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Abstract

The "Art Gallery” problem consists in stationing in a
polygon P a minimum set of guards such that each point
of P is seen by at least one guard. In this paper we explore
the related edge covering problem, where the guards are
required to observe the edges of P, metaphorically the
paintings on the walls of the art gallery, and not necessar-
ily every interior point. Minimum edge and interior cov-
ers for a given polygon are compared, and bounds and
complexity for the edge covering problem analyzed. Then
we introduce a restricted problem where full visibility of
each edge from at least one guard is required, compare
this problem with unrestricted edge covering and analyze
its bounds and complexity. For this problem we present
an algorithm that computes a set of regions where a mini-
mum set of guards must be located. The algorithm can
also deal with the external visibility of a set of polygons
(the "Fortress” Problem).

L. INTRODUCTION

With the word polygon we referto aclosed set which
includes interiorand boundary points. If the line segment
connecting two points of a polygon P lies entirely in P, we
say that they are visible from each other. A polygon P is
covered by a set of viewpoints, or guards, lying in P, if
each point in P is visible from at least one guard.

The research in this area was triggered in 1975 by
Chvatal’s ”Art Gallery” Theorem[3]. He proved that at
most g(n)=Ln/3] guards are required for covering a sim-
ple polygon P with n edges. The upper tight bound
g(n,h)= L(n+h)/3for polygons with h polygonal holes
and n edges has been proven about fifteen years
later[5][6]. The reader is referred to the monograph of
O’Rourke[1] and the more recent paper of Shermer[2] for
comprehensive surveys of the results obtained in this
area.

In spite of these results, the minimum cover problem,
that is the practical problem of stationing a minimum set
of G(P) guards in a given polygon P, is still open. It can
be reformulated as the problem of finding the minimum
number of star-polygons whose union is P. A star—poly-
gon is a polygon such that there exists a set of internal
points, the kernel, whose members can observe the entire
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polygon. We will use the terms ICH and IC referring to
the minimum cover problems for the interior of polygons
with and without holes.

O’Rourke and Supowit have shown that the decision
problem corresponding to ICH is NP-hard [9]. The same
result for problem IC has been obtained by Lee and
Lin[10].

Many important application problems are not polyno-
mial, and many algorithms have been constructed which
work sufficiently well with the usual inputs, even though
some unlikely worst case might occur. Rather surpris-
ingly, this is not the case for IC and CH: up to now no ex-
actalgorithm for finding and locating in a given polygona
minimum set of guards has been found.

Another approach to non—polynomial problems is to
construct approximate algorithms with guaranteed per-
formances. Also this approach seems unable to cope with
the elusive nature of IC and ICH. We will show that the
worst—case performance of the approximate guard plac-
ing algorithms is as bad as possible, and the simplification
introduced have no practical rationale.

The problem addressed in this paper is the related
Edge Covering Problem, where the minimum set of
GE(P) guards must cover the edges of the polygon P. If
we consider the original meaning of the Art Gallery Prob-
lem, the surveillance of paintings on the walls is in effect
the main task of the guards, even if some internal region
could be left uncovered.

First we discuss the relations between minimum inte-
rior and edge covers for a given polygon, and analyze
worst cases and complexity for the edge covering prob-
lem. Then we introduce the restriction that each edge be
entirely visible from at least one guard, analyze this sub—
problem and compare it with unrestricted edge covering.
As aresult of this restriction, we discretize the problem
and construct an algorithm which provides, for general
polygons with or without holes, a set of regions where a
minimum set of guards can be located. The algorithm is
exponential in the worst case, but its behavior appears
sufficiently good for many practical cases. In addition,
sub—optimal solution can be obtained in polynomial time.
With small changes, the algorithm also applies to the
”Fortress” Problem, where the external polygon is miss-
ing.




The content of this paper is as follows. Section II deals
with the worst case behavior of approximate guard plac-
ing algorithms for interior cover. Complexity, worst cases
and relation with interior cover of edge cover are ana-
lyzed in Section I1I. Entire visibility edge covering is ana-
lyzed in Section IV. In Section V we present the algorithm
for entire visibility edge covering and the complexity
analysis.

In this conference paper we present some results
without detailed proofs. The interested reader can find
proofs and full details on the algorithm in [29].

II. APPROXIMATE GUARD PLACING

In this section we survey the approximate guard plac-
ing algorithms known for the IC and ICH. Letting GA(P)
be the number of guards located by an approximate algo-
rithm A, we will show that the ratio GA(P)/G(P) is un-
bounded both for polygons without holes and with an ar-
bitrary number of holes. For each algorithm we will pro-
duce families of polygons where G(P) is a constant (1 or
2) and GA(P) can be made arbitrarily large. In addition,
we will verify that the geometrical simplification pro-
posed hardly have a practical rationale.

Stationing g(n) and g(n,h) guards. Avis and Tuissaint
[8] and Bjorling—Sachs and Suvaine[5] gave polynomial
algorithms for placing L(n)/3] and L(n+h)/3] guards in
polygons without and with holes. Since for any value of
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Fig.1-Worst case for stationing g(n,k) guards.

nor of the pair (n, k) we can construct polygons which can
be covered by one guard in the former case(a convex
polygon), by two guards in the latter(Fig.1), the algo-
rithms could place O(n) and O(n+h) more guards than
necessary.

Vertex guards. IC with guards restricted to vertices is
NP—complete[10]. A vertex cover which has at most
O(lgn) time the minimum number GV(P) of vertex guards
can be found in polynomial time[11]. Anyway, for poly-
gons without holes GV(P)/G(P) can assume any value, as
shown by the family of polygons in Fig.2 (a), where
G(P)=1 and GY(P) is O(n). The ratio is unbounded also
for polygons with any number of holes, as shown by the
example in Fig. 2(b). Two guards G1 and G2 are sufficient
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for covering a modified family of polygons where A tiny
triangular holes are conveniently located in the regions
highlighted

(@) G

Fig.2-Worst cases for vertex guards.

Partitions. A partition is a cover with non—overlap-
ping pieces. An algorithm for finding in polynomial time
a convex partition with the minimum number GCP(P) of
pieces has been found by Chazelle and Dobkin[12]. The
problem is NP-hard for polygons with holes[13]. In any
way, it is easy to guess that the ratio GCP(P)/G(P) is not
bounded. This is shown for instance by the examples in
Fig.2.

A partition into the minimum number GSP(P)of star
polygons seems more promising. A polynomial algo-
rithm for this purpose, restricted to star polygons with
vertices coincident with the vertices of P, was given by
Keil[14]. However, also the worst—case behavior of any
star partition is as bad as possible, as shown by the family
of polygons found by Ntafos[15], (Fig.3(a)), where
G(P)=2 and GSP(P) is O(n). Also in this case we can
modify these polygons by inserting any number of tiny
triangular holes in the area highlighted without affecting
the optimal cover (Fig.3(b)).

Fig.3— Worst cases for partition into star polygons.

Cover by restricted star polygons. Restricted star
polygons have edges lying on the lines supporting the
edges of P. Aggarwal et al.[16] gave a polynomial algo-
rithm to find acover by restricted star polygons that has at
most O(lgn) times the GRSP(P) pieces of the minimal
cover of this sort. A minimal cover could be found in
finite exponential time. Restricted star polygons have




been acknowledged to be unable in some cases to provide
the minimal cover (see [1], Fig.9.3). Here we show that
also this approximate cover can be as bad as possible.

E1 E2 ....Ex

G1 (a) G2
Fig.4-Worst cases for cover with restricted star poly-
gons.

The minimum set of guards for the polygon without
holes shown in Fig.4(a) consists of G1and G2 at the bot-
tom vertices. Covering each top edge requires both G1
and Gz2. Let us consider the top edges E1, E2, .... En. The
kernel of any reduced star polygon covering Ei has an
empty intersection with the kernel of any reduced star
polygons covering Ej fori#j. Thus, a cover with reduced
star polygon requires a different polygon for each edge.
Reducing the height £, the example can be extended to
any number of concavities, and GRSP(P)/G(P) can as-
sume any value. The modified polygon in Fig.4(b), with
tiny triangular holes in the shaded area, shows that
GRSP(P)/G(P) is O(n) also for polygons with holes.

Concluding, no approximate algorithm known to the
author is guaranteed to provide in polynomial (or even ex-
ponential) time a cover close to the optimal solution.
Moreover, the various simplifications introduced can
hardly be justified on the ground of practical reasons.

III. COMPARING EDGE AND INTERIOR
COVER

Even though covering the edges appears an interesting
alternative to covering the interior, till now it received
very little attention. Let EC and ECH indicate the edge
covering problem for polygons without and with holes
and the term edge guards indicate the guards required for

this purpose.

Minimum edge and interior cover for the same poly-
gon.

Let GE(P) be the the minimum number of edge
guards necessary for covering (the edges of ) a polygon P.
Obviously GE(P) < G(P), since observing the interior
implies observing the edges. It is not difficult to find ex-
amples where the minimum covers are different. For
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Fig.5-Three guards cover the edges of P1, but four are
needed for the interior. For P2, the guards are 7 and 10 .

polygon P1( Fig.5), three guards G1, G2 and G3, located
anywhere in the areas highlighted, are the minimum solu-
tion for edge covering, but another guard is necessary for
covering the central area Z. The difference G(P)-GE(P)
can assume any value (see polygon P2in Fig. 5, where the

difference is three).

For the ratio G(P)/GE(P) we have found the follow-
ing results.

— For polygons with holes, G(P)/GE(P) can assume
any value;

— For polygons without holes, (G(P)/ GE(P)) < 1.5.
The difference G(P)—1.5 GE(P) can be arbitrarily small.

Proof. The first statement is proved by the example in
Fig. 6. The polygon in the figure belongs to a family
where GE(P) istwoand G(P) is O(n). The relatively com-
plex proof of the second statement can be found in [29].

Fig.6- G1 and G2 cover all edges, but covering the inte-
rior requires one more guard for each area highlighted.

An example where (G(P)/ GE(P)) can be made arbi-
trarily near to 1.5 is shown in Fig.7

Fig.7- G(P) — 1.5 GE(P) can be arbitrarily small.




In some cases, a minimum set of edge guards also cov-
ers the interior of P, and obviously it is a minimum set
also for interior covering. For the case where the edge
guards do not cover the interior, the examples of Figures
(5),(6), (7) may suggest that, when a solution for EC is
known, a solution for IC could be obtained by adding
some guards, or, vice-versa, an EC solution could be ob-
tained by deleting some guards of an IC solution. How-
ever, in general it is not possible to establish such simple
relations between minimum edge and interior covers. In
fact, let us consider the polygon in Fig 8(a). In this case
G1, G2 and G3 are a solution for EC but not for IC since
region Z is not covered. However, a minimum set of
guard for IC is not obtained by adding a fourth guard for
covering Z: only three guards as G1°, G2’ and G3’ are suf-
ficient. The polygon in Fig.8(b) requires four guards for
IC and three for EC. The four guards of Fig. 8(b) are a
solution for IC, but no subset of three guards covers the
edges.

Fig.8-The examples show that, in general, a solution
for IC cannot be obtained from a solution for EC(a)
or vice—versa(b) by deleting or adding some guards.

Concluding, even though interior and edge cover are
close relatives, general simple ways for transforming a
solution of one problem into a solution of the other do not
seem to exist .

The situation is different if we are content with ap-
proximate solution with guaranteed performance. Let us
consider polygons without holes. If a minimum set of
guards for IC is available, this is also a solution for EC
which contains at most 1.5 times more guards than strictly
necessary. Vice—versa, starting from a minimum set of
EC guards, we can add in polynomial time at most
L(GE(P)-1)/2] guards for covering the interior uncov-
ered areas(see[29]). Also in this case we have obtained an
approximate IC solution with guaranteed performance.

»Art Gallery” theorems for edge cover.
Let ge(n) and ge(n,h) be the worst case minimum
numbers of point guards necessary to cover the edges of
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polygons with n edges without holes and with A holes re-
spectively. We have:

- ge(n)=g(n) = Ln/3]

- ge(n,h) = g(nh) = L(n+h)i3]

Proof. ge(n) < g(n), otherwise there would exist poly-
gons(the worst case polygons for EC) which require
more guards for edge covering than for interior covering.
The Chvatal[3] comb polygon, a worst case for IC, is a
worst case also for EC, and thus the equal sign holds.

It must also be ge(n,h)< g(n,h), otherwise a contradic-
tion follows. It is easy to see that the polygons used as
worst cases for ICH([1], pp.128-129) requires L(n+h)3]
guards also for ECH , and thus the bound is tight.

Computational complexity of edge covering
Many covering and decomposition problems have

been shown to be NP-hard(see O’Rourke[1], Shermer(2]
and Culberson and Reckow[17]). We have found that:

— EC and ECH are both NP-hard

This can be shown by verifying that the constructions
given by Lee and Linn[10] and by O’Rourke and Supowit
[9] for reducing 3-SAT to IC and ICH also apply to EC
and ECH. More details can be found in [29]

IV.THE ENTIRE VISIBILITY EDGE COVER-
ING PROBLEM

Now we introduce a restriction for the edge covering
problem: we require that each edge must be seenin its en-
tirety by at least one guard. Unlike the restrictions seen
for interior cover, entire visibility of the edges could
make practical sense. Let EEC and EECH be the prob-
lems of finding a minimum cover of this kind for poly-
gons without and with holes. In this section we compare
these problems with unrestricted edge cover, and discuss
their worst cases and computational complexity.

Entire edge cover versus edge cover for the same
polygon.

Let GEE(P) be the minimum number of guards re-
quired for the entire edge cover of a polygon P. Obviously
GEE(P)>GE(P). InFig. 9 we show a polygon with holes
and another without holes where these minimum numbers
are different. Connecting together polygons as those
shown in the figure we can easily obtain cases where
GEE(P)- GE(P) is O(n).

What about the ratio GEE(P)/GE(P)? Were it
bounded, a solution of the restricted problem could be an
approximate solution with guaranteed performance for
edge cover. Unfortunately this is not the case, and the ra-
tio is unbounded both for polygons with and without




( a) 3 L[]
GE(P)=2 GEE(P)=3
GE(P)=2 (b) GEE(P)=3

Fig.9-Two examples where entire edge cover requires
one additional guard.

holes as shown by the examples already presented in
Fig.4. Two unrestricted edge guards are sufficient in both
cases, but each upper edge requires a different guard to be
entirely observed.

Observe that GEE(P) could be equal (for instance for
the Chvatal comb polygon), greater(Fig.9) or smaller
(Fig.5) than G(P).

Finally, in general, a solution for EEC cannot be ob-
tained from a solution for EC, or vice—versa, by deleting
or adding some guards, as Fig.9(b) may suggest. This is
shown by the example in Fig.9(a). No minimum set of
GEE(P)=3 guards can be obtained adding one guard to
the GE(P )=2 edge guards shown, and no two guards sub-
set of the GEE(P)=3 guards shown covers the edges.

»Art Gallery” theorems for entire edge cover.

Let gee(n) and gee(n,h) be the worst—case minimum
numbers of guards required by problems EEC and EECH.
For polygons without holes we have:

—gee(n) = ge(n)= g(n) = Ln/3]

For the case of one hole, we have found :

—gee(n,]) = |_(n+2)/3_|

The proofs can be found in [29]. An example where
this bound is thight is shown in Fig.10. In this polygonno

(a) Z7 Zg Zs (b)

Fig.10. An example where | (n+2)/3] = 4 guards are
required .
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guard can entirely observe four edges or more; from the
regions highlighted in Fig.10(a) it is possible to entirely
observe three edges. Thus 4 guards at least are required
for observing the ten edges, for instance those in
Fig.10(b). The polygon belongs to a family composed by
aregular polygonal hole inside a larger regular polygon
with the same number of edges. If the polygons are suffi-
ciently close and n=2m=3p+1, with m and p integers,
L(n+2)13] guards are required.

For two or more holes, we conjecture:

— gee(n,h) = L(n+h)3]

Computational complexity of EEC and EECH

The reduction of 3-SAT to EC and ECH also hold for
EEC and EECH, since both proofs construct polygons
where each edge is entirely observed by at least one
guard.

V. AN ALGORITHM FOR ENTIRE EDGE
COVER

The entire visibility restriction allows to discretize the
edge guarding problem. In this section we describe an al-
gorithm for both problems EEC and EECH. Given a poly-
gon P, the algorithm computes a set of polygonal regions.
A minimum set of GEE(P) guards can be obtained locat-
ing independently one guard anywhere in each region. A
minor addition makes the algorithm also suitable for the
“Fortress” or “external guarding” problem, where the
edges of the holes are observed from an unbounded re-
gion.

The algorithm consists of the following steps:

Step 1-Compute a partition 11 of P into regions Zi
such that:

— the same set Ei=(Ep, Eq, ......Er) of edges is completely
visible from all points of Zi Vi,

— Zi are maximum regions, i.e. EizE;j for contiguous re-
gions.

Step 2-Select the dominant regions (d.r.). A region
Zi is defined to be dominant if there is no other region Z;
of the partition such that Ei c E; .

Step 3-Select an optimal (or minimum) solution. A
minimum solution consists of a set of dominant regions
Sj= (Zj1,Z;2....Zik....) which covers E=UEi with the mini-
mum number of members.

Observe that there could be minimal solution also
containing non-dominant regions. For instance, in Fig.
10(a) the dominant regions are those highlighted. The up-
per guard in Fig. 10(b)does not lie in a dominant region.




We choose to consider only sets of dominant regions for
the following reasons.

First , a non—dominant region can be substituted by a
dominant region covering the same edges plus some
more. Multiple coverage of edges appears preferable, for
instance in the case of sensor failure. Second, we are
looking for one optimal solution, not for all optimal solu-
tion: to consider only the dominant regions reduces the
computations in Step.3, exponential in the worst case.

In the following of this section we present some de-
tails of the algorithm and the complexity analysis.

Step 1: Computing partition I1

We will divide P into maximal regions Zi from which
the same set of edges Ei is entirely visible, and label each
region Zi with the set Ei , using a visiting algorithm.

Let us discuss which lines are relevant to I1. Obvi-
ously, the lines supporting the edges are necessary. When
a guard crosses line La as shown in Fig.11(a), the sup-
ported edge E; turns entirely visible. Taking into account

4(b)

< (@

Fig.11-Examples of lines which change the visibility
condition of an edge

occlusions requires other categories of lines. For in-
stance, if a guard crosses line Lo in Fig. 11(b)), vertex vk
turns visible. If there are no other occlusions, as in
Fig.11(b), the entire edge E; to which the vertex vk be-
longs turns visible. Otherwise, as in the case of Fig. 10(c),
the edge turns visible only partially. Thus line Lb is po-

tentially relevant to I'1.
For dealing with such cases, we will compute Ilasa

refinement of a more detailed partition I1°, which also
contains potentially relevant lines, as Lb, and auxiliary

lines. Auxiliary lines are not relevant to IT, but change
the state of occlusion of an edge, as for instance Lc in
Fig.13(d).

Before defining partition I1’, let us first define the
aspect A(G) of a point G belonging to P be:
A(G) =((En, nh), (Ek, Nk),eceeeeemeenes (Eq, nq))
where En, Ek, .....Eq are the edges fully or partially visible
from G,and nh, nk ......nq are the numbers of occlusions
of these edges. For instance, the aspectrelative to point G
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in Fig.12 is:
A(G) =((Ei, 0),(Ej, 3),(Ex, 0),(En, 0).......)

Fig.12- In the aspect relative to G, edge E; has three
occlusions.

IT’ is defined as the partition which divides P into re-
gions Z;i’ such that:
— all points of Zi’ have the same aspect Ai
- Zi’ are maximum regions, i.e. Ai#Aj for contiguous re-
gions.

Clearly, to belong to the same region of IT isaneces-
sary, but not sufficient condition for two points to belong

to the same region of IL

Computing IT’ is related to the computation of the
aspect graph of a set of polygons. For further details on
this matter, the reader is referred to [19], [20], [21] and
[22]

Let us present now the catalogue of lines which form

partition IT ,and the associated visual events, or changes
in the aspects. A line is defined to be active if it contains
one or more active segments. An active segment is the
boundary between points whose aspects are different.
All possible active lines are those which join two ver-
tices in the cases of Table 1. The active segments are high-
lighted with a thicker line. The arrows mark the positive
crossing directions. The positive visual event is the
change of aspect of a point which crosses the active seg-
ment along the positive direction; a similar definition
holds for the negative visnal event. For simplicity, in
cases (d) and (e), each with two active segments, we only
indicate the visual event of the left segment, since the
other is obtained by changing the subscripts. Observe
that:
— the positive visual events of cases (a) and (b) always
produce full visibility of a new edge;
— positive visual events of cases (c) and (d) produce full
visibility of a new edge only if the previous number of
occlusions of this edge is one;
- visual events of case e) only affect the occlusion num-
bers.




TABLE 1

Active lines

Positive visual event

Negative visual event

Add (Ei, 0) Delete (Ei, 0)
nj¢—nj—1 njenj+1
Add (Ei, 0) Delete (Ei, 0)
ni¢—ni-1 nic—ni+1

if E; is already in the aspect: if nj =1:

nj¢—nj+1;
otherwise, add (Ej, 1)

delete (Ej, 1);
otherwise, nj<—nj-1

ni<—ni—1

if E; is already in the aspect:

nj<—nj+2;
otherwise, add (E;j, 2)

ni¢—ni+1

if nj =2:

delete (E;j, 2);
otherwise, njenj-2

if Ej is already in the aspect:
nj<—nj+1;
otherwise, add (Ej, 1)

if nj =1:
delete (Ej, 1);
otherwise, nj«—nj—1

ni<—ni-1

ni<—ni+1

Note. A«B means that B replaces A in the aspect.

— case d’) refers to the “Fortress” problem, i.e.,the case
where there are only the polygonal holes and the region
where the guards can be located is unbounded(l,
pag.146). In this case, an active segments could be un-
bounded. However, inspecting the previous cases in the
Table we can verify that this only affects case (d). If the
right active segment is unbounded , the positive and nega-
tive visual events reduce to the parts affecting Ei. This
produces the new entry (d’).

Computing I1 requires to perform the following sub—
steps:

I(a)-Computing the active segments of IT
1(b)-Constructing IT

1(c)-Refining IT inwo T1 using a visiting algorithm.
In the following we omit the details of the substeps,
which can be found in [29]. In summary:
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—O(n?) active segments are obtained in O(»2) time using
Welzl’s algorithm ([1] pag. 211).

—The partition] I’ can be constructed using a plane sweep
algorithm in O(plogp ) time, where p is the number of
vertices of the partition (regions and edges also are

O(p))(see[19]). For each edge of IT lying on an active
segment we store in the data structure the positive direc-
tion and the visual event.

—For computing IT’ from I'T some construction lines
must be removed and the regions which these lines sepa-
rate merged together. The time for computing the aspect

of the starting region, visiting IT’, computing IT and
storing all aspects is O(n2+pn).

Adding up, the overall time bound of Step 1 is
O(n2+plogp+pn).




Step 2. Computing the dominant regions

Finding the dominant regions requires to compare the
sets of fully visible edges Ei of each region Zi. This proc-
ess can be shortened observing that:

1) A necessary condition for a region Zj of IT to be domi-
pant is that Ej c E; for all the regions Z; adjacent t0Zi,
or, in other words, all the positive crossing directions of
the edges of Zi are toward the inside of the region (except
for the edges of P).

2) If all the edges of Zi (except for the edges of P)are due
to casesa) and b) of Table 1, 1i.e., they lie on lines support-
ing edges of P, condition 1) is also sufficient.

The first statement is obvious. For the second, it is suf-
ficient to observe that if the edges of Zi lie on the lines
supporting the edges Ep, Eq,...Ek, no other region is able
to observe this set of edges. Thus, the dominant regions
are found as follows:

— first visit all regions of IT and check condition 1) for

selecting c candidate dominantregions in O(p) time. Re-
gions also satisfying condition condition 2) are immedi-
ately recognized to be dominant

— perform O(c2) comparisons in O(nc2) time for selecting
d dominant zones. Adding up, Steps 1 and 2 of the algo-
rithm require O(n2+plogp+pn+nc2) time. In Fig.13 we

Fig.12-Partitions IT’(a) and IT (b) of a polygon. In
IT’ the active segments are solid, the rest of the ac-
tive lines is dotted. Five dominant regions result. Z1,
Z3, Z5 are immediately identified from the positive
crossing directions of the edges.
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show both partition IT> and IT for a polygon with 9
edges and one hole and the 5 resulting dominant regions.

Step 3. Finding an optimal solution

An optimal (or minimum) solution consists of a set of
regions Sj= (Zj1, Zj2,...Z....) which covers E with the
minimum number of members. Finding an optimal solu-
tion is an instance of the set covering problem.In general,
given a set S and a number of subsets, an optimal cover is
a set of subsets whose union is S and that minimizes the
sum of the costs of the subsets. In our case all costs are
equal. The corresponding decision problem ( there is a
cover with k subsets or less?) has been shown to be NP-
complete(see [25], pag 37).

Numerous practical situations have been modeled as
set covering problems, and a number of algorithms for set
covering have been presented(see for instance[26], Chap-
ter 13). When, as in our case, only one minimal solution is
required, much pruning can be performed. Here we will
briefly recall an algorithm, developed for the minimiza-
tion of switching functions, which appears convenient for
our case. Full details can be found in [27], Chapter 4,
where the algorithm is presented in tabular form without
complexity analysis. Here we will present the algorithm
making reference to a data structure where each region
has pointers to the edges covered, and each edge has
pointers to the regions from which is covered. The algo-
rithm consists of two parts; the first part is usually called
the Quine-McCluskey algorithm.

Part 1(Quine—McCluskey algorithm) Perform (in any
order) the following steps:

Step 1) Select the essential regions, i.c., those which
cover at least one edge not covered by any other zone.
Update the data structure by deleting these regions and the
edges covered .

Step 2) Select and delete the dominated regions. A region
Zi is dominated by another region Z; if the set of edges
covered by Zi is equal to or a subset of the set of edges
covered by Z;.

Step 3) Select and delete the dominated edges. An edge
Ei is dominated by an edge E; if the set of regions which
cover Ejis equal to or a subset of the set of regions cover-
ing E;.

Exit if all edges have been covered; go to Part 2 if
none of the three steps reduces the data structure.

Part 2) Apply the branch-and-bound technique as
follows. Select arbitrarily one edge and one region cov-
ering the edge. Create two sub—cases: in the first case the




region s selected for the cover, in the second, the regionis
deleted from the structure without deleting the edges cov-
ered. Re—enter the Quine-McClusky algorithm for both
cases. The bounding can be obtained by stopping the
cover of a sub—case as soon as it going to have more re-
gions of the best cover already found.

In some cases an optimal cover can be found without
branching, as for the polygonin Fig.13. Inthiscase, Step
1 (Fig.14 (a))finds one essential region (Zs). Step 2

E1E2E3E4EsE¢ E7EsE9 E1E¢E9
Z1| x| * x| * Z1[ = *
Z2| % K * Za| x| x| *
Z3 o * Z3 | *
Zs *| x| * Z4 *
Zs o *| %] % %] *x
(a) (b)

Fig.14. A tabular representation of the selection
algorithm for the polygon of Fig. 13.

(Fig.14(b)) deletes the dominated regions Z1, Z3, Z4. Step
3 has no effect, and eventually Zzis selected by Step 1. If
we apply Step 3 immediately after Step 1, the edge E9
dominated by Ei1 is deleted. A subsequent application of
Step 2 deletes again Z1, Z3, Z4.

Let us consider the case of Fig.10, where some
branching is required. No essential region is present
since each edge is covered by three dominant regions.
Thus we chose an arbitrary edge (E1) and an arbitrary re-
gion (Z1) covering E1, E2 and E3. In the first sub-

Select Z1 Delete Z1

Delete Z2

71,74,76,23 | Seleg

[Z2,25,27,25 | | Z3,25,27,Z10 |

Fig.15-The branching required by the polygon in
Fig.10. At each leaf of the tree there is one of the so-
lutions provided by the Quine-McCluskey algorithm.

case(see Fig. 15), the Quine-McClusky algorithms ob-
tains one cover without any further branching. It is easy to
verify that: Step 2 deletes Z2, Z3, Z9, Z10; Step 3 de-
letes E3, E4, E7; Step 1 selects Z4 and Zs; further appli-
cations of Steps 2 and 1 lead to the selection of Z5 or Zs6
or Z7.In the second case (delete Z1 without deleting any
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edge) a further branching is necessary before re—entering
the Quine-McCluskey algorithm. Also in these cases(we
omit the details), the Quine-McClusky algorithm sup-
plies one cover without any further branching. All the
covers obtained are optimal.

Let us analyze the complexity of the algorithm. If no
branching is required, O(n) steps of Quine-McClusky al-
gorithm are performed. Straightforward implementations
of Steps 1, 2 and 3 are O(n), O(nd?) and O(dn?). Adding
up, the algorithm without branching is O(n2d2+dn3). In
the worst case, branching is always necessary. Each
branching is O(n) and a binary tree with depth O(d) and
0O(24) nodes is constructed, thus the overall complexity is
O(n24).

A greedy near-optimal solution

Although the above algorithm is likely to perform sat-
isfactorily in most cases, we are not able to make precise
statementsabout its average behavior. Thus, a near—opti-
mal solution obtained with a polynomial selection algo-
rithm could be interesting. Such a solution can be ob-
tained with a greedy heuristic, which selects each time the
region which covers the largest number of uncovered
edges. A straightforward implementation of this algo-
rithm is O(np2). Although its performance cannot be
guaranteed to be data—independent, it does not depend on
the number of edges n. Let GEEG(P) be the number of re-
gions obtained by the greedy algorithm and let r be the
largest number of edges observed by a dominant region of
P. It can be shown (see [28], pag.466) that:
GEEG(P)/GEE(P) < 1+lg(r)

Observe that r could be small even if n is large.

VI. SUMMARY AND DISCUSSION

Many efforts have been made and many results ob-
tained in the ”Art Gallery” area, but the main practical
problem of stationing a minimum set of guards for cover-
ing the interior of given polygon, is still open. Up to now,
neither exact finite algorithms, nor approximate algo-
rithms with guaranteed performance have been found
able to cope with this elusive problem. In this paper we
have explored the related problem of covering the edges
of a polygon with a minimum set of guards, neglecting
possible interior uncovered areas.

The minimum edge and interior covers have been
compared for a given polygon. In some case, a minimum
set of edge guards also covers the interior. For polygons
with holes however the interior cover could be much
more requiring: we have found that the interior guards can
be O(n) times the edge guards. On the contrary, for poly-




gons without holes the interior guards are at most 1.5
times the edge guards. For polygons such that the mini-
mum numbers of edge and interior guards are different,
no simple rule seems to exist for obtaining a minimum set
of interior guards starting from a minimum set of edge
guards or vice-versa. On the contrary, a guaranteed ap-
proximate solution for one problem can be easily ob-
tained from a solution of the other problem for polygons
without holes. Whether it be possible to obtain similar
results for polygons with holes is an open question.

The worst case numbers of guards have been found to
be equal for edge and interior cover, and the edge cover-
ing problem to be NP-hard for polygons with and without
holes.

For the edge covering problem a restriction is possi-
ble which could make practical sense. The entire edge
covering problem requires that each edge be entirely vis-
ible from at least one guard. Also this problem is NP—
hard. For polygons without holes, the worst case number
of guards is [n/3] as for the unrestricted problem. For
polygons with one hole, we have found that at most
L (n+2)/3] guards are always sufficient and sometime re-
quired. For more than one hole, we conjecture that
L(n+h)/3] is the tight bound.

For the entire edge covering problem we have de-
scribed an algorithm which computes a set of polygonal
regions where the guards of a minimum set can be inde-
pendently located. The algorithm is also suitable for the
“Fortress” or "external guarding” problem. The last step
of the algorithm is an instance of the set covering prob-
lem, exponential in the worst case. However, a selection
algorithm, well known in the area of switching functions
minimization and aimed at finding only one minimum so-
lution, could show a satisfactory average behavior. In any
way, a greedy selection supplies in polynomial time near
optimal solutions within a factor only dependent on the
logarithm of the largest number of edges observed by a
guard, and independent on n.

In practice, placing visual sensors probably requires
to face some additional constraint. A feature of the algo-
rithm described is that it can easily be modified for taking
into account geometrical restrictions. For instance, a
maximum and a minimum distance from each point ob-
served could be required. This constrains the guards re-
quired for observing each edge into a region whose
boundary lines can be used for obtaining a modified parti-

tion I I* of P. It is easy to see(we omit the straightforward
details) how the sets Ei* of entirely visible edges of each

region Zi* of I'T* can be obtained. The rest of the algo-
rithm is unchanged.

232

We have shown that a solution for the entire visibility
problem is not an approximate guaranteed solution of the
unrestricted edge covering problem. However, the ob-
served difficulties of transforming a solution of the edge
covering problems into a solution of the interior covering
problem and vice—versa suggests some hope that for edge
covering it be possible to solve some of the unsolved inte-
rior covering problems, as finding exact algorithms or ap-
proximate algorithms with guaranteed performance.
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