Distance-Based Subdivision for Translational LP Containment

Karen Daniels * Victor J. Milenkovict

Abstract

The two-dimensional translational containment problem is to find translations for a collection of poly-
gons which place them inside a polygonal container without overlapping. The polygons and container
may be nonconvex. Our linear-programming-based (LP) translational containment algorithm uses our re-
strict/evaluate/subdivide paradigm which operates on two-dimensional configuration spaces. The following
distance-based subdivision problem arises during the subdivision step: given a polygon U and a point ¢ which
is outside U but inside the convex hull of U, find the line L through ¢ which partitions U into two pieces U~
and Ut on opposite sides of L such that:

min(A(t, CH(U™)), A(t,CH({U)))

is maximized, where CH(U) is the convex hull of U and A(a, B) is the Euclidean distance from a point a to
a point set B. We show that if U is connected, then the distance-based subdivision problem can be solved
in O(|U|) time in a real arithmetic model and in O(|U| + log(log ")) time in a rational arithmetic model,
where the input parameter ¢ is the desired accuracy.

1 Introduction.

A number of industries generate new parts by cutting them from stock material: cloth, leather (hides), sheet
metal, etc. These industries require good solutions to containment problems. Containment is the question
of whether a given set of part shapes can be fit, without overlapping, into a given container. The shapes
and container are represented as polygons and may be nonconvex. Material such as cloth has a grain, and it
sometimes has a “nap” (e.g. velvet or corduroy) or a colored pattern (e.g. stripes or plaid). A part cut out
of such material has only one, two, four, or possibly eight allowed orientations, not arbitrary rotation. For
such materials, containment can be decomposed into two NP-complete subproblems [11]: 1) selection of discrete
orientations and 2) translational containment. Translational containment, containment with fixed orientations,
is clearly an important subproblem.

In previous work [11, 12], we introduced an algorithm for translational containment based entirely on the princi-
ples of mathematical programming. Restriction establishes lower bounds through relaxation and the solution
of linear programs. Evaluation establishes upper bounds by finding potential solutions. Subdivision branches,
when necessary, by introducing a cutting plane. The objective that the containment algorithm minimizes is
the overlap among the placed polygons. Naturally, we seek a layout with zero overlap. The algorithm is called
the linear-programming-based containment algorithmior LP containment algorithm. Restriction, evaluation, and
subdivision operate on two-dimensional configuration spaces. Each configuration space is a polygonal region U;;
representing the non-overlapping positions for polygon j relative to polygon ¢. Ui; may have multiple compo-
nents and holes. The evaluation algorithm iteratively builds and solves an overlap linear program (OLP) whose
constraints are derived from the edges of the Ujjs and their convex hulls. The evaluation algorithm terminates
at a local overlap minimum. If this minimum yields an overlapping layout, then the U;; corresponding to the
“most overlapped” pair of polygons in the layout is subdivided. Denote this U;; by U. Because polygons i and

*Harvard University, Division of Applied Sciences, and University of Miami. Email: daniels@das.harvard.edu. This research
was funded by the Textile/Clothing Technology Corporation from funds awarded by the Alfred P. Sloan Foundation and by NSF
grants CCR-91-157993 and CCR-90-09272.

t University of Miami, Department of Math and Computer Science. Email: vjm@cs.miami.edu. This research was funded by the
Textile/Clothing Technology Corporation from funds awarded by the Alfred P. Sloan Foundation, by NSF grant CCR-91-157993,
and by a subcontract of a National Textile Center grant to Auburn University, Department of Consumer Affairs.

196

j overlap, the relative position of polygon j with respect to polygon i is a point ¢ which is outside U. The OLP
constraints force t to be inside the convex hull of U.

1.1 Distance-Based Subdivision

We introduced distance-based subdivision (DBS) [1, 12] for use within LP containment. The DBS technique
eliminates a “false” (local but not global) overlap minimum and all layouts near that minimum, allowing the
containment algorithm to make progress towards the global overlap minimum with each subdivision. There are
three cases: 1) U has multiple components. It sets U~ equal to the component of U which is closest to ¢. It
sets U+ equal to the union of the other components. 2) U is connected and every ray out of ¢ intersects
U. It selects the vertex u of U which is nearest to . It splits U into U™, the closure of H~ N U, and U+, the
closure of H* NU, where H~ and H* are the open half-planes to the left and right of LINE(tu), respectively.!
3) U is connected and ¢ can “see to infinity” along some ray. It selects a line L through ¢ which splits
U into U~ and U*. The line is chosen to maximize

d(L) = min(A(t, CH(U ™)), A(t,CH(U))),

the minimum Euclidean distance from ¢ to the convex hulls of the two “halves” of U. For cases 1 and 2, the
closest component or vertex of U to t can clearly be located in O(|U|) time. Two tasks remain: 1) determine
whether ¢ can “see to infinity” when U is connected (case 2 or 3) and, if so, 2) compute the line described in
case 3, which we denote by Lmax.

The DBS algorithm which we implemented within LP containment? solves these tasks in O(|U|log €~ 1) time,
where ¢ is the accuracy. In our experiments [1] on infeasible containment problems®, using overlap minimization
for the evaluation step followed by distance-based subdivision produces fewer subdivisions than our earlier
“paive” LP-based containment algorithm. The naive LP algorithm [2, 10] solves a single linear program during
the evaluation step. Its subdivision line is the extension of an edge of some U;;, and the choice of U;; is not
based on the results of evaluation. Tight coupling of evaluation and subdivision within LP containment appears
to produce good results in practice. We are therefore interested in the fastest possible DBS algorithm, which 1s
the subject of this paper. Here we present an algorithm* which shows how to determine in O(|U|) time whether
t can “see to infinity” when U is connected and, if so, how to compute Lyax in O(|U]) time in a real arithmetic
model and in O(|U| + log(log €~!)) time in a rational arithmetic model, where ¢ is the accuracy.

1.2 Overview.

To maximize d(L), it suffices to consider lines in the set £ = {L|d(L) # 0}. Each L € £ contains a ray out of
t along which ¢ can “see to infinity.” Section 2 shows how to find £ in O(|U]) time. If £ = 0, then U and ¢
satisfy case 2; otherwise they satisfy case 3. Section 2 also shows how to construct in O(|U|) time an ordered
list E of O(|U|) subedges of the boundary of U, where E is the part of the boundary of U which is visible to 2.
It also shows how to find a sublist G of E such that CLOSURE(L) = {LINE(tu)|u € efor e € G}.° Section 3
shows that binary search on the edge index in G can determine the edge in the list which contains umax such
that Lmax = LINE(fumax). It also observes that binary search can be used on any partition G’ of G. Section 4
creates a partition G’ of G with the property that, with O(|U|) preprocessing time, we can evaluate a given
vertex of any edge in G’ in O(1) time within the binary search. It shows that G’ contains O(|U|) edges and can
be constructed in O(JU|) time. Section 4 also shows that, if the binary search determines that umax is in the
interior of an edge in G, then O(|U|) preprocessing allows us to retrieve, in O(1) time, the information necessary
to calculate umax. Section 5 shows that, in this case, umax can be calculated in O(1) time in a real arithmetic
model and in O(log(loge~1)) time in a rational arithmetic model, where ¢ is the accuracy. This demonstrates

1A point p is on the left of LINE(ab) if (b — a) X (p — a) > 0: left is from the point of view of an observer standing at ¢ and
facing toward b.

2This implementation of our LP containment algorithm has been licensed by Gerber Garment Technologies, the largest provider
of textile CAD/CAM software in the U.S., and they are incorporating it into an existing CAD /CAM software product.

3Data sets are from the apparel industry.

4The algorithm also appears in our technical report [11].

5The set of lines through ¢ is a metric space under angle, so closure is well-defined. Taking the closure adds the two lines which
“bound” the set of lines in L.

197

that Lyax can be computed in O(|U]) time in a real arithmetic model and in O(|U| + log(log €~1)) time in a
rational arithmetic model.

2 TFinding L.
Lemma 2.1 IfU is connected, then in O(|U|) time we can find £ = {L|d(L) # 0}.

Proof: L € L if and only if it contains a ray out of ¢ which does not intersect U. The set of rays RAYS(t,U)
out of ¢ that hit U is connected® because U is connected. Therefore, the set of rays RAYS(¢, U) = RAYS(t) \
RAYS(t,U) that do not intersect U is also connected; these are the rays we need. Since t € CH(U), each
ray in RAYS(Z,U) must pass through the boundary of CH(U). The (connected) set {p € RAYS(,U)|(p N
BOUNDARY(CH(U))) # 0} must be a subset S of a single edge e of CH(U): if the set contained a vertex of
CH(U), then we could move this vertex towards ¢ and make CH(U) smaller. The edge e is not an edge of U.
Furthermore, let H be the component of CH(U) NU which contains ¢, and let V' be the visibility polygon of
H with respect to t. If V has an edge which is not collinear with ¢ and which is not a subset of an edge of U,
then the interior of that edge is S and £ = {LINE(st)|s € S}. Otherwise, S does not exist and £ = . Now
we establish the running time. The convex hull of the outer boundary equals CH(U') and can be computed in
linear time [9, 3, 5]. The boundary of H can be determined in linear time. Since U is connected, it has no
“slands” inside H, and thus H is a simple polygon. The visibility polygon V for a simple polygon H can be
found in O(|H|) (£ O(|U])) time [4, 8, 7].]

Lemma 2.2 If U and t satisfy case 3, then in O(|U]) time we can construct: 1) an ordered list E of O(|U])
subedges of the boundary of U, where E is the part of the boundary of U that is visible to t and 2) a sublist G
of E such that CLOSURE(L) = {LINE(tu)|u € e fore € G}.

Proof: Let V be the visibility polygon from the proof of Lemma 2.1. To form E, remove the single edge
CLOSURE(S) of V which is a subset of the boundary of CH(U). Remove edges of V which are collinear with
t. The result is a list of edges E which we can assume are ordered clockwise with respect to ¢. The list £
can be represented as: AjAz, A3As, ..., An—1A2,, where A; and Az, are the endpoints of S and RAY(tA2;)
equals RAY(t43i41), 1 < i < n— 1. Because U is connected and ¢t € CH(U), both LINE(A;t) and LINE(A2nt)
intersect E beyond t at least once (and at most twice if A;t (or A2nt) passes through Az; and Aji4; and
these are not the same point). If an intersection point is in the interior of an edge in E, split that edge
and reindex E. Let the intersection points of LINE(Az,t) with E (beyond t) be Aze—1 and Aze—2 and the
intersection points of LINE(A;t) with E (beyond t) be Az and Asss1. Let G be the following sublist of £:
Asa—1Asg, ..., Azp—1Asp. Because L is connected” and, from the proof of Lemma 2.1, £ = {LINE(st)|s € S},
we conclude that CLOSURE(L) = {LINE(tu)|u € efor e € G}, as required. The construction time is O(|U|) for
two reasons: 1) Lemma 2.1 guarantees that V' can be constructed in O(|U|) time and 2) V, being the visibility
polygon of the simple polygon H of size O(|U]), has O(|U|) edges. The second reason also guarantees that F
has O(|U]) edges. [|

3 Binary Search.

Here we show that binary search on the value of the edge index i in G, a < i < 3, can determine the edge
in G which contains umax such that Lpax = LINE(fumax). This result also holds for any partition of G. Let
U-(L) denote U~ when U is split by L, and define U+(L) analogously. Let d~(L) = A(t,CH(U~(L))) and
d+(L) = A(t, CH(U™*(L))). The functions d~(L) and d*(L) are discontinuous where L intersects both A5; and
Asgiyq but Ag; # Asiy1 (this occurs where L intersects an edge of V which is collinear with t). Unfortunately,
d=(LINE(tA)) = d~(LINE(tA2i41)) and d*(LINE(tAy;)) = d*(LINE(tA2i+1)), so d™(L) and d*(L) cannot

reveal if Lmax occurs at a discontinuity. To overcome this problem we define d~(u) and d* (u), for u € Az;i_1Aai,

6The union of the rays is a single wedge.
7The union of lines in £ is a double wedge through ¢, bounded by two lines.

198

as follows: d=(u) = A(t, CH(Ay, Az, ..., Azi—1,u)) and d*(u) = A(t, CH(Az2n, A2n-1, ..., A2i, u)). To evaluate
each value of i within the binary search, perform the following tests. If d~(Az2;—1) > d*t(Agi—1) and d~(A42) <
dt(Ag;), then return edge Asi_14z;. If d™(A2) > dt(Az) and d~(Azi4+1) < d*(Azi41), then return vertex A;.
If d=(Azi—2) > d¥(A2i-2) and d™ (A1) < d*(Azi-1), then return vertex As;—;. Otherwise, return NULL.
The search initializes djower t0 @ and iypper to B. For each value of i, if evaluation returns NULL, one of the
bounds on i is updated based on the test d~(Azi—1) > d*(A2i-1).

Lemma 3.1 This binary search on the value of the edge indez i in G, a < i < B, yields either the vertezr A;
of G such that d(A;) mazimizes d(L) for L € L or the edge Azi—1A2i of G such that d(u) mazimizes d(L) for
L € L for some u € INTERIOR(A2i-142;).

Proof: We claim that the search maintains the following invariant: d_(A%)ower-l) > d+(A2,-l°wer_1) and
d~ (Aziypper) < d(Aziupper) and that the “ordering”® of d*(u) and d~(u) changes exactly once for ijower <7 <
tupper- The first part of the invariant is true at the start of the search because d~(A424-1) > d¥(A4204—1) = 0 and
0 = d~(A2s) < d*(A2s). The updates of dlower and iupper for each i maintain this part of the invariant. The
second part of the invariant relies on the following monotonicity result by Daniels [1]. Parameterize the line
segment A; As, by the linear function y(7), for 7 € [0, 1], such that 4(0) = A2, and ¥(1) = A;. Daniels shows
that the distance function d~(LINE(y(7)t)) is non-increasing for 7 over [0,1]. For r,7’ € [0,1] and 7’ > T,
LINE(y(7')t) is rotated clockwise from LINE(y(7)t). Her proof shows that, as a consequence, “more” of U~
lies to the left of LINE(y(7)t) than LINE(y(7)t), and thus CH(U~(LINE(y(7)t))) € CH(U~ (LINE(y(r')1))),
which implies that d~ (LINE((r)t)) > d~(LINE(y(7')t)) and therefore establishes that d~(LINE(y(r)t)) is non-
increasing. A similar argument shows that d*(LINE(y(r)t)) is non-decreasing for = over [0, 1]. The full paper
shows that d—(u) (d+(u)) has the same monotonicity property as d~(LINE(tu)) (d*(LINE(tu))). Monotonicity
guarantees that the minimum of d~ (u) and d*(u) is maximized where the ordering changes. The full paper shows
that the minimum of d~ (L) and d*+(L) is maximized where the minimum of d~(u) and d*(u) is maximized. W

4 Preprocessing.

Lemma 3.1 allows us to find the vertex or edge in G associated with Lmax using binary search on the value
of the index of G. The running time of the binary search is dominated by O(log(|G[)X) = O(log(|U|)X),
where X is the time required to calculate d+(A;) and d~(A;) for a given vertex A; of G. This allows Lmax to
be found in time O(|U| + log(|U|)X + Y), where Y is the time to find v € INTERIOR(A2;-142;) such that
d(u) maximizes d(L) for L € L (if the binary search returns an edge instead of a vertex). This section shows
how to preprocess G in O(|U]) time so that X = O(1) and so that ¥ = O(1) in a real arithmetic model and
Y = O(log(log€™!)) in a rational arithmetic model with accuracy €. (Finding u € INTERIOR(A2;—1A2;) such
that d(u) maximizes d(L) for L € £ is addressed in Section 5.) This allows us to find Lmax in O(|U]) timein a
real arithmetic model and in O(|U|+log(log e~!)) time in a rational arithmetic model. Some of the preprocessing
involves partitioning G in O(JU|) time into G’ which has O(|U|) edges. Clearly, any partition G’ of G also has
the binary search property and, since G’ has O(|U|) edges and is constructed in O(|U]) time, the asymptotic
running time of the overall algorithm is unaffected by the partitioning. Before describing the preprocessing, we
introduce more notation. If u is in edge Ag;_1A2; of G, (a < i < B), then denote by C~(u) the portion of
CH(Ay, As, ..., Azi_1,u) which is visible from t. Lei ¢~ (u) be the closest point of C~(u) to t. Similarly, define
C*(u) to be the portion of CH(A2n, A2n-1, .., A2, u) which is visible from ¢ and define c*(u) be the closest
point of C~(u) to t. Lemma 4.1 below allows us to use C~(u) and C*(u) instead of CH(U~(LINE(tu))) and
CH(U*(LINE(tu))) in the remainder of the paper.

Lemma 4.1 d~(u) = A(t,C~(u)), andd*(u) = A(t, C*(u)).
Consider u € Ag;i_1A2;,a < i < B. The vertices of C~(u) are a subsequence of Ay, Ay, ..., Ag;—1 plus the last

(clockwise most)? vertex is u. Similarly, the vertices of C*(u) are a subsequence of Azn, A2n-1, .- ., Ag; plus
the first (counter-clockwise most) vertex is u. Define the fized part R™(u) of C~(u) to be the chain which is a

8 We cannot guarantee intersection of d~(u) and d+(u) because d~(u) and d*(u) are discontinuous.
9This is clockwise most from the point of view of t.

199

subset of C~(u) and whose vertices form the set VERTICES(C~(u)) \ {u}. Let r~(u) be the closest point of
R~(u) to t. Let s~ (u) be the last vertex of R™(u). Define the fized part Rt(u) of C*t(u), r*(u), and s*(u)
analogously. We say that C~(p) and C~(q) are combinatorially equivalent if R~ (p) = R™(g)- The analogous
definition holds for C*(p) and C*(g). We say that two points p and g are hull equivalent if C~ (p) and C~(q)
are combinatorially equivalent and Ct(p) and C*(g) are combinatorially equivalent.

Here we describe a clockwise scan of E = AjAs, ..., Asn_1Az, which is a modification of Graham’s scan [6].
Graham’s scan constructs the convex hull of a set of points in linear time once they are in sorted order about
an internal point O. As observed in [13], in Graham’s scan, “if a point is not a vertex of the convex hull, it is
internal to some triangle Opg where p and g are consecutive hull vertices.” If points are ordered clockwise about
O, then this implies that the point is in the wedge which is on the right of Op and on the left of Og and the
point is on the right of pg. When the scan encounters a triple of consecutive points prq in the ordering about O
such that prq is a left turn, it pops vertices off the current hull until convexity is restored. We modify Graham’s
scan so that it correctly constructs the visible part of a convex chain when O (in our case) is ezternal to the
chain. We need only change the left turn test for a triple prq to a right turn test in order to perform a clockwise
scan about t. A counter-clockwise scan about ¢ from As, to A; requires only minor modifications to the scan.
In both cases, the modified scan has the same asymptotic running time of O(|U[) as Graham’s scan. To simplify
the remainder of our discussion, we insist that the chain which is built during the modified scan is convex at
all times. Hence, we do not add a new point to the chain until all vertices which must be removed have been
removed. This does not affect the running time or correctness of the algorithm.

During a given step of one direction of the modified Graham scan, denote by C the current state of the convex
chain which is maintained by the scan. We describe a partitioning process which produces a partition G’ of
G, where the new index of Ass is 28’. The partition can be generated during the modified scan of E by
marking edges of A2q—142qa,...,A25-142p as vertices are removed from C. In the clockwise scan, suppose we
are processing Ag;, @ < i < B, and that Aj A Ay; is a right turn, where A,Ap is the last edge of C. Before
deleting Ap, extend ray AgAp. If it intersects Az;—1A2i, then “mark” Ag;j_1Ao; at the intersection point. Note
that no marking need be done when processing Azi4+1 because there is no edge between Ag; and Agi41. Use
the same marking process during the counterclockwise scan of A2nA2n-1,.- -, AszA;. When the second scan is
complete, split the edges of G at the marks to produce the partition G’ = A3,_;4%,, - - ., Abgi_1Ayg. The full
paper shows that G’ has O(|U|) edges and can be constructed in O(|U|) time.

Lemma 4.2 Immediately after the clockwise (counterclockwise) partitioning/modified Graham scan processes
vertez A} of edge AjA;,, of G, we can obtain, in O(1) time: 1) C~(A}) (C*(A})) from C and 2) R~ (u)
(R*(u)) and s~ (u) (st (u)) from C, for u € INTERIOR(A}Aj},,) if j is odd. Furthermore, given p,q €
INTERIOR(A%;_,AY;) for a < i< B, p and g are hull equivalent.

In the full paper, we show that, because the modified Graham scan repeatedly either adds or deletes a single
edge from C, Lemma 4.3 below implies that we can update the nearest point in O(1) time, which yields the
result below in Lemma 4.4.

Lemma 4.3 Let Q be a convez polygon and t be a point ouiside Q. Parameterize the portion of the boundary
of Q which is visible to t by the piecewise linear function ¥(), T € [0, 1], where T increases clockwise about 1.
The distance function do(r) = A(t, Q(v(7))) is unimodal.

Lemma 4.4 In O(|U|) time it is possible to precompute r~(u) and r¥(u) foru € INTERIOR(A%;_,A%;) of G/,

a<i< @, as well as ¢~ (u) and c*(u) for each vertez u of G'.

5 Locating the Intersection Point along an Edge.

Lemma 5.1 If Linax intersects INTERIOR(AY;_, A%;), then we can find the intersection point in O(1) time in
a real arithmetic model, or in O(log(loge¢™1)) time in a rational arithmetic model with accuracy €.

Proof: Consider u € INTERIOR(A};_,Ab;). The point ¢~ (u) is either: 1) on R™(u) (and therefore equal
to r—(u)), 2) in the interior of s~ (u)u, or 3) equal to u. A similar statement holds for ct(u). We show that

200

INTERIOR(A%;_, A%;) contains four subsegments, each having constant ¢~ (u) and ct(u) type. Consider ¢~ (u),
w.l.o.g. In the full paper, we show that if type (1) applies to any point in INTERIOR(A%;_, A%;), then either
¢~ (u) is the same for all points u in INTERIOR(Aj;_;A;) or else there is one point w along it where ¢~ (u)
changes from s~ (u) to a point on (s~ (u)u]. The point w, if it exists, is the intersection of INTERIOR(4%;_1A%;)
with the line through s~ (u) perpendicular to s~ (u)t. The nearest point of (s~ (u)u] to t becomes u when tu is
perpendicular to s~ (u). The locus of points for which tu is perpendicular to ts~(u) is the circle with diameter
ts~(u). This circle has up to two intersections with INTERIOR(A%;_,A3;), and ¢~ (u) is at u in between the
two points of intersection. Lemma 4.2 and Lemma 4.4 allow us to retrieve s~ (u), st(u), r~(u) and r*(u) for
a given i in O(1) time. From these, the endpoints of the subsegments can be located in O(1) time for a given
i, because they require only a constant number of algebraic operations, such as intersecting a line and/or circle
with a line.

To find the intersection point on a constant-type subsegment, parameterize the subsegment by the linear function
~4(7), for 7 € [0,1]. Consider ¢~ (y(r)). By Lemma 4.1, d~(7(r)) is the distance from c~ (v(7)) to t. In case (2),

(t—g)x(v(r)—4q)
lv(7) -4l

d~(+(7)) =

b}

a continuous algebraic function. In case (3), d~(¥(r)) = |y(r) — t|; this is also continuous. Analogous formulas
hold for d*(7(7)). We can intersect two pieces using algebraic operations. The case which dominates the
running time occurs when both ¢~ (y(7)) and c*(7(7)) are of type (2). In this case, one can find the intersection
point by proceeding algebraically at first and then numerically. Setting d*(y(r)) = d~(y(7)), squaring, and
clearing fractions produces a fourth-degree polynomial equation in 7. The intersection point for 7 € [0, 1] is the
root (in this interval) of the fourth-degree polynomial. Under a real arithmetic model, we can represent the root
ezactly as an algebraic number. This requires manipulating algebraic numbers. To avoid this, one can operate
on a nearby rational approximation to the root. This can be obtained using, for example, Newton’s method.
The quadratic convergence of Newton’s method adds only log(log €~ 1) to the running time of the algorithm,
where ¢ is the accuracy. []

Theorem 5.2 The line Lyax can be computed in O(|U|) time in a real arithmetic model and in O(|U| +
log(loge=1)) time in a rational arithmetic model, where € is the accuracy.

References

[1] K. Daniels. Containment Algorithms for Nonconvez Polygons with Applications to Layout. PhD thesis, Harvard University, 1995.

[2] K. Daniels and V. J. Milenkovic. Multiple Translational Containment: Approximate and Exact Algorithms. In Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 205-214, 1995.

[3] D.T.Lee. On finding the convex hull of a simple polygon. Int’l J. Comput. and Infor. Seci., 12(2):87-98, 1983.

[4] H. El Gindy and D. Avis. A Linear Algorithm for Computing the Visibility Polygon from a Point. Journal of Algorithms, 2:186-197,
1981.

[5] R. Graham and F. Yao. Finding the convex hull of a simple polygon. Journal of Algorithms, 4(4):324-331, 1983.

[6] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Info. Proc. Lett., 1:132-133, 1972.
[7] B. Joe and R. B. Simpson. Corrections to Lee’s Visibility Polygon Algorithm. BIT, 27:458-473, 1987.

[8] D. T. Lee. Visibility of a Simple Polygon. Computer Vision, Graphics, and Image Processing, 22:207-221, 1983.

[9] D. McCallum and D. Avis. A linear algorithm for finding the convex hull of a simple polygon. Info. Proc. Lett., 9:201-206, 1979.

[10] V. J. Milenkovic. Multiple Translational Containment, Part II: Exact Algorithms. Algorithmica, special issue on Computational
Geometry in Manufacturing, accepted, subject to revisions.

[11] V. J. Milenkovic and K. Daniels. Translational Polygon Containment and Minimal Enclosure using Geometric Algorithms and Mathe-
matical Programming. Technicai Report 25-95, Center for Research in Computing Technology, Division of Applied Sciences, Harvard
University, 1995.

[12] V.J. Milenkovic and K. Daniels. Translational Polygon Containment and Minimal Enclosure using Mathematical Programming.
International Transactions in Operational Research (submitted).

[13] F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.

