The processor P;
adds the regions V3V5V; and V3ViV; as children of T; if these regions have not
been added before. ‘

(c) Else, if S intersects only V3V then:
Similar to the preceding case.

(d) Else, if S in T; then (see Figure 2.c):
Let V, be the first endpoint of Sy U {S} met while rotating V3V around V3
in the direction of V5. Let V; be the first endpoint of Sy U {S} met while
rotating VaVs around V3 in the direction of Vi. The processor P; adds the
regions VaViVi, V3WiV; and V3V, Vs as children of T; if these regions have not
been added before.

3. Two new processors P, and P, are used. They are associated respectively to the
endpoints V; and V5.

4. For every endpoint V3 of T; € LT; do:

Let Vi be the first endpoint of S; met while rotating V1 V3 around V; counterclock-
wise. The processor P; adds the region V13V as a g:hild of the I-DAG.

5. For every endpoint V5 of T; € LT; do:

Let Vi be the first endpoint of S; met while rotating V;V3 around V; counterclock-
wise. The processor P, adds the region V2V3V} as a child of the I-DAG.

At last, every processor P; goes over the list of its regions in the form of V;V;Vi of zero
width and gives as edges of the visibility graph, the line segments V;V} and V;Vj.

V Average analysis

Here fo(r, G) is the expected size of the visibility graph of r segments, which is clearly
O(r), so applying Theorem 1 we deduce:

Proposition 1: the visibility graph of a set G of n segments in the plane can be
computed sequentially with O(m * log n) expected memory space and O(m) expected
update time where m is the number of edges of the resulted visibility graph.

Proposition 2: the visibility graph of a set G of n segments in the plane can be
computed in parallel with O(m * log n) expected memory space and O(%) expected

250

update time where m is the number of edges of the resulted visibility graph and P the -
number of processors. '

VI Conclusion

We have presented two new on-line algorithms for computing the visibility graph of a
set G of line segments using the dynamic data structure I-DAG.

We can easily implemerit the parallel algorithm on machines with SPMD architec-
ture. The communication among the processors is almost negligible, so this algorithm is
efficient and faster than the sequential one.

These algorithms can be generalised easily to treat the case of a set of polygons.

References

[AGHI86] T. Asano, L. Guibas, J. Hershberger, and H. Iami. Visibility disjoint polygons.
Algorithmica, 1:49-63, 1986.

[BDS+92] J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli-
cation of random sampling to on-line algorithms in computamonal geometry.
Discrete Comput. Geom., 8:51-71, 1992.

[BY95] J.D. Boissonnat and M. Yvinec. Géométrie Algorithmique. Ediscience inter-
national, Paris, 1995.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random sampling in computa-
tional geometry. -Discrete and computational geometry, 4:49-63, 1989.

[Dev96] O. Devillers. A comprehensive introduction to randomization in computa-
tional geometry. Theoret. Comput. Sci., 157, 1996.

[GSG92] M.T. Goodrich, S.B. Shank, and S. Guha. Parallel methode for visibility and
shortest-path problems in simple polygons. algorithmica, 8:461-486, 1992.

[Her89] J. Hershberger. An optimal visibility graph algorithm for triangulated simple
polygons. Algorithmica, 4:141-155, 1989.

[Veg9l] G. Vegter. Dynamically maintaining the visibility graph. In Proc. 2nd Work-
shop Algorithms Data Struct., LNCS 519, pages 425-436, 1991.

[Wel85] E. Welzl. Constructing the visibility graph for n line segments in O(n?) time.
Information Processing Letters, 20:167-171, 1985.

251

