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Abstract

A model for the multiresolution decomposition of pla-
nar domains into triangles is introduced, which is
more general than other multiresolution models pro-
posed in the literature, and can be efficiently applied
to the representation of a polyhedral terrain at vari-
able resolution. The model is based on a collection
of fragments of plane triangulations arranged into a
partially ordered set. Different decompositions of a
domain can be obtained by combining different frag-
ments from the model. A data structure to encode
the model is presented, and an efficient algorithm is
proposed that can extract in linear time a polyhedral
terrain representation, whose accuracy over the do-
main is variable according to a given threshold func-
tion. Furthermore, the size of the extracted repre-
sentation is minimum among all possible polyhedral
representations that can be built from the model, and
that satisfy the threshold function. A major applica-
tion of these results is in real time rendering of ter-
rains in flight simulation.

1 Introduction

Multiresolution geometric models can be used in sev-
eral application fields to support the representation
and processing of geometric entities at different levels
of resolution. The case of topographic surfaces is es-
pecially attractive for its impact on applications like
geographic information systems, and virtual reality
contexts. For instance, visualization in flight simu-
lation can be made faster by rendering portions of
terrain close to the observer at high resolution, while
far portions are rendered at lower resolution.

In this paper we consider polyhedral terrains de-
fined by a triangulation of a plane domain, where
each vertex has an elevation value, and each triangle
corresponds to a triangular patch approximating the
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elevation of terrain over the area of the triangle. In
this context, a key concept is that the resolution of
a model is somehow proportional to the refinement
of the domain decomposition, hence to the number
of its vertices. The power of a multiresolution model
derives from its ability to adapt a representation to
a required resolution, while minimizing its size.

Although many different multiresolution models
have been proposed in the literature, the extraction of
a representation at variable resolution has been inves-
tigated only recently. For this problem, a threshold
function is defined over the terrain’s domain, which
specifies for each point a threshold for the error of
the model in approximating elevation at that point.
A terrain representation satisfying such a threshold
must be extracted from the multiresolution model. It
is also important to obtain a representation that is as
small as possible.

The model presented here is based on a multi-
resolution decomposition of a planar domain, called
a multi-triangulation, and it is thought as a general-
ization over a broad class of multiresolution models.
The basic idea underlying the model is that a large
number of different subdivisions of a planar domain
can be obtained on the basis of a relatively small set
of atomic components, called fragments, which can
be combined in different ways to cover the domain.
Fragments can be partially overlapping, and they are
arranged into a partially ordered set, where the order
relation is dependent on interferences of fragments on
the plane, and on the possibility to combine them to
obtain triangulations.

The model gives support to variable resolution,
allowing an application to extract a representation of
minimum size for an arbitrary threshold function in
linear time. This is the first proposal addressing the
minimality of the representation extracted in a strong
sense: indeed, the algorithm proposed warrants that
the representation extracted is the smallest possible
that can be built from the triangles of the model.




The rest of the paper is organized as follows. In
Section 2 related work is briefly reviewed. In Section
3 some terminology and notations are introduced,
while the definition of multi-triangulations is given
in Section 4. In Section 5, a data structure to en-
code multi-triangulations is described. In Section 6,
an algorithm for extracting a triangulation at variable
resolution from a multi-triangulation is described and
analyzed. In Section 7, some examples and applica-
tions are discussed. Finally, in Section 8 some con-
cluding remarks are given.

2 Related work

Several multiresolution terrain models have been pro-
posed in the literature: see [6] for a recent survey.
Here, we focus only on most recent models, and on
issues relevant to the support of variable resolution.

For all models considered here, we assume the fol-
lowing: each triangle of a triangulation defining a
polyhedral terrain is tagged with an accuracy, corre-
sponding to the maximum error made in approximat-
ing the terrain over its area with its corresponding
linear patch; given a threshold function defined over
the terrain’s domain, a representation is said to sat-
isfy such a threshold if the accuracy of each triangle
is smaller than the minimum of the function on the
triangle itself.

Most multiresolution models support only con-
stant thresholds. A few models supporting more
general functions, called variable resolution models,
were proposed recently by de Berg and Dobrindt [4],
Cignoni et al. [3], and De Floriani and Puppo [5].

The hierarchical representation proposed in [4] is
defined as a pyramid of triangulations, whose struc-
ture is essentially based on an earlier hierarchical tri-
angulation scheme proposed by Kirkpatrick [9]. The
pyramid is built bottom-up: each layer is obtained
by removing a constant fraction of the vertices from
the previous layer. A traversal algorithm extracts a
representation at variable resolution based on an ar-
bitrary threshold function, in time linear in its output
size. The algorithm is based on a top-down traversal
of the pyramid, and on a greedy construction of the
result. Unfortunately, the greedy approach does not
warrant that the desired accuracy is satisfied every-
where: indeed, because of the current configuration
at an intermediate step, the algorithm can be obliged
to accept into the solution triangles whose accuracy
is worse than required.
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The hypertriangulation model proposed in [3] is
built from fragments by recording the history of the
construction of a triangulation, e.g., through an on-
line Delaunay triangulation algorithm [8, 12]. Frag-
ments are arranged into a two-dimensional simpli-
cial complex embedded in three-dimensional space,
which is obtained by assigning a third coordinate to
each vertex, whose value correspond to an iteration
counter. Each time a vertex is inserted into a trian-
gulation, the set of triangles updating the triangula-
tion is stored as a new fragment that form a “dome”
over the portion of the current triangulation that is
updated. It is straightforward to obtain an anal-
ogous structure through a dynamic procedure that
iteratively eliminates vertices from a given triangu-
lation. An algorithm for extracting variable resolu-
tion representations from hypertriangulations is pro-
posed, which is valid only for a special class of thresh-
old functions, namely those monotonically increas-
ing with distance from a given viewpoint, which are
suitable to flight simulation. The algorithm is based
on a breadth-first traversal of the domain starting at
the viewpoint, and an incremental construction of the
representation. The traversal technique ensures that
the extracted model will satisfy the threshold func-
tion everywhere, but the computational complexity
is suboptimal.

In [5] hierarchical triangulated models are dis-
cussed, whose general structure is a tree: each node is
a triangulation with a triangular domain, refining the
domain covered by a triangle in its parent node. Two
algorithms for variable resolution surface extraction
are proposed. The first algorithm is a simple top-
down visit of the tree which accepts triangle as soon
as its accuracy lies below the threshold. The resulting
structure is a subivision called a generalized triangu-
lation, in which some triangles are added new vertices
along their edges. A triangulation of such generalized
triangles is performed next to obtain a triangulated
surface, and the whole algorithm is completed in time
linear in its output size. However, the approximating
function is changed by the triangulation of general-
ized triangles, hence the accuracy of the final struc-
ture might be worse than desired. The second algo-
rithm is essentially an adaptation of that of Cignoni
et al. to hierarchical triangulated models. The ac-
curacy of the result is warranted, but the algorithm
works only for the special class of threshold functions
described above, and its computational complexity is
suboptimal.




3 Preliminaries

Posets: Let C be a finite set. A partial order on C
is a reflexive, antisymmetric and transitive relation
< on its elements. A pair (C,<) is called a poset.
For every c,c’ € C, the following notations are used:
c<cmeansc<candc#c;c~<c meansc< ¢
and A ¢” such that e< ¢’ < .

c € C is a minimal element of C if A ¢’ € C such
that ¢’ < ¢; if there exists a unique minimal element
in C, it is called the least of C. A subset ' C C is
called a lower set if V¢! € C', V¢ < ¢ then ¢ € C'.
For any ¢ € C, the set C. = {¢' € C | ¢/ < ¢} is the
smallest lower set containing ¢, and it is called the
down-closure of c. We also define the sub-closure of ¢
asCr={cdeC|cd <c}=C.\{c}

Given a lower set C' C C, a compatible ordering
on C' is any total order <¢r on its elements such that
Ve,d €C'e<cd = c<er .

Triangulations: Given a generic set of triangles
T = {t1,...,tn} in R2, called a t-set, we use the
following notation: |T'| = N is the size of T; A(T) =
UN ,t; is the domain of T; V(T) is the set of vertices
of the triangles of T'; E(T) is the set of edges of the
triangles of T'; V¢ € T, (t) is the interior of ¢.

A plane triangulation is a regular simplicial com-
plex of order two embedded in R?: a triangulation is
characterized by a t-set T such that for each pair of
triangles t;,t; € T, with ¢; # t;, then ¢; Nt; is either
empty, or an edge or a vertex of both ¢; and ¢;. In
the following we will use a triangulation and its t-set
interchangeably.

A triangulation T whose domain is a (polygonal)
region 2 is also called a covering of Q. Given a generic
t-set 7" having ) as domain, any covering of Q formed
of triangles of 7" is called a triangulation generated
by T'.

4 Multi-triangulations

All results in this section are stated without any
proof. Complete proofs are given in [10].

Given two triangulations T; and T}, we define the
interference ®, the subtraction ©, and the pasting &,
respectively, as follows:

T;® Tj {t eT; l 3t e Tj, Z(t) nt # 0} (1)
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T;oT;
T; ®T;

T\ (T: ®T;)
(T; 8T;)UT;.

2)
®3)

If T; ® T; # 0 then we say T; and T are interfering,
otherwise we say they are independent. If Tp @ T3 is
also a triangulation, and A(To®T1) = A(To)UA(Th),
then T3 is said compatible over Ty, and To & T is said
a modification of Ty. If T is compatible over Ty, and
no subset 7] C T3 is compatible over Tp, then T is
said minimally compatible over Tp.

Given a sequence of triangulations Ty, ..., T we
define its upward pasting as the successive pasting of
its elements ®% T, = To® T1 & ... ® T. We say
that Tp,...,Ty is an upward compatible sequence if
Vj=1,...,k, T; is compatible over @&/ T;.

Definition 4.1 Let Q be a polygonal domain in R?.
A multi-triangulation (MT) on Q is a poset (T,<)
where T = {To,...,Tp} is a set of triangulations,
and < is a partial order on T satisfying the following
conditions:

1.Vi=0,...

2. V¥i,j=0,...,h, i # 7,

(o) T; <T; = T; T; #0;
(b) T;®Tj # 0 = T; is in relation with T; (i.e.,
either T; < Tj or T; < T;).

,h, A(Tz) cQ;

3. Vlowerset T'CT,if Tg<p ...<m T}l isa
compatible ordering of the elements of T', then
Ty, - - -, Ty, is an upward compatible sequence, and
@ T/ is a covering of Q.

The elements of T are called fragments. The t-set
Tr = UL Ty, i.e., the set of all triangles of the multi-
triangulation, is called the associated t-set of T .

In the following, a MT will be denoted simply by
its set of fragments 7", while the ordering < will be
omitted, whenever no ambiguity arises.

Lemma 4.2 A multi-triangulation T has always a
least element T; such that A(T;) = Q.

Proof: omitted.

Lemma 4.3 The upward pasting of a lower set T' C
T is indipendent of the specific compatible ordering.




Proof: omitted.

Without loss of generality, in the following we will
assume that Tp is the least element. Being indepen-
dent of the ordering, the upward pasting obtained
from any compatible ordering of a lower set 7' will
be simply denoted &7’. The upward pasting &7 of
the whole set 7 will be called the top of 7.

Definition 4.4 A multi-triangulation T is in canon-
ical form if every fragment T; of T is minimally
compatible over the upward pasting of its sub-closure
eTr. .

It is easy to show that any MT can be transformed
into a MT in canonical form having the same associ-
ated t-set: this is done by breaking each fragment into
pieces, each of which is minimally compatible over its
sub-closure. Henceforth, we will always assume that
a MT is in canonical form.

Definition 4.5 A multi-triangulation 7T és non-
redundant if

1. there are no duplicate triangles, i.e., each trian-
gle of the associated t-set belongs to exactly one
fragment;

2. Vi,j = 0,...,h, if e is an edge common to T;
and T;, and T; < T;, then e is an edge of &7, .

The meaning of non-redundancy is the following.
Triangles, which are the atoms of the structure, are
not replicated in different fragments to preserve a sort
of minimality. Edges can be replicated, since they
provide an interface for pasting triangulations. How-
ever, if different triangulations share a common edge,
they must form a sequence in the poset. This latter
condition is fundamental to guarantee that the MT
supports all possible triangulations generated by its
associated t-set. Such a property is stated by the
following theorem.

Theorem 4.6 Let 7 be a non-redundant multi-
triangulation. Then for any triangulation T gener-
ated by Tt there ezists a lower set T' C T such that
T=eaT'

Proof: omitted.

The above theorem states the power of a MT of
expressing different coverings of the same domain on
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the basis of a relatively small set of atomic entities
(i-e., its triangles). In practice, we will be also inter-
ested in controlling the size of each covering versus
its resolution. Therefore, in the following sections we
will focus on a special class of MTs, for which the
order relation provides control over the size.

Definition 4.7 A multi-triangulation T is increas-
ing if and only if

1LY T, T" lower sets,

(T'cTY=|eT|<|eT"|;

2. Y T; fragment, Ve € E(T;) \ E(&Ty,), at least
one endpoint of e belongs to V(T;) \ V(&Tr,).

A decreasing multi-triangulation is defined simi-
larly. A multi-triangulation which is either increasing
or decreasing is said monotone.

In the above definition, the first requirement war-
rants that each modification will increase the size of
the triangulation, while the second requirement war-
rants that modifications are caused only by insertion
of vertices, i.e., no edges flip occur on pairs of existing
triangles.

A further interesting property of MTs is that also
the collection of interferences of each fragment over
its sub-closure is a MT, called the reverse. Such a
structure can be encoded together with the primary
one, and, having the same associated t-set, it gener-
ates the same set of triangulations. In case of mono-
tone MTs, the reverse has a monotonicity opposed to
the primary structure (see [10] for details).

Definition 4.8 An increasing multi-triangulation T
has linear growth if and only if for each lower set
T' C T the size of T' is linear in the size of its upward
pasting. A decreasing multi-triangulation has linear
growth if and only if its reverse has linear growth.

In Section 6, we will see that linear growth is a
desirable property since it permits to achieve optimal
output sensitive time complexity in visiting the struc-
ture. A sufficient condition to achieve linear growth
for increasing [decreasing] MTs is that vertices are
never removed [added] by modifications, and the size
of each fragment is linear in the number of its internal
[removed] vertices.




5 A data structure for MT

For the purpose of the algorithm presented in the next
section, a multi-triangulation 7 can be encoded by a
data structure based on interferences, which main-
tains directly relations between triangles and frag-
ments, and indirectly relations between fragments.
Three sets are maintained: the set of all vertices
V(T'r); the set of all triangles T'r; the set of all frag-
ments 7.

Each fragment T; in the fragment set, contains the
following information: a list of (pointers to) triangles
composing T;, called the ceiling; a list of (pointers to)
triangles composing 77, ® T;, called the floor. The
least element Ty has an empty floor. A dummy frag-
ment with an empty ceiling and a floor containing all
triangles of the top of 7 is also added to the struc-
ture. In fact, the collection of all floors corresponds
to the set of fragments of the reverse of 7.

Therefore, each triangle t is referenced by two
fragments: the fragment T; containing ¢ (in its ceil-
ing), called the lower fragment; the fragment con-
taining t in its floor, called the upper fragment. Each
triangle in the triangle set contains pointers to its
upper and lower fragments, as well as pointers to its
three vertices. Each vertex is simply characterized by
its two cartesian coordinates.

Note that relation < between fragments is induced
by the links between fragments and triangles: given
a fragment T;, fragments preceding it are the lower
fragments of triangles of the floor of T;, while frag-
ments following it are the upper fragments of trian-
gles of the ceiling of T;. The same data structure
encodes also the reverse MT.

The following operations can be implemented in
the above data structure with linear complexity in
their output size: CEILING(T;), and FLOOR(T;) re-
turn the sets of triangles composing the ceiling, and
the floor of a fragment T, respectively; LOWER(%),
and UPPER(¢) return the lower, and upper fragments
of t, respectively; LEAST(T) returns the least frag-
ment Tp, while TOP(T) returns the top fragment.

6 Extracting a triangulation at
variable resolution

In this section we consider only monotone MTs, and
we focus on the extraction of variable resolution rep-
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resentations based on an arbitrary threshold function.

In order to extract variable resolution coverings,
we need a test to either accept or discard (the resolu-
tion of) a given triangle. In order to be generic about
the application, we assume that a Boolean condition
c() is defined on the triangles of 7, such that for a
given triangle ¢, ¢(t) is true if and only if the resolu-
tion of ¢ is acceptable. Similarly, the notation ¢(T)
means that all triangles of a triangulation T' satisfy
¢(). We consider the following problem:

Given a non-redundant and monotonically
increasing multi-triangulation T, and a
Boolean condition ¢(), find the smallest tri-
angulation T generated by T'r such that c(T)
s true.

The algorithm we propose to resolve such problem
works by traversing 7 starting at its least fragment,
visiting the elements of the MT in breadth-first or-
der, and marking all triangles that cannot be part of
the solution. A queue of fragments that must be vis-
ited is maintained, which is initialized with the least
fragment Ty, while triangles selected for a potential
solution are added to a list. After traversal, such a
list will contain all triangles of the solution, plus some
extra (marked) triangles that are purged through a
single scan.

Traversal is performed through a loop controlled
by the content of the queue. At each iteration, the
current fragment is extracted from the queue, and tri-
angles composing its floor and its ceiling are visited.
Each non-marked triangle of the floor is marked, and
if its corresponding lower fragment has not been vis-
ited yet, then such a fragment is added to the queue.
For each non-marked triangle of the ceiling of the
fragment, if its upper fragment has been visited al-
ready, then the triangle is marked, otherwise it is
tested against condition ¢(). If a triangle ¢ passes the
test, it is added to the potential solution, otherwise
it is marked, and its upper fragment is added to the
queue. Note that a triangle can possibly be marked
after its insertion in the potential solution, when vis-
iting the floor of its upper fragment. Traversal stops
when either the queue becomes empty, or a triangle
in the top level fails the test: in the latter case the
algorithm returns an empty solution. After traver-
sal, the list of potential solution is scanned, and only
triangles not marked are given in output.

In Figure 1 we give a detailed pseudo-code
of the algorithm, which is based on the data
structure described in the previous section. Be-




sides the primitives on MTs outlined above, we
make use of some standard procedures acting on
generic lists. Let @ be a generic list, and
let e be a generic element, the following primi-
tives are used: MAKE_ EMPTY(Q), IS EMPTY(Q),
FIRST(Q), ADD(Q,e), REMOVE(Q, e). Notice that
REMOVE(Q, e) removes the current element e of list
@ during list scan, hence it can implemented with
constant time complexity. Finally, we use primi-
tives to mark and test generic elements: MARK(e),
MARKED(e), NULL(e). Note that both triangles
and fragments can be marked: marking a triangle
means that it cannot be part of the solution; mark-
ing a fragment means that it has been visited. All the
primitives above can be implemented with constant
time complexity.

The time complexity analysis of the algorithm is
straightforward and omitted here. If a solution exists,
the algorithm runs in time linear in the size of the
lower set generating the solution, otherwise it gives a
negative answer in time at most linear in the size of
the MT. Therefore, for MT's having linear growth an
existing solution can be found in optimal time, i.e.,
linear in the output size.

The correctness of the algorithm is proven here
only for the case in which a solution exists. The neg-
ative case is straightforward, hence omitted. First,
we show that the output t-set T is indeed a covering
satisfying c(). Next, we show that any other covering
satisfying ¢() is necessarily larger than T'.

If a triangle is added to the list T' during the al-
gorithm, it necessarily satisfies ¢(). Therefore, it is
sufficient to show that T is a covering. Let us con-
sider the set 7" of fragments visited by the algorithm:
T' is a lower set of 7. Indeed, when visiting the floor
of a fragment, we make sure that all fragments pre-
ceding it are also visited. Let us now consider the
set of triangles of T: each such triangle ¢ belongs
to T if and only if there does not exist a fragment of
T’ having t in its floor. Indeed, if there exists one
such fragment Tj, then ¢ would be marked when vis-
iting the floor of T;. Conversely, if no such fragment
exists, then the upper fragment of ¢ is never visited.
This means that ¢ cannot be marked, since marking
t would either cause, or be caused by visiting its up-
per fragment. Hence, ¢ must be a triangle of 7. In
conclusion, the triangles of T" are all and only those
that have no upper fragment in 7. It follows that T’
is indeed the upward pasting of 7.

From Theorem 4.6, we know that any covering
generated by 7 can be obtained by an upward past-

207

Algorithm EXTRACT(7 ,c(),out T)
begin
local var @ : queue; F, F1: fragment; ¢ : triangle;
MAKE_EMPTY(Q);
MAKE_EMPTY(T);
F = BOTTOM(T);
MARK(F);
ADD(T, F);
while not IS EMPTY(Q) do
F = FIRST(Q);
for every t € FLOOR(F) do
if not MARKED(t) then
MARK(?);
F1 = LOWER(?);
if not (NULL(F1) or MARKED(F'1))
then
MARK(F1);
ADD(Q, F1);
end if
end if
end for;
for every t € CEILING(F) do
if not MARKED(t) then
F1 = UPPER(¢);
if MARKED(F'1) then

MARK(?)
else
if ¢(t) then
ADD(T\,t)
else
if (F1 == TOP(T)) then
MAKE_EMPTY(T);
exit()
end if;
MARK(¢);
MARK(F1);
ADD(Q, F1)
end if
end if
end if
end for
end while;

for every t € T do
if MARKED(t) then REMOVE(T,t) end if
end for
end.

Figure 1: The algorithm for extracting a triangula-
tion at variable resolution.




ing on a lower set 7" C 7. Therefore, in order to
prove the minimality of 7', we show that all fragments
visited by the algorithm will necessarily belong to the
lower set 7" generating the solution. We prove this
fact inductively. Since 7" is a lower set, the least
element Ty of T is certainly a fragment of 7". Now,
let us assume that the first k fragments visited by the
algorithm belong to 7". We show that the (k+1)-th
fragment T} visited must also belong to 7". There
are two possible causes for visiting Tj. Either (first
for loop) Tj is preceding a fragment already visited,
hence T; must be part of 7", which is a lower set; or
(second for , innermost if ) some triangle ¢ belonging
to the ceiling of a fragment of 7", and to the floor of
T;, fails the test. In this case, it means that ¢ can-
not be part of the solution, hence there must exist a
fragment in 7" that is pasted over ¢. The only such
possible fragment is indeed T};.

Now, let us suppose that 7 is a proper subset of
T". Since T is increasing, this means that the size
of ®T" would be larger than the size of &7, which
contradicts the fact that 7" is a solution. Hence, we
must have 7' = T".

All the above proves the following theorem.

Theorem 6.1 Given an increasing non-redundant
multi-triangulation T, and a Boolean condition c()
on T, it is possible to decide whether there exists a
covering generated by the associated t-set T'r, and sat-
isfying ¢(), and to find the smallest such covering, in
time linear in the size of the lower set generating it
(i-e., at most linear in the size of T ).

If T has linear growth, an existing solution can be
found in time linear in its output size.

Completely analogous algorithm and proof are
valid for a monotonically decreasing MT. In this case,
the reverse MT is visited. Since the data structure
encodes also the reverse MT, it is not necessary to
recompute it explicitly. In this case, running the al-
gorithm for the reverse triangulation is equivalent to
visit 7 starting at the floor of its top, and swapping
floor and ceiling, as well as upper and lower, in the
code.

7 Examples and applications

Multi-triangulations can be used provided that one
can build them. In this section, we review some MTs

208

based on Delaunay triangulations, which are easy to
build, and can be useful for variable resolution terrain
modeling.

Definition 7.1 A Delaunay multi-triangulation is a
multi-triangulation T = {To,...,Th} such that for
eachi=0,...,h the upward pasting €B§=01} is a De-
launay triangulation.

Among such MTs, we are interested in those that
can be built by dynamic algorithms, and that are
monotone. Consider for instance the on-line con-
struction of a Delaunay triangulation of n sites [12, 8].
Let us assume that an initial triangulation Ty built
over n — h such sites, and covering the convex hull of
all sites is given. Let us consider the sequence of oper-
ations that build the triangulation of all n sites start-
ing at Tp. At each step ¢, for i = 1,...,h, a new site
is inserted and the current triangulation is updated:
let us define T; as formed by the set of new trian-
gles that update the triangulation. It is easy to see
that the resulting set of fragments 7 = {To,...,Tn}
is a MT, whose structure is analogous to that of the
hypertriangulation proposed by Cignoni et al. [3]. It
is also easy to show that such a structure, called a
historical Delaunay multi-triangulation is in canoni-
cal form, non-redundant, and increasing. Therefore,
such a MT is suitable for the application of the algo-
rithm described in the previous section. If, moreover,
a historical Delaunay MT is built through a random-
ized algorithm, such as those proposed by Guibas et
al. [8], or by Boissonnat and Teillaud [1], it follows
from the randomized analysis of such algorithms that
it will be built in optimal time, and it will have lin-
ear growth, with high probability. Therefore, such a
randomized structure will also give an expected opti-
mal output sensitive time complexity for the variable
resolution extraction.

A further interesting property, which is a conse-
quence of the previous ones, is that any lower set of
a historical Delaunay nulti-triangulation 7 is itself a
historical Delaunay MT, i.e., that all triangulations
generated by T'r are Delaunay triangulations.

Similar results are obtained by considering an
equivalent structure which encodes a historical se-
quence of operations which simplify a triangulation
of all the n sites by eliminating one vertex at a time.
In this case, the resulting MT would be decreasing.

As a second example, let us consider the variable
resolution model of de Berg and Dobrindt: this is in
fact a reverse historical Delaunay MT. Let us define




To as the triangulation of all n sites, and let us con-
sider a sequence of vertex deletions which is compati-
ble with the ordering of levels, and which is arbitrary
for the vertices of a given level. This makes sense
since the vertices eliminated at each level form an
independent set. Therefore, the result of each such
elimination is always a Delaunay triangulation, and
the influence polygon of each vertex eliminated forms
a fragment. It is easily seen that the resulting struc-
ture is a MT with all properties defined above, includ-
ing linear growth. Hence, all results stated previously
apply also to such a structure.

Other models proposed in the literature can be
interpreted as special cases of MTs. This subject is
discussed in more detail in [7].

Applications of MTs to varialbe resolution ter-
rain modeling is straightforward. The model can be
built with any of the strategies described above. For
each vertex in the model, its elevation z is encoded
as an additional information. For each triangle ¢,
its accuracy &; is also encoded, which corresponds to
the maximum error in approximating the elevation of
data points contained in t. Given a threshold function
7 : Q > R, the condition for algorithm EXTRACT
is defined as c(t) = (¢; < minpe 7(p)). For applica-
tions such as flight simulators, function 7 is usually
decreasing with distance from the viewpoint. A pos-
sible function used in [3] is simply 7(p) = K|p — v|,
where v is the viewpoint, | - | is the distance in R?,
and K is a suitable constant.

Another possible application of multi-
triangulations is in domain decompositions for finite
element methods. In this case, a possibility is that
a domain must be decomposed into triangles whose
size satisfies a user-defined density function [2]. In
this case, algorithm EXTRACT could be used with a
condition c(t) = r(t) < 8(o;), where § : Q « R is the
density function, r(¢) is the circumradius of ¢, and o
is its circumcenter.

8 Concluding remarks

The optimal time behavior of the algorithm for vari-
able resolution surface extraction, the simplicity of its
implementation, as well as the minimality of the rep-
resentation it extracts, make MTs a valid support to
enhance the quality of surfaces that can be rendered
in real time. In this perspective, it is also easy to
modify algorithm EXTRACT to restrict the search
to a given region of the domain, such as a window
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corresponding to the field of view, in order to achieve
a further speedup.

The data structure for encoding MTs, as well as
algorithms for building one such structure, and the
extraction algorithm presented here are under imple-
mentation. We plan to build next a small prototype
for the real-time rendering of topographic surfaces
based on MTs.

The reconstruction of the whole topological struc-
ture of representation extracted have not been consid-
ered, since for rendering applications the list of trian-
gles is sufficient. However, it is easy to address such
a subject by completing the data structure encoding
the MT with adjacences between triangles, such as
those used in [3].

The fact that a MT encodes all possible triangu-
lations that can be built from its triangles is a result
that goes beyond the scope of this paper. However,
this has been proved only for the special class of non-
redundant MTs. On a more general perspective, it
would be interesting to study the relationships be-
tween a generic set of triangles 7' and all possible
triangulations that can be built from it. The t-set
associated to a MT has indeed a quite special struc-
ture, while addressing the problem for a generic t-set
seems much harder.

Although MTs in their current form have been
defined on planar domains, hence supporting only
the representation of functional surfaces, they can be
extended to variable resolution modeling of general
surfaces embedded in three-dimensional space. The
availability of simplification algorithms for triangu-
lated surfaces, such as the one proposed by Schroeder
et al. [11], offers also immediate means to build such
structures easily. However, the generalization to non-
planar domains involves some theoretical difficulties,
since some properties that are immediate in the pla-
nar case are no longer valid for non-planar domains.
In particular, it is not easy to provide control over the
construction and traversal of an MT to warrant an
extracted surface free of self-intersections: such un-
desirable sitations can appear in some cases because
of warping caused by the approximation of a gen-
eral surface through a piecewise-linear triangulated
surface. In practice, self-intersections will not be fre-
quent, therefore MTs can be extended immediately
for practical purposes. However, a rigorous study
would be required to make such an extension also
theoretically sound.

Finally, MTs can be extended to an arbitrary di-




mension to obtain variable resolution decompositions
of multidimensional domains, for applications in sci-
entific visualization and finite element analysis. This
subject is the topic of a companion paper [7], in which
we also show how a number of multiresolution mod-
els proposed in the literature can be interpreted as
special cases of our model.

Acknowledgments

Leila De Floriani and Paola Marzano are gratefully
acknowledged for many helpful discussions and sug-
gestions on the matter of this paper.

References

[1] J.D. Boissonnat, M. Teillaud, 1993, On the
randomized construction of the Delaunay
tree, Theoretical Computer Science, 112,
pp.339-354.

[2] L.P. Chew, 1993, Guaranteed-quality mesh
generation for curved surfaces, Proceedings
9th ACM Symposium on Computational
Geometry, pp.274-280.

[3] P. Cignoni, E. Puppo, R. Scopigno, 1995,
Representation and visualization of terrain
surfaces at variable resolution, Proceedings
International Symposium on Scientific Vi-
sualization, R. Scateni, Ed., World Scien-
tific, Cagliari (Italy), September 1995.

[4] M. de Berg, M., K.T.G. Dobrindt, 1995,
On the levels of detail in terrains, 11th
ACM Symposium on Computational Geom-
etry, Vancouver, BC (Canada), June 5-7,
1995, pp.c26-c27. Also published in longer
version as Techical Report UU-CS-1995-12,
Utrecht University, Dept. of Computer Sci-
ence, April 1995.

[5] L. De Floriani, E. Puppo, 1995, Hierarchi-
cal triangulation for multiresolution surface
description, ACM Transactions on Graph-
ics, 14, 4, pp.363-411.

[6] L. De Floriani, P. Marzano, E. Puppo, Mul-
tiresolution models for topographic surface
description, The Visual Computer, (to ap-
pear).

210

[7] L. De Floriani, E. Puppo, A formal ap-
proach to multiresolution modeling, (in
preparation).

[8] L.J. Guibas, D.E. Knuth, M. Sharir, 1992,
Randomized incremental construction of
the Delaunay and Voronoi diagrams, Algo-
rithmica, 7, pp.381-413.

[9] D.G. Kirkpatrick, 1983, Optimal search in
planar subdivisions, SIAM Journal of Com-
puting, 12, pp.28-35.

[10] E. Puppo, 1996, Variable resolution terrain
surfaces, Techincal Report N.6/96, Istituto
per la Matematica Applicata, C.N.R., Gen-
ova, Italy, April 1996.

[11] W.J. Schroeder, J.A. Zarge, W. Lorensen,
1992, Decimation of triangle mesh, ACM
Computer Graphics, 26(2), (Proceedings
Siggraph’92), pp.65-70.

[12] D.F. Watson, 1981, Computing the n-
dimensional Delaunay tesselation with ap-
plication to Voronoi polytopes, The Com-
puter Journal, 24, pp. 167-171.




