On Rectangle Visibility Graphs
ITI. External Visibility and Complexity

extended abstract

Thomas C. Shermer *

Simon Fraser University
Burnaby, BC V5A 156

1 Introduction and Definitions

Let R = {R;} be a collection of pairwise disjoint
closed rectangles in the plane. Two rectangles R;
and R; will be called wvisible if there is a closed non-
degenerate rectangular region B;; (called a band of
visibility) such that one side of B;; is contained in
a side of R;, the opposite side of B;; is contained
in a side of R;, and B;; does not intersect the inte-
rior of any rectangle in R. This type of visibility is
equivalent to what Tamassia and Tollis have called
e-visibility [8]. The visibility graph of R is the graph
of the visibility relation on vertex-set R; a collection
of rectangles and its visibility graph is shown in Fig-
ure 1. A graph is called a rectangle visibility graph,
or RVG, if it is the visibility graph of some collec-
tion R of rectangles (R is called the layout of the
graph). A graph is called a weak RVG if it is a sub-
graph of an RVG. In weak layouts we are allowed
to embed two nonadjacent vertices as rectangles that
are visible; in non-weak layouts this is not allowed.
For convenience, we will henceforth write the prefix
€é— to mean “non-weak” when we want to emphasize
this aspect (e.g. an e~RVG is a (non-weak) RVG as
defined above).

We distinguish between two types of e—layouts of
graphs: collinear and noncollinear. A layout is called
collinear if there is a pair of rectangles that have
collinear sides, and noncollinear otherwise. This dis-
tinction is unnecessary for weak RVGs, as any weak
collinear layout can be converted to a weak non-
collinear layout by perturbation. Observe that ev-
ery noncollinear RVG is a collinear RVG, and every
collinear RVG is a weak RVG.

Rectangle visibility layouts of graphs are of inter-
est for a variety of reasons. They naturally arise in
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Figure 1: A set of rectangles and its visibility graph

two-layer routing problems in VLSI or printed-circuit
board design. In a more general setting, they can be
used for labelled graph layouts, as vertex labels can
be written inside the rectangles, and edge labels need
only avoid horizontal and vertical obstacles (the sides
of the rectangles and the visibility edges). Further-
more, all edge crossings in a rectangle visibility layout
are perpendicular, and if the graph is an e—RVG, the
crossings in the drawing can eliminated by simply not
drawing the edges (the vertex placement defines the
graph).

RVGs are closely related to bar-visibility graphs (or
BVGs): those graphs that can be drawn so that their
vertices are represented by horizontal line segments,
and their edges by vertical bands of visibility. Any
BVG must be planar, as can be seen by shrinking
the horizontal segments to points while deforming the
rest of the plane, allowing the edges to bend.

We use the modifiers €e—, weak, collinear, and
noncollinear on BVGs with the same meaning as
for RVGs. Noncollinear BVGs were characterized
by Luccio, Mazzone, and Wong [5] as ipo-triangular
graphs: those graphs that can be transformed into
a triangulated planar multigraph by duplications of
existing edges. Collinear BVGs were characterized
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by Wismath [9], and independently by Tamassia and
Tollis (8], as those planar graphs that can be drawn
in the plane with all cut-vertices on a single face.
Deciding if a graph is a collinear BVG takes only lin-
ear time [8, 10]. Weak BVGs were characterized by
Duchet et al. as planar graphs [3], and are thus also
recognizable in linear time.

RVGs do not seem to have such succinct character-
izations. We proceed to survey what is known about
RVGs; this review is interspersed with the necessary
definitions.

We will say that a graph G can be decomposed into
graphs G; and G: if G, G1, and G, have the same
vertex set, and the edge set of G is exactly the union
of the edge sets of G; and G;. This can be viewed
as coloring the edges of G with 2 colors so that one
color class forms G; and one forms G;. We will use
the concepts of decomposition and edge-coloring in-
terchangably.

By the term colored graph we mean a graph whose
edges have been colored red and blue. Any RVG can
be decomposed into two BVGs by finding a layout of
the RVG and coloring edges corresponding to hori-
zontal visibilities red and those corresponding to ver-
we will say that a rectangle visibility layout of the
graph respects the coloring if the colors correspond
to the directions of visibility as above.

A graph is called thickness-two if it can be decom-
posed into two planar graphs. Any RVG is thickness-
two, but not every thickness-two graph is an RVG.
In fact, Hutchinson, Shermer, and Vince have shown
that any type of RVG has at most 6n — 20 edges
(whereas thickness-two graphs can have as many as
6n — 12) [4].

Dean and Hutchinson [2] established that the com-
plete bipartite graphs K, , are noncollinear RVGs iff
p<3or(pq) = (3,3)or(p,q) = (3,4), and that they
are collinear iff p < 4. They also show that a bipar-
tite RVG can have at most 4n — 12 edges. Wismath
has shown that all planar graphs are RVGs [10].

A caterpillar is a tree containing a simple path
P(a,b) such that every vertex not on P(a,b) is dis-
tance one from P(a, b). A caterpillar forest is a forest,
where each tree of the forest is a caterpillar. Similarly,
a linear forest is a forest where each tree is a path.

The arboricity of a graph G is the minimum k such
that G can be decomposed into k forests. Similarly,
the linear arboricty (or caterpillar arboricity) or a
graph is the minimum k such that the graph can
be decomposed into k linear forests (or caterpillar
forests). Note that a graph with linear arboricity &
has caterpillar arboricity at most k.

Bose et al. have shown that any graph with cater-

pillar arboricity 2 is a rectangle-visibility graph [1],
and ask if such graphs are easily recognizable. Graphs
with linear arboricity 2 are included in this result, but
their layouts have special properties, and so recogniz-
ing this subclass is also of interest. Peroche [6] has
proven that recognizing multigraphs with linear ar-
boricity 2 is NP-complete, and here we show how to
modify Peroche’s proof to establish that recognizing
graphs with linear arboricity 2 is NP-complete, and
that recognizing graphs with caterpillar arboricity 2
is NP-complete. This settles the questions raised in
[1]. Bose et al. also established that the class of non-
collinear RVGs includes k-trees, for k < 4, and partial
2-trees.

Graphs with a maximum vertex degree of 3 have
linear arboricity two, so the Bose et al. result also
shows that these graphs are RVGs. Shermer extended
this to show that graphs whose high-degree vertices
(degree 4 or more) are far apart are RVGs, and also
that maximum-degree 4 graphs are weak RVGs [7].

In this paper, we introduce the notion of exter-
nal visibility for a BVG or RVG, and characterize
some restricted classes of externally visibile BVGs
and RVGs. One of these characterizations is essential
for establishing our main result, which is that deter-
mining if a given graph is an RVG (of any sort—weak,
collinear, or noncollinear) is NP-complete. One can
view this result as justifying the current approach of
trying to find large recognizhble subclasses of RVGs
rather than trying to find a recognition algorithm or
characterization for all RVGs. As noted above, we
also show that the problem of recognizing graphs with
linear arboricity 2 is NP-complete, as is the problem
of recognizing graphs with caterpillar arboricity 2.

2 Externally Visible RVGs

In this section, we study the graphs that are repre-
sentable when the vertices of a layout are required
to be visible from outside the layout in one or more
directions; we call such graphs ezternally visible.

In a bar-visibility layout, we will say that a hor-
izontal line segment (i.e. a vertex) w is N-visible if
a line segment N placed above (“to the north of”)
the entire layout is visible to w. Similarly, we will
say that w is S-visible if a line segment S placed be-
low (“to the south of”) the entire layout is visible
to w. We give similar definitions of N-, E-, S-, and
W-visible for RVGs.

Let z be one of N, E, S, or W. If every vertex of
a BVG or RVG layout is z-visible, we call the layout
a z-layout, A BVG or RVG is called a z-BVG or
z-RVG, respectively, if it has an z-layout. We can
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Figure 2: An NE-layout and its visibility graph

repeat the above definitions for z being a subset of
{N, E, S, W}, with conjunctive meaning; e.g. NE-
visible means both N-visible and E-visible. Figure 2
shows an NE-layout and an NE-RVG.

We now characterize N-BVGs and NS-BVGs. The
proofs for N-BVGs are omitted.

Theorem 2.1 A graph G i3 a weak or collinear N-
BYVG iff it is outerplanar.

Theorem 2.2 A graph G is ¢ noncollinear N-BVG
iff each of its two-connected components is a mazimal
outerplanar graph.

The following theorem applies to all three types
(noncollinear, collinear, and weak) of NS-BVGs.

Theorem 2.3 A graph G is an NS-BVG iff it is a
linear forest.

PROOF (sketch) If G is a NS-BVG, lay it out and
add N and S from the N- and S- visibility definitions.
The graph G contains no K3 because that along with
N and S would form a Ks. Furthermore, it cannot
contain a cycle because that would imply the exis-
tence of a K3 homeomorph in the layout; thus G is a
linear forest. The other direction is by construction;
two examples are shown on the left and bottom sides
of Figure 3b. m]

The preceeding three theorems have ramifications
for z-RVGs; e.g. an NES-RVG can be decomposed
into a linear forest (an NS-BVG) and an outerplanar
graph (a N-BVG). We use this to help establish a
characterization for NESW-RVGs; this characteriza-
tion will be used later in our proof that RVG recogni-
tion is NP-complete. We leave exact characterization
of the other classes of z-RVGs as open problems.
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Figure 3: an NSEW-layout of a graph with linear
arboricity two

Theorem 2.4 A graph G is an NESW-RVG ff it
has linear arboricity 2.

PROOF If G is an NESW-RVG, then it has linear
arboricity 2, by Theorem 2.3. On the other hand, if G
has linear arboricity 2, then the algorithm of Bose et
al. [1] will produce NESW-layout of G, if we require
it to treat each path in the decomposition of G as a
caterpillar with no feet. To obtain this layout, the
algorithm constructs a horizontal NS-layout for one
linear forest (as in our proof of Theorem 2.3), and a
vertical NS-layout for the other; each vertex then is
laid out as a rectangle that is the cartesian product of
its corresponding intervals in the horizontal and ver-
tical layouts. Figure 3 shows an example of a graph
G with linear arboricity two and an NSEW-layout for
G. m|

We can also consider requiring that each vertex be
{NS}-visible: either N-visible or S-visible. We can
establish the following, but suspect that one cannot
obtain similar results for RVGs.

Theorem 2.5 A graph G is a (weak, collinear, or
noncollinear) {NS}-BVG iff it is a (weak, collinear,
or noncollinear, respectively) N-BVG.

3 Linear and Caterpillar Ar-
boricity

Let Linear Arboricity 2 be the problem of determin-
ing, for a given graph L, if the linear arboricity of L
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Figure 4: The doubled-edge replacement, forbidden
graph, and path component

is 2, and Linear Arboricity 2 for Multigraphs be the
same problem for a given multigraph. By Theorem
2.4, Linear Arboricity 2 is equivalent to NESW-RVG
Recognition, the problem of determining if a given
graph is an NESW-RVG. Peroche has shown that Lin-
ear Arboricity 2 for Multigraphs is NP-complete [6],
by transformation from 3-SAT.

We transform an instance M of Linear Arboricity
2 for Multigraphs to an instance of Linear Arboricity
2 by replacing each doubled edge uv with the compo-
nent shown in Figure 4a. Note that any other multi-
edge (e.g. a tripled edge) in M implies the existence
of a monochromatic cycle and thus a “no” answer.
We can argue that this component acts exactly like a
doubled edge in that in any decomposition into two
linear forests, it must consist of a red path and a blue
path between u and v. We therefore obtain:

Theorem 3.1 Linear Arboricity 2 is NP-complete.

We are also interested in the problem of determin-
ing if a given graph has caterpillar arboricity 2, which
we denote Caterpillar Arboricity 2. This problem
is trivially in NP, and we will show that it is NP-
complete by transformation from Linear Arboricity
2.

We note that a path is a caterpillar with no branch-
ing; if we somehow disallow branching in our caterpil-
lar arboricity coloring of a graph, then we are actually
performing a linear arboricity coloring of the graph.

We will disallow branching by replacing each edge
uv in the Linear Arboricity 2 instance L with the
component in Figure 4c. This component ensures
that the edge wz is a “leg” edge of the caterpillar that
it is in, with the path edges of that caterpillar con-
tained in the K4’s containing w. Thus, the edges uz
and vz must both have the opposite color; we have es-
sentially subdivided each edge of L and required that
the two resulting edges have the same color. This
means that if we have any branch point v in the col-
oring of L (i.e. vertex v with at least three incident
edges of the same color), then there is a monochro-
matic graph as in Figure 4b. However, this graph is

not a subgraph of any caterpillar, so branching is dis-
allowed; the caterpillar and linear arboricities must
be the same. This establishes the following:
Theorem 3.2 Caterpillar Arboricity 2 is NP-
complete.

4 Rectangle Visibility Graph
Recognition

Let RVG Recognition be the problem of deciding if
a given graph G is a rectangle visibility graph. In
this section, we show that RVG Recognition is NP-
complete. The proof is by transformation from Linear
Arboricity 2, and is fairly laborious.

In the first subsection, we study a geometric con-
figuration of four rectangles that we call a four-way,
and show how to augment a graph so that in any
layout, a given four element subset of vertices of the
graph form a four-way. In the second subsection, we
further constrain the situation to what we call cyclic
four-ways, and show that under certain conditions, if
a graph with a cyclic four-way has a layout, then the
subgraph that is “inside” the cyclic four-way must
have linear arboricity two. In the third subsection,
we present an RVG with a maximal number of edges,
and show how to augment it so that in any layout of
the augmented graph, the favorable conditions exist
for some cyclic four-way. In the final subsection, we
present the problem transformation and complete the
proof.

Four-ways. Four rectangles are said to form a four-
way if there is some nondegenerate rectangular region
T of the plane with one of the four rectangles to each
of its four sides; T' is called the four-way rectangle for
the four rectangles. A four-way is called visible if the
four rectangles can see a common subset of T'.

Suppose we have a subgraph G’ with a layout, and
a visible four-way S. We will say place G’ in S to
mean that we take some rectangle T’ contained in
the interior of the rectangular region that sees the
four elements of the four-way, and scale the layout of
G’ so as to fit in 7" and then to place it there. Since
T’ is properly contained in this four-way, this process
does not destroy any bands of visiblity, and so it does
not destroy any visible four-ways.

A four-way enforcer for a 4-element subset S =
{a,b,c,d} of the vertices of a graph is a collection
of seventeen K,’s, where each of the 68 vertices in
these K4’s is connected to a,b,c, and d. A four-
way enforcer has linear arboricity two, and thus has
a NESW-layout.
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Figure 5: The layout of a cyclic four-way

Lemma 4.1 If G is a graph containing the ver-
tices a,b,c, and d and a four-way enforcer for S =
{a,b,c,d}, and there is a layout L for G, then the
rectangles a, b, ¢, and d form a four-way.

Cyclic Four-ways and Included Graphs. We
will call a four-way {a, b, ¢, d} in a colored graph cyclic
if it induces a K4, and the vertices can be relabeled
so that the edges ab, ac, and cd colored blue, and ad,
db, and be colored red. The layout of cyclic four-ways
is quite constrained.

Lemma 4.2 If {a,b,c,d} is a cyclic four-way in a
graph G, and G is laid out in a way that respects its
coloring, then the rectangles {a,b,c,d} must be laid
out as shown in Figure a.

Given a cyclic four-way {a,b,c,d}, we obtain a
rectangle that we call the main area of the four-way
by starting with the four-way rectangle and expand-
ing it until it encounters a, b, ¢, and d. A rectangle
that contains no points of the main area will be called
an ezternal rectangle. An external rectangle will be
called adjacent if it is visible to a, b, ¢, and d.

Lemma 4.3 Let {a,b,c,d} be a cyclic four-way in a
colored graph M, and let G be the subgraph of M in-
duced by those vertices that are adjacent to all four
elements of {a,b,c,d} (excluding a,b,c, and d). If
M has a rectangle visibility layout that respects the
coloring, and such that are no adjacent external rect-
angles for {a, b, c,d} in this layout, then G has linear
arboricity 2.

The main point of the proof of this lemma is that
M must have a NESW-layout, and we then apply
Theorem 2.4.

The Maximal Graph M(g). We use the construc-
tion of Hutchinson, Shermer, and Vince for an RVG
M(g) on n = g2 +4 vertices with the maximum num-
ber 6n — 20 of edges [4]. This graph is defined as the
RVG of the arrangement of 4 rectangles ey, e3, €3, and
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Figure 6: The standard layout of M(5)

eq around ¢ rectangles v; ; placed as shown in Figure
6 for ¢ = 5. The figure shows what we call the stan-
dard layout for this graph; none of the collinearities
in this layout are essential and they can be removed
by perturbation.

Let M'(q) be the graph derived from M(q) by
adding a four-way enforcer to M(q) for every visible
four-way in the standard layout of M(g).

If we have any layout of M(q) (and the correspond-
ing coloring), then we will call a vertex v special if
(I.) v is e1, €2, €3, Or €4, or adjacent to any of these
vertices; (IL.) v is on a nontriangular face of either
BVG; or (II1.) v is on the exterior face of either BVG.
A vertex that is not special is called ordinary, and an
ordinary vertex w is called k-ordinary if there is no
special vertex within distance k of w in M(q).

We can establish that there are at most 42 special
vertices in any layout of M(g). This implies that for
any given k, if ¢ is made large enough, then there
will be a k-ordinary vertex in M(g); in particular, if
g > 54, there is a 2-ordinary vertex.

Let S;; be the four-way {v;;j, vij+1, vit1j,
Vi+1,j+1}. We can proceed to show that for any 1-
ordinary vertex v, in any layout of M’(g), the neigh-
borhood of v in M(g) must be colored exactly as it
was in the standard layout, and show the following
lemma:

Lemma 4.4 Let M" be an supergraph of M'(q) and
v = v; ; be a 2-ordinary vertez of M'(q) in a layout of
M" (with the corresponding coloring). Then S; ; is a
cyclic four-way with no adjacent external rectangles.

The Transformation. We are now ready to de-
scribe how to transform an instance L of Linear
Arboricity 2 to an instance of RVG Recognition.

238




We start by constructing the maximal graph M =
M(54), and M’ = M'(54), as described in the last
section. Complete the construction by including a
copy of L adjacent to all vertices of S;; for each
1< 4,5 <49, giving a graph M".

This transformation is polynomial: M has constant
size, M' also has constant size, and M" is larger than
M’ only by a constant times the size of L.

Theorem 4.5 RVG Recognition is NP-complete.

PROOF RVG Recognition is in NP, as one can guess
a layout and verify it.

If L has linear arboricity two, then construct a lay-
out of M" as follows. Lay out M using its standard
layout. Next, place each four-way enforcer (using
its NESW-layout) in the visible four-way that it en-
forces. Finally, place each copy of L (using its NESW-
layout) in the four-way for its four adjacent vertices.
This gives a noncollinear layout for M".

If M” has a layout of any variety, then it has a
weak layout. There is some vertex v;; in M (and
thus in M") that is 2-ordinary. By Lemma 4.4, the
four-way S; ; is cyclic and has no adjacent external
rectangles. But an instance of L is included in M’
adjacent to S;;; by Lemma 4.3, L must have linear
arboricity two. m]

5 Conclusion

In summary, we have introduced several classes of
externally visible BVGs and RVGs, and have given
characterizations of some of them. Of particular im-
portance (to the current work, at least) is the charac-
terization of NESW-RVGs as graphs with linear ar-
boricity at most 2. We have shown that the prob-
lems Linear Arboricity 2 and Caterpillar Arboricity
2, which are closely connected with RVGs, are NP-
complete. We have also established that RVG Recog-
nition is NP-complete, for weak, collinear, or non-
collinear RVGs.

It is still open as to whether or not RVGs have a
succinct graph-theoretical characterization; the NP-
completeness result here is somewhat discouraging
with regards to this. However, NESW-RVG Recogni-
tion being NP-complete does not stop one from estab-
lishing a satisfying characterization of NESW-RVGs
(Theorem 2.4), so there is still some hope that RVGs
may be characterizable. The other problems that we
have left open here are those concerning the different
classes of externally visible RVGs that were presented
in Section 2.

In closing, the author would like to thank James
Abello, Alice Dean, and Joan Hutchinson for many
helpful discussions and suggestions.
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