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Abstract

We propose a formal definition of a hierarchical
structure representing the overlay of two hierarchi-
cal subdivisions at multiple resolutions, and an ef-
ficient bottom-up algorithm to compute it. An im-
portant application is connected to map processing
in geographic information systems.

1 Introduction

In this paper, we consider the overlay of plane sub-
divisions (a classical problem in computational ge-
ometry) and extend it to the case of hierarchically
represented subdivisions.

The problem, in this new setting, has relevance in
geographic information systems, where plane sub-
divisions are used to represent maps, and the com-
bination (overlay) of two maps, describing differ-
ent characteristics of the same spatial domain, is
a fundamental operation. The need for multires-
olution arises, because huge amounts of data are
available, while not all application tasks require the
same level of detail. Hierarchical subdivisions com-
pactly encode decompositions of a plane domain at
multiple resolutions, and efficiently support extrac-
tion of information satisfying a given level of detail;
moreover, they support navigation across various
abstraction levels. Thus, they represent an effec-
tive way of reducing memory and processing costs
as well as an effective tool for map analysis.

Several multiresolution models have been pro-
posed, depending on the type of geographic data
for which they are designed. Here, we consider a
simple, general-purpose model, called the hzerarchi-
cal subdivision, which is based on the concept of a
recursive refinement. Given two hierarchical subdi-
visions, we focus on the problem of building a hier-
archical subdivision that provides a multiresolution
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Figure 1: A hierarchical subdivision, and an ex-

pansion, computed under a condition ¢’ such that
(fi) = d(f2) = ¢(fa) = c(fs) = false and
¢'(f) = true for any other face f.

representation of their overlay. We formally define
the problem and give a bottom-up algorithm for it.

2 Hierarchical Subdivisions
A plane subdivision is a triple £ = (V| E, F) where:

e V is a set of points, called vertices;

e Eis aset of closed straight-line segments, called
edges, whose endpoints are vertices, and such
that no two edges intersect, except in a common
endpoint;

e Fis aset of closed simply-connected polygonal
regions, called faces, whose boundary is a union
of edges, and such that any two faces intersect
at most in their boundary;

o U{f | f € F} covers a simply-connected polyg-
onal domain D, called the domain of the sub-
division.

The number of edges and faces in a plane subdivi-
sion is linear in the number n of vertices.




Informally, a hierarchical subdivision is obtained
by recursively decomposing a domain into a se-
quence of increasingly finer tesselations. The se-
quence of levels of detail obeys to a predefined set
of conditions. For example, if a hierarchical subdivi-
sion is used to represents a political map, conditions
could be defined by granularities of the administra-
tive units (states, counties, cities, etc.). Starting
from a subdivision X representing the domain at
the coarsest level, a face f of ¥y is refined, at the
next level of detail, into a subdivision Xy, whose
domain is f. This refinement process is recursively
iterated.

More formally, a sequence cg,...,cs of condi-
tions is given, such that ¢; implies ¢;—; for all
i =1,...,h. A hierarchical subdivision, based on
sequence cg,...,cp is a pair X = (S,€), where
S = {Zo,..,Zm} is a collection of plane subdivi-
sions, such that:

o for every 1 < 7 < m, I; contains more than one
face;

o for every 1 < j < m, there is exactly one index
i, with 0 < ¢ < j, and one face f; € I;, such
that the domain of X; covers face f;; we say
that X; is the parent of £; and Z; is a child of
Z;; moreover X; is called the direct ezpansion
of face f;;

e X, satisfies condition co;

o if ¥; € § satisfies conditions cy, . . ., ¢j, for some
0 < j < h—1, then all children of ¥; satisfy
conditions cg, ..., Cj,Cj+1;

e a subdivision X; has no children if and only if
it satisfies all conditions ¢, .. .,cp;

and & is a collection of hierarchical links between
subdivisions in S:

o for every pair of subdivisions ¥; and £; € S,
such that the domain of X; covers a face f; €
Z;, & contains an oriented arc (Z;, Z;);

o such an arc is labelled with face f;.

A hierarchical subdivision # can be described by
a tree having nodes in § and labelled arcs in &,
where X is the root. A face which is refined in the
hierarchy is called a macroface, otherwise it is called
a simple face. The total size of a hierarchy has been
shown to be linear in the number of its simple faces

[DeF92).

The condition ¢, such that & = max{q | Z;
satisfies conditions co,...,cq} is called the level of
subdivision X;, and denoted by level(¥;). The
level of a face f; is defined as max{q | f; satis-
fies conditions co, ...,cq}. For a face f; belonging
to a subdivision X;, level(f;) > level(Z;); if f; is
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a macroface and ¥; is its direct expansion, then
level(Z;) < level(f;) < level(Z;).

A hierarchical subdivision # implicitly represents
a family of subdivisions, called the ezpansions of H,
each describing the domain at a certain level of de-
tail. Any subdivision of the family can be extracted
from H through a traversal of its tree structure:
starting from the root subdivision Xy, each macro-
face is recursively replaced with its direct expan-
sion. The recursive replacement process stops when
all collected faces satisfy some condition ¢’ (defin-
ing the desired level of detail), which is given within
the specific application (see Figure 1). The result-
ing expanded subdivision is called the ezpansion of
H under condition ¢/, and denoted by ezp(#,c’).

To model a single step of the recursive replace-
ment process, we define a refinement operation,
which takes two subdivisions £; and I;, such that
the domain of X; is a face f; € X, and builds an-
other subdivision, that we denote by Z;[f;/Z;], by
replacing macroface f; in ¥; with subdivision ;.

We denote by V(X), E(X), F(Z) the set of ver-
tices, edges and faces, respectively, of a subdivision
¥, and by E(f), the set of boundary edges of a face
f. The subdivision ¥’ = X;[f;/Z;] is defined as
follows:

o F(E) = F(Z:) - {fj}UF(Z));

. V(Z) = V(S)UV(S);

o E(X') = E(X;)—E(fj)U{e € E(X;) | e internal
edgeof ;}U{e” = ene’ | e € E(fj), e’ € E(Z;)
and eNe' is a segment}.

The ezpansion of a hierarchical subdivision under

a certain condition ¢’ is recursively defined as fol-
lows:

o if every face of Iy satisfies ¢/, then the expan-
sion is the same as the root subdivision Xg;

o otherwise, we consider all the arcs (X, X;), la-
beled with a macroface f;, such that ¢/(f;) is
false. For every such arc, we recursively com-
pute the expansion X} of the subtree rooted
at ¥; under condition ¢. The expansion of
under condition ¢’ is obtained from X, by si-
multaneously replacing each macroface f; by
X

4]

In order to store a hierarchical subdivision #, we
encode each node ¥; of # into a two-dimensional
specialization of the cell-tuple data structure pro-
posed by Brisson [Bri93], and explicitly represent
hierarchical links between each macroface and its
direct expansion.

A 2D cell-tuple structure, representing a plane
subdivision I, consists of a pair (C, S), where C is




a collection of basic elements, called cell tuples, and
S = {switch_vertez, switch_edge, switch_face} is
a family of switch operators defined on cell-tuples.
A cell-tuple is (in the two-dimensional case) a triple
(v, e, f) where v, e and f are, respectively, a vertex,
an edge and a face of ¥, such that v is an endpoint
of e, and e is a boundary edge of f. Since an edge
has two endpoints and at most two adjacent faces,
the total number of cell-tuples is at most four times
the number of edges, that is O(n).

The switch operators link each cell-tuple to other
three cell-tuples, in the following way:

o switch_vertex(v,e, f) = (V',e, f), where v’ is

the other endpoint of e;

o switch_edge(v,e, f) = (v, €, f), where ¢’ is the
other edge incident in v and belonging to the
boundary of f;

o switch_face(v,e, f) = (v,e, f'), where f' is the
other face adjacent to e.

Four cell-tuples, connected through operators
switch_vertex and switch_face, implicitly represent
an edge together with its extreme points and ad-
jacent faces; a vertex, together with all its inci-
dent edges and faces, corresponds to a chain of cell-
tuples connected with operators switch_edge and
switch_face; finally, a chain of cell-tuples connected
with operators switch_edge and switch_vertez de-
fines a face and all its boundary edges and vertices.

Geometric information are stored by enriching
each cell-tuple (v,e, f) with a pointer to the co-
ordinates of vertex v. Each subdivision ¥; in the
hierarchy is represented by an individual cell-tuple
structure, where geometric information are global,
1.e., cell-tuples belonging to different subdivisions,
but containing the same vertex, point to the same
coordinate pair.

Every node X; of the hierarchy stores its level
€ {co,-.-,cn}. Since faces are not explicitly rep-
resented in the cell-tuple structure, we store infor-
mation about macrofaces and their expansions sep-
arately. Every node ¥; of the hierarchy stores a list
containing, for each macroface f; of I;, the level of
fj, a pointer to one of the cell-tuples of the form
(v,e, fj) in X;, and a pointer to the direct expan-
sion X; of f;; this list is sorted according with the
increasing level of macrofaces.

Moreover, we store links from tuples (v, €, f), with
f macro, to tuples of the direct expansion of f. Let
t be a cell-tuple, in a subdivision ¥;, corresponding
to a triple (v,e, f), where f is a macroface, and
let £; be the direct expansion of f. Then ¢ points
to the unique cell-tuple ¢’ in X; corresponding to a
triple (v, €, f’), where ¢’ C e and f’ C f. Storing
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Figure 2: The data structure encoding a hierarchi-
cal subdivision: points represent tuples, segments
connecting them represent switch operators; hierar-
chical links between the tuples of a macroface and
the tuples of its direct expansion are shown as dot-
ted lines.

parent-child links in tuples is necessary to retrieve
the expanded subdivision under a given condition
(since it allows to to merge the cell-tuple structure
representing a child subdivision into the cell-tuple
structure of its parent), and it adds only a constant
term to the memory requirements of each tuple. Our
data structure is represented in Figure 2.

The algorithm for extracting an expanded subdi-
vision under a given expansion condition ¢’ performs
a preorder traversal of the tree, and operates accord-
ing to the definition of expansion (see [Mag95)] for a
detailed description). The time complexity is linear
in the size of the extracted subdivision.

3 The Overlay Problem

Given two plane subdivisions £; and ¥,, the over-
lay of ¥; and X, is a plane subdivision ¥’ whose
vertices, edges and faces are obtained by intersect-
ing those of £; and of &y. If ; = (Vi, Er, F1)
and Xy = (Va, B2, F), the overlay of £; and X5 is
Y = (V' E', F'), where:

eV =ViUVU{P|P=eNese €Ejes €
Ej,e; Ney is a point},

e E'={e|e=fiNes, fi € Fi,e2 € B3, fiNe
is a segment} U {¢’ | e’ =e1 N fa,e1 € E1, f2 €
FyeiNfrisasegment} U {e’ | ¢/ =ejNeg,e; €
Ei,es € Ez,e1 Ney is a segment},




e Fl={f|=fANffi € Fi,f2€F,fin
fo # @, fiN f2 is a region}.
The size of the overlay of two subdivisions of size n,
and ng, respectively, is O(n; + n2 + k), where k is
the number of intersections between the edges, and
it is O(ningz) in the worst case.

Here, we focus on the problem of efficiently com-
puting a multiresolution model representing the
overlay of two hierarchical subdivisions.

Let A and B be two hierarchical subdivi-
sions, built based on two sequences of conditions
Qo,...,a, and fo, ..., B, respectively. We select a
sequence 7o, - - -, ¥ of pairs of conditions: for every
0< i< ¢ 7 = opuy AND ﬁq(,-) where 0 < p(7) < a
and 0 < ¢(7) < b. Indices p(7) and ¢(¢) must be
chosen in such a way that 5; implies v;_; for all
1 € i < ¢. This is achieved by imposing that, for
every 1 <i<e¢, p(i) > p(i—1),¢>gq(i—1), and at
least one of the two inequalities is strict.

Our aim is building a hierarchical subdivision C,
based on the sequence of conditions 7y, . ..,7., such
that, for every 7, the expansion of C under condition
4i is the same as the overlay of ezp(A, ap(;)) and
exp(B, Byc)-

If n, and n; are the sizes of the two hierarchies A
and B, the worst-case size of Cis n, = O(ns+ny+k)
where k is the number of intersections between the
expansions of A and B under conditions o) and
Bq(c), respectively.

4 An Algorithm to Compute
an Overlay Hierarchy

A key observation is that the overlay hierarchy C
cannot be built top-down efficiently. A top-down
construction involves superimposing pairs of nodes
from A and B corresponding to the selected pairs
of conditions, and then simplifying the resulting
structure to a hierarchical subdivision. This ap-
proach may compute the same faces several times
(see [Mag95] for an example of this fact). In the
worst-case, ©(n,) faces are found ©(b) times. If b is
©(ns), the complexity raises to ©(n,ns), even when
the actual size of the overlay hierarchy is linear in
Ng + Np.

Thus, we must proceed bottom-up. We first com-
pute the overlay of ezp(A, ap()) and ezp(B, By()),
and then build the upper levels of C through iter-
ative generalization steps, driven by the sequence
of conditions ¥g,...,9.- FEach generalization step
deletes edges of A and B which represent too fine
details and merges remaining edges and faces ac-
cordingly.
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The expansions of A and B under condition p(c)
and g(c) are computed by the extraction algorithm
described in [Mag95]. During the extraction, the
following information are also computed and stored:

o for every vertex v of ezp(A, acq), its level, de-
fined as the level of the coarsest node of A
where v appears;

o for every cell-tuple t = (v, e, f) of A, the proper
level of t, defined as the level of vertex v, and
the original level of t, defined as the level of
the coarsest node in .4 where we find a tuple
(v, €, f') such that e C ¢’;

e similar information for vertices and tuples of
ezp(B, By(i))-

Only levels relevant to the overlay (i.e., levels oy or
B; which appear in some <;) are considered. A level
o which does not appear in any v; is “rounded” to
o, where p = min{q > k | oy appears in some 7;},
and similarily for 8;. The above defined levels are
related to A and B. We trasform these levels into
levels related to C in the following way. If a tuple ¢
has level oy in A, then the level of ¢ in C is 4; where
i = min{7 | p(¢) = k}; similarily for the tuples of B.

The overlay of exp(A, ap(c)) and exp(B, fBy()) can
be computed by using any of the existing algorithms
for overlapping plane subdivisions [Boi92, Cha94,
Mai88, Gui87]. An optimal O(n + k) time complex-
ity is obtained in the algorithm by Guibas and Seidel
[Gui87]. While constructing the overlay, levels must
be maintained and updated:

e the level of an intersection point between an
edge e; of exp(A,apc)) and an edge ez of
exp(B, By(c)) is the finer level between the orig-
inal level of e; and the original level of e5. This
means that each intersection point is considered
at the coarsest level where it occurs.

o intersection points split edges of exp(A, ap())
and ezxp(B, By(c)) into pieces. The tuples corre-
sponding to each piece maintain the same orig-
inal level of the original edge. The proper level
of every new tuple is, as usual, the level of the
vertex contained in it.

Once the finest overlay has been constructed, the
bottom-up computation of the hierarchy starts. At
each step, we collect from the current working sub-
division (initially, the overlay of exp(A,ac,) and
exp(B, Bba)), the tuples corresponding to the nodes
of C at level v;, and insert them in the overlay hi-
erarchy; we do this for ¢ decreasing from ¢ to 0. A
working example of hierarchy construction is shown
in Figure 3.
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Figure 3: Construction of the overlay hierarchy. From left to right: the two input hierarchies (v; = a; A So,
for 0 < 7 < 2); the three generalization steps (e = vertices at level -y, m = vertices at level 7, X = vertices
at level 42; at each step, the shaded faces are saved); the final result.

Let 7 be the current level to be constructed. The
nodes of C at level v; are the maximal connected
components of tuples from the working subdivision
such that:

e contain at least one tuple with proper level
equal to v; (the determination of components
actually starts from these tuples);

e the tuples are connected through switch_vertex
and switch_edge (define boundaries of faces);

e the tuples are connected through switch_face
(link to adjacent face) only if both tuples in-
volved have original level equal to «;.

These components are saved to form the nodes of
C at level 4;. More precisely, for every connected
component we initialize a node of the output hier-
archy with level = 5; and whose cell-tuple structure
contains a copy of the tuples belonging to the con-
nected component. Later we explain how these new
nodes are organized into a hierarchy, i.e., how the
list of the macrofaces of a node is created and how
the tuples related to a macroface are linked to the
appropriate tuples of the node corresponding to the
direct expansion of the face.

Actually, we must use some special care to avoid
saving a face if its vertices at level 4; do not define
true corners in the polygonal area covered by the
face. Details, not discussed here, are contained in
[Mag95].

After saving level v; of the overlay, we update the
current working subdivision by removing all vertices
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and edges which appeared at level 4; but do not ap-
pear at level v;_; any more. We first eliminate all
tuples with original level = 4; (typel-tuples) and
then eliminate all tuples with original level < «; but
proper level = v; (type2-tuples). The elimination of
typel-tuples correspond to true edge deletion, while
the elimination of type2-tuples corresponds to merg-
ing two adjacent collinear edges into a single one by
removing their common vertex.

A typel-tuple ¢ is connected through switch_vertez
and switch_face to other typel-tuples (since they
share the same supporting edge). On the contrary,
switch_edge can connect t to some tuple ¢’ which
is not to be deleted: the switch_edge link form ¢/
must be updated. We consider maximal chains of
tuples of typel conncted through switch_edge and
switch_face links, alternately (these tuples turn
round a vertex). If the chain is not closed, it starts
and ends into two tuples ¢; and ¢, which are not
deleted: we connect ¢; and ¢, through switch_edge.

A type2-tuple t is connected through switch_edge
and switch_face to other type2-tuples (since they
share the same vertex), while switch_vertez can
connect ¢ to some tuple ¢ which is not to be deleted.
We consider maximal chains of tuples of type2 con-
ncted through switch_edge and switch_vertex links,
alternately (these tuples follow the boundary of a
face). The chain starts and ends into two tuples %,
and ¢, which are not deleted: we connect ¢; and %2
through switch_vertex.




To build hierarchical links, we proceed as fol-
lows. When we copy the tuples forming level v;
into the the overlay hierarchy, we keep into the tu-
ples in the working subdivision a link to their saved
copies. While updating the working subdivision to
pass from level 4; to level 4;_;, pointers contained
in non-removed tuples are maintained. Later, when
we save a tuple t = (v, e, f), with f macro, belong-
ing to level ;1 of the overlay, t already contains
a pointer to the appropriate tuple of the direct ex-
pansion of f. The macrofaces of a node of C (a con-
nected component of tuples) can be found as cycles
of tuples connected through switch_0 and switch_1,
and containing non-null pointers. The level of each
macroface is computed as yx_1, where v is the level
of the direct expansion of the macroface.

It can be shown that our algorithm builds the
overlay hierarchy C in O(n.) time, where n. is the
size of C (a complexity analysis is in [Mag95]).

5 Extensions

Hierarchical subdivisions use conservative refine-
ment (an edge can be splitted into segments, but
its geometry does not change), which ensures that
all intersection points appearing in the upper levels
of the overlay hiearchy also appear in the overlay at
the highest resolution. This property is exploited by
our construction algorithm. More general multireso-
lution models (e.g., [Ber94]) allow non-conservative
refinement, by refining an edge into a polygonal
chain. Our algorithm can be extended to deal with
this kind of non-conservative refinement, provided
that some consistency constraints are verified. If
two edges e, and ep, belonging to hierarchy .4 and
B, respectively, intersect, then the chains refining
e, and e, must intersect as well (i.e., every inter-
section point at a coarsest level must correspond to
some intersection at finer levels). Our algorithm,
as described in Section 4, correctly performs the
simplification of a chain of non-collinear segments
into a single edge during a generalization step. The
non-trivial part is about intersection points, whose
coordinates must be recomputed when a chain is
is generalized into a segment; moreover, several in-
tersection points can collapse into one. Levels of
vertices, intersection points and tuples must also be
redefined in an appropriate way [Mag96].

We are still investigating the possibility of extend-
ing the algorithm to multiresolution models where
entities of lower dimensionality can be refined into
entities of higher dimensionality (e.g., a point into
a region) [Fra94, Pup95].

An open research problem is the extension to three
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or more dimensions, where hierarchical cell com-
plexes are used for representing structured solid ob-
jects or scalar fields, and overlays describe the spa-
tial interference between two objects or the distri-
bution of two fields within the same space.
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